Fingerdiff: Improved Duplicate

g Elimination for Storage Systems

Deepak Bobbarjung
Cezary Dubnicki
Suresh Jagannathan

w Problem statement

= Improved duplicate elimination can
reduce storage and bandwidth
utilization in content-addressable
storage networks.

= Can we improve the duplicate
elimination that can be obtained in
storage systems?.

w Fingerdiff

= A data partitioning technique that
provides better duplicate elimination in
storage system while introducing fewer
overheads.

iW Fixed size chunking (FSC)

File F Version 1

File F Version 2

Bl

B2

B3

B4

B5

B6

Bl

B2

B4’

B5’

B6'

&W Content determined chunking (CDC)

C c2 c3 c4 C

. . Bl | B2 B3 B4 B5 B6
File f version 1

C c2 C C C

B4 B5 B6

File f version 2 H Bl | B2

w Avenues for improvement of CDC

= Variable sized chunks but with a small margin
of error.

= Size of any new chunk is the expected chunk
size with a small margin of error.

= [arge expected chunk size implies large sizes
for all new chunks

= Small expected chunk size implies many small
sized chunks resulting in large metadata
overheads.

&M fingerdiff

= Goal:
= Be able to partition objects into very small chunks
without imposing overheads of too many chunks.
= Solution:

= Partition into small chunks only when necessary.
(i.e. in regions of change).

= Coalesce small chunks into larger chunks
wherever possible. (i.e. in regions of no change).

&m fingerdiff

SC

File f version 1

SC1 ... SCn NEW

Hash
— .

hi ... hn | Fingerdiff Iook%{)?
cl

Finger

A

7L\

/L NN

c2

A 4

c3

c4

&M fingerdiff

File f version 2

SC1 ... SCn

Hash
— .

hl hn

SC

|

Fingerdiff |oow

cl

c2’

c3

c4

1a00

11000

500

4 ia &4 256 4 16 e 256

Chunk cverhead Chunk overhead Chunk cwverhead
(gcc) (gdb) (emacs)
ey vy S

1k
1k
1k

4 16 &4 156 4 16 e 256

Chunk cverhead Chunk overhead Chunk cwverhead
(linux) (gain) (freadb)
cdc-256 —— cdc-6d4 —— fd-128 ——
cde-128 —a— fd-256 —r— fd-32 ——

Figure 1. Comparison of the total network traffic (in MB) consumed by six of the ten chunking
technique instantiations after writing each benchmark on a content addressable chunk store. The X-
axis of each graph is a log plot which gives the chunk overhead; i.e the overhead in bytes associated
with transferring one chunk of data from the driver to the chunk store. The network traffic measured
is between the object server and the chunk store. The Y-axis gives the total network traffic generated
in MB after writing each benchmark to the chunk store.

Storage space consumption

benchmark | cde-2k | ede-236 | cde-128 | cde-64 | ede-32 | fi-2k | fd-206 | fd-128 | fd-64 | fd-32| % saving

Sources
gec 1414 866 828 839 979 | 1400 | 799 | 680 | 379 | 498 40
adb 501 363 344 358 500 | 498 | 336 | 293 | 155 | 13 26
Emacs 327 258 159 281 457 | 324 | 239 | 220 | 199 | 221 25
limux 1204 108 629 692 985 | 1195 | 644 | 32 469 | 543 23

Databases
freedb 396 348 360 442 g44 | 370 | 394 37 | 291 | 290 17

Binaries
gaim 225 243 301 447 327 | 213 | 196 M8 | 244 | 24s 13

Total 4067 | 2788 | 2731 | 3079 | 4000 | 3900 | 2611 | 2238 | 2038 | 2032 23

Total Network Traffic Consumption for gcc

e —— ||~ fd-128

L
: : - fd-32

g 2000

E__” 1500 - —— cdc-256
' cdc-128
=

(o) N %/V fd-256
E *

(]

2

S

o

=

Overhead (Bytes)

§W Conclusions

= EXxisting object partitioning techniques
cannot improve the duplicate
elimination without increasing the
metadata management overheads
imposed on the system.

= Fingerdiff enabled duplicate elimination
provides better storage and network
utilization over existing techniques.

