

The Design and Implementation of
AQuA: An Adaptive Quality of Service
Aware Object-Based Storage Device

Joel Wu and Scott Brandt
Department of Computer Science

University of California Santa Cruz

MSST2006

May 17, 2006

What is Storage QoS?

◆ Storage system quality of service can have multiple
dimensions: availability, performance, reliability,
and even security

◆ We define QoS in term of performance (data rate)

QoS support: Ability to assure a certain level of
performance (data rate) that users can obtain from
the storage system.

Why storage QoS?

◆ Storage-bound applications with timing constraints

Read
Data

Decode
Data

Disp.
Data

Read
Data

Decode
Data

Disp.
Data

Period Deadline DeadlineDeadline

Time

Decode
Data

Disp.
Data

Read
Data

◆ Consolidation of storage results in larger and more complex
shared storage systems
• Unrelated workload and multiple organizations/users sharing the same

storage resource
• During overload, applications must compete for access and

interfere with each other

Video player example

How to achieve QoS?

◆ Provisioning: Ensure enough resource to go around
• Automated design tools

◆ Limitations of provisioning:
• Require detailed knowledge on expected workloads
• Slow to react
• Storage workloads are transient and bursty, provisioning

for worst-case scenario can be prohibitively expensive

Adequate provisioning is necessary but not enough

Need additional solution to provide QoS assurance

Object-Based Storage System (Ceph)

Object-Based Model
◆ Offloads handling of low-level storage details to the storage devices
◆ Storage device accessed through object interface
◆ Metadata management decoupled from data management

Client Client Client

OSD OSD OSD OSD

MDS MDS

High Speed
Networks

Metadata
Server
Cluster

Three major components in Ceph:
◆ Clients
◆ Metadata server cluster
◆ Object-Based Storage Devices (OSD)

Ceph OSD:
◆ Intelligent and autonomous storage

device with P2P capability
◆ Consists of CPU, memory, NIC, and

block-based disk(s)

QoS support in Ceph

◆ Provide underlying framework that can be utilized to
achieve higher level QoS goals

◆ Build from QoS-aware OSDs
◆ Provide assurance for different classes

• Class: Generic term referring to an aggregate of storage
traffic sharing the same QoS goal

• Semantic and granularity defined by administrator
• Limit interference between different classes

QoS-capable: Ability to provide storage bandwidth assurance

QoS framework for Ceph

Streams in non-striped
distributed storage

◆ Stream: An end-to-end data path

diskdisk diskdiskdisk disk

stream stream
streamstream

Interconnect
Network

Flows in non-striped
traditional distributed
storage system

QoS mechanism for individual device
◆ QoS mechanism per device: Façade, Zygaria, Sundaram03,

XFS GRIO2

diskdisk diskdiskdisk disk

stream stream
streamstream

Interconnect
Network

QoS QoS QoS QoS QoS QoS

QoS mechanism in SLEDS

◆ SLEDS [Chambliss’03]

diskdisk diskdiskdisk disk

Interconnect
Network

QoS QoS

stream

stream

streamstream

Throttling model

Generalization of QoS: A resource has a capacity and is redistributed among
a number of consumers to satisfy QoS goals

◆ Specification
• Allows the desired quality level to be specified (IOPS, bytes/sec, latency,

request rate).
• Can be associated with different entities (clients/hosts, groups of clients,

application class)
◆ Monitor

• Monitoring the rate different entities are receiving data.
• Can monitor different parameters of the system (queue length, average

completion time, response time, throughput, bandwidth)
◆ Enforcer

• Mechanism that shapes bandwidth by throttling (I/O scheduler, leaky bucket)
◆ Controlling technique

• Decides when and how much to throttle bandwidth (heuristics, control-
theoretic)

Throttling model

1. Specify the desired rate.
May involve admission
control.

2. Monitor the actual rate
received

3. If actual rate received is
less than desired rate,
throttle competing traffic

4. Ease throttling if actual
rate received is
satisfactory.

Storage
Devices

Monitor

Enforcer

Controlling
Technique

Specification
workloads

Striping of Objects in Ceph

Files are broken up into objects and striped across OSDs

File

Object

Placement
Group

OSD

RUSH

RUSH

• Mapping by pseudo-random RUSH algorithm
• Goal is load balancing

Streams in Ceph
◆ Striping - accessing a single file may involve multiple

streams
◆ Peer-to-peer replication/recovery traffic between OSDs

Data flows in Ceph

OSDOSD OSDOSDOSD OSD

stream

stream
streamstream

Interconnect
Network stream

stream

stream
MDS

Ceph QoS Architecture

administrator

spec

clients

diskdisk diskdiskdisk disk

Interconnect
Network

ENF ENF ENF ENF ENF ENF

MDS

QoS

AQuA
OSD

Basic QoS support in OSD

◆ Fundamental capability that all QoS-aware systems
possess is the ability to shape disk bandwidth – to
redistribute resource

