
Dynamic Hashing: Adaptive
Metadata Management for

Petabyte-scale File Systems

Weijia Li, Wei Xue, Jiwu Shu,
Weimin Zheng

HPC Institute, Tsinghua University
2006-5-16

Motivation
 Large scale File System is more and more popular

 PB data (billions of files)
 Many clients (such as 10,000 clients) access at the same time
 Different Access Modes: different directories, same directory

or even the same file

Object Based Storage DevicesMetadata Server Cluster

Clients

Data
 A

cce
ss

M
etadata Access

Metadata Storage

 Storage system architecture

 Effective Metadata Management
is Critical
 Each File Op need access

metadata
 >50% Ops are only metadata Ops

 Metadata Cluster makes thing
more difficult

 goals for Metadata Management
 Performance
 Scalability
 Reliability
 ···

Dynamic Hashing Metadata Management

 Dynamic Hashing (DH)
 provide high-performance and scalable metadata management,

especially for metadata cluster
 High-performance

 Adaptive to workload changing
 Avoid bottlenecks due to hotspots

 Scalability
 Easy to add and remove metadata servers

RELAB Elasticity WLMDynamic Dynamic
HashingHashing MLT

Hashing

RElative LoAd Balance Whole Lifecycle Management

Metadata Lookup Table

Metadata Lookup Table (MLT)

 Mapping hash value to MDS ID

 The version field indicates if the
corresponding entry is out of
date

 Entry is the minimum unit of
metadata redistribution

 All MDSs and clients keep a
copy of MLT
 Broadcast between MDSs when

update
 Lazy update policy for clients

………………

3

2

1

0

……

3

2

1

0

Metadata
Server ID

1111

1100

1011

1000

……

1101

1111

1000

1000

Version

FFD0-FFFF

FFB0-FFCF

FF90-FFAF

FF70-FF8F

……

0060-007F

0040-005F

0020-003F

0-001F

Range of
Hash Values

Entry

Relative load balance strategy (RELAB)
 Abstract Load vs Relative Load of an MDS

 Abstract load : Sum of access frequencies of active MLT entries
 Relative load : Abstract load / power of the MDS

 Goal: to keep the relative load balanced
 Method

 Busy MDSs move entries of metadata to non-busy MDSs periodically

 Procedure
 Record access frequency for each active entry in the MLT
 Calculate the relative load for each MDS
 For each MDS, broadcast the relative load to all other MDSs
 Calculate the ideal relative load on each MDS
 Decide server pairs of busy and non-busy MDS
 Transfer metadata from busy MDSs to non-busy MDSs

 Elasticity has similar idea to RELAB

Whole lifecycle management (WLM)
 Goal: to manage the whole lifecycles for all hot-spots

Eliminating hot-spots

Replicating hot-
spots and storing
replicas in different
MDSs to avoid
bottlenecks
Client maintain
the list of metadata
servers with the
same file and select
metadata server
randomly

Finding hot-spots

Keeping files
with high access
frequency as
hotspots
Utilizing cache
mechanism
Each MDS finds
hot-spots without
introducing
communications

Reclaiming replicas

MDS manages
all replicas on
itself
When the hot-
spot is not hot
any more,
reclaiming the
replicas
individually

Comparison with Dynamic Subtree Partitioning
 Pros

 Easy to add and remove metadata servers
• Move metadata in parallel
• Load balancing is still kept after the metadata movement

 Detailed algorithm to find hot-spots and reclaim replicas
 Much fewer forwarded requests

• Client maintain the list of metadata servers and can access the
correct metadata server directly

 Cons
 A little more memory overhead

• MLT
• Hotspots info

 A little more computation overhead

