Dynamic Hashing: Adaptive

Metadata Management for
Petabyte-scale File Systems

Weijia Li, Wei Xue, Jiwu Shu,
Weimin Zheng

HPC Institute, Tsinghua University

2006-5-16
) A% 4%

NRLBI A : : .
Yyonn- o Tsinghua University




Large scale File System is more and more popular
= PB data (billions of files)
= Many clients (such as 10,000 clients) access at the same time

= Different Access Modes: different directories, same directory
or even the same file

Effective Metadata Management

is Critical

= Each File Op need access
metadata

= >50% Ops are only metadata Ops

= Metadata Cluster makes thing
more difficult

goals for Metadata Management >

= Performance Storage system architecture
= Scalability

" Reliability




Dynamic Hashing Metadata Management

Dynamic Hashing (DH)

= provide high-performance and scalable metadata management,
especially for metadata cluster

High-performance
= Adaptive to workload changing
= Avoid bottlenecks due to hotspots

Scalability
= Easy to add and remove metadata servers
RElative LoAd Balance Whole Lifecycle Management

Dynamic %@/ﬂ

ashin B w2
= .

Metadata Lookup Table




Metadata Lookup Table (MLT)

Mapping hash value to MDS ID

The version field indicates if the
gorresponding entry is out of
ate

Entry is the minimum unit of
metadata redistribution

All MDSs and clients keep a
copy of MLT Entry

= Broadcast between MDSs when
update

= Lazy update policy for clients

=

Range of Metadata | Version
Hash Values | Server ID

0-001F 0 1000
0020-003F 1 1000
0040-005F 2 1111
0060-007F 3 1101
FF70-FF8F 0 1000
FF90-FFAF 1 1011
FFBO-FFCF |2 1100
FFDO-FFFF 3




Relative load balance strategy (RELAB)

Abstract Load vs Relative Load of an MDS
= Abstract load : Sum of access frequencies of active MLT entries
= Relative load : Abstract load / power of the MDS

Goal: to keep the relative load balanced
Method
= Busy MDSs move entries of metadata to non-busy MDSs periodically

Procedure
= Record access frequency for each active entry in the MLT
= Calculate the relative load for each MDS
= For each MDS, broadcast the relative load to all other MDSs
= Calculate the ideal relative load on each MDS
= Decide server pairs of busy and non-busy MDS
= Transfer metadata from busy MDSs to non-busy MDSs

Elasticity has similar idea to RELAB




Whole lifecycle management (WLM)

Goal: to manage the whole lifecycles for all hot-spots

»>Keeping files
with high access
frequency as
hotspots
»Utilizing cache
mechanism
»Each MDS finds
hot-spots without
introducing
communications

»>Replicating hot-
spots and storing
replicas in different
MDSs to avoid
bottlenecks
»Client maintain
the list of metadata
servers with the
same file and select
metadata server
randomly

»>MDS manages
all replicas on
itself

»>When the hot-
spot is not hot
any more,
reclaiming the
replicas
individually




Comparison with Dynamic Subtree Partitioning

Pros

= Easy to add and remove metadata servers
* Move metadata in parallel
* Load balancing is still kept after the metadata movement

= Detailed algorithm to find hot-spots and reclaim replicas

* Much fewer forwarded requests

* Client maintain the list of metadata servers and can access the
correct metadata server directly

Cons

= A little more memory overhead
* MLT
* Hotspots info

= A little more computation overhead




Thank You !
hitp://storage.cs.tsinghua.edu.cn