◆ Higher level goals can be decomposed into why,
when, how, which, and how much to shape disk
traffic (enforcer component)

◆ Giving OSD this capability - Push and encapsulate
complexity into OSD

AQuA OSD:
Adaptive Qualify of service Aware Object-based Storage Device

◆ Enforce bandwidth allocation among classes
◆ Based on Object-based file system (OBFS) – Small and

efficient file system for managing block-based hard disks
[Wang 2004]

◆ Object Disk I/O Scheduler (ODIS) – QoS-aware disk
scheduler incorporated into object-based file system

◆ AQuA = OBFS + ODIS + Bandwidth Maximizer

API

ODIS
OBFS

Linux kernel

Block device driver
Block-based disk

User space

OSD

Object interface

OBFS Internal Structure [Wang 2004]

 Read/Write
Kernel Space

Flush DaemonObject Cache

Disk Request Queue

Disk I/O Daemon

Completion
Queue

Completion
Daemon

User Space

Read Write

elevator queue

Object Disk I/O Scheduler (ODIS)
◆ Limit interference between classes
◆ Allows reservations and reclaims unused bandwidth
◆ Replaces standard elevator scheduler in OBFS
◆ n QoS queues, 1 best-effort queue, and 1 dispatch queue
◆ Number of QoS queues is dynamic
◆ Each queue has an associated worker thread
◆ Specification of a class determines the rate requests are moved to the

dispatch queue

Dispatch queue
(elevator order)

QoS
queue 1

disk

Best-effort
queue

QoS
queue 2

QoS
queue n

Worker
threads

HTB Implementation

◆ Implemented with hierarchical token buckets (HTB) [NOSSDAV’05]
• Each node has an associated bucket and token rate
• Root node represents the aggregate bandwidth (token rate) of the disk (G)

◆ Each token represents 1 KB of bandwidth
• Leaf node tokens replenished at a rate corresponding to reservation
• Root node tokens replenished with a fixed rate

◆ Root node facilitates sharing and reclamation of unused bandwidth
◆ HTB can be of more than two level

root

1 432

b

b b b b

G

r1 r2 r3 r4

Stateful disk

◆ Disk drive is stateful

◆ Total resource (available
bandwidth) is not fixed
• Dependent on the workload

◆ How to assure resource allocation when the
amount of available resource varies?
1. Disk model (RT disk schedulers)
2. Proportional allocation (Sundaram’03, Cello, YFQ)
3. Assume fixed resource (DFS, XFS GRIO2, Zygaria)
4. Adaptation - Throttling model (Façade, SLEDS)

consumer

demand

resource

supply

QoS assurance vs. total throughput

◆ Estimation of total bandwidth: tradeoff between “tightness”
of QoS assurance and total throughput

Aggressive
• Looser QoS assurance
• Over-commitment
• Higher utilization

Conservative
• Tighter QoS assurance
• Underutilization
• Reduced total throughput

◆ AQuA:
1. Conservative estimate of total bandwidth to ensure stringent QoS

assurance
■ Bandwidth allocated by ODIS

2. Minimize underutilization of disk with dynamic adaptation
■ Bandwidth maximizer attempts to maximize total throughput

Bandwidth Maximizer

◆ Proof-of-concept implementation: The heuristic adjusts G by monitoring
the status:
• If disk throughput is capped by G and no QoS commitments are violated, it

increase G.
• If disk throughput is capped by G, G has been increased to greater than its

original value, and some QoS commitments are violated, decrease G.
• G will not drop below its original value.

G

A

To
ta

l T
hr

ou
gh

pu
t

Time
G: Global Token RateA: Achievable Throughput

Potential for bandwidth
maximization

1. When the demand is not capped by
 either A or G. O < A and O < G
2. When the demand is capped by A,
 and A < G
3. When the demand is capped by G,
 G < A.

O: Observed (actual) rate
(Estimation of total

disk bandwidth)

AQuA: Results

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (M

B
/s

)

Time (s)

Workload 1 (0-120)
Workload 2 (30-120)
Workload 3 (60-120)

Without reservation and assurance

AQuA: Results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (M

B
/s

)

Time (s)

Workload 1 (0-120)
Workload 2 (30-120)
Workload 3 (60-120)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 20 40 60 80 100 120 140
Th

ro
ug

hp
ut

 (M
B

/s
)

Time (s)

Workload 1 (0-120)
Workload 2 (30-120)
Workload 3 (60-120)

With ODIS With ODSI and Bandwidth Maximizer

Reservation at 5, 15, and 20 MB/s

Conclusion and Future Work

◆ QoS-aware OSD
• Encapsulating bandwidth shaping mechanism within OSD

by combining OBFS with QoS-aware disk scheduler
• Adaptive heuristic minimizes underutilization
• Basic building block of the overall QoS framework

◆ Future Works will shift from using OBFS to EBOFS
(Extend-Based Object File System)

◆ More intelligent adaptation method
◆ Global QoS framework

