

Content-Based Block Caching

Charles B. Morrey III and Dirk Grunwald
University of Colorado, Boulder

Department of Computer Science

Overview

• Thesis
• Motivation
• System Design
• Results
• Related Work
• Conclusion

Thesis

Content-Based Block Caching
attempts to maintain a single copy
of any block in memory according
to its contents. In the presence of
repeated content, this mechanism
increases the effective size of the

buffer cache.

Motivation

• CPU and memory subsystems are
experiencing performance growth much
faster than disks.
– Trade a bounded amount of computation and

small amount of cache memory for a better
cache hit rate (in the presence of repeated
content)

– Better cache hit rate should imply a shorter
I/O stall time (hypothesis)

Testing For Repeated Content
• 11 Workstations configured to network

boot an iSCSI disk which logged all writes
• 10 Mandrake Linux machines
• 1 Windows 2000 Machine inside VMWare

Workstation 3.2 for Linux
• Test Systems used as student

workstations for several weeks
– Email, Web Browsing, Editing, Debugging,

Compilation

Is There Repeated Content?

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

1 2 3 4 5 6 7 8 9 10 win2k

Virtual Disk

A
ve

ra
ge

 W
ri

te
 C

ou
nt

 p
er

 2
4

ho
ur

tr

ac
e

(5
12

 b
yt

e
bl

oc
k)

Unique Writes
Repeated Writes
Zero Block Writes

Research Artifacts

• Cache Simulator of CBBC
– provides only hit rate results

• Disksim 3.0 modified to add CBBC
– Provides accurate disk timing

• Several months of live system disk
traces of Linux (ext3) and Windows
(NTFS)

Overview

• Thesis
• Motivation
• System Design
• Results
• Related Work
• Conclusion

Storage Server Configuration

Block
Storage

Content
– Based
Cache of
blocks

Server Infrastructure

High Speed Switched Network

Workstations

Storage Server

Another Configuration

Storage

Server

File Server

Web Server

Server Infrastructure
High Speed
Switched Network

Workstations with
Virtualized

Storage

Block
Storage

Content
– Based
Cache of
blocks

CBBC Integration

Virtual DisksWorkstation
Storage

Block Storage

Content –
Based
Cache of
blocks

Offset-Based Block Cache
6 2 3 0

4 1 8

LUN Map 0

LUN Map 1
0

1

2

3

4

5

6

7

8

Block Cache 0 1 2 3 4 5 6 7 8 9LBN:

0 1 2 3 4 5 6 7 8 9LBN:

Content-Based Block Cache

6

4 2

7

0/2

1/2 0/8

0/0 1/5 0/3

1/8

6 2 6 4

4 6 8

LUN Map 0

LUN Map 10

1

2

3

4

5

6

7

8

Content Hashtable

Block Cache
0 1 2 3 4 5 6 7 8 9LBN:

First Write Offset Cache
6

LUN Map 0

LUN Map 1
0

1

2

3

4

5

6

7

8

Block Cache 0 1 2 3 4 5 6 7 8 9LBN:

0 1 2 3 4 5 6 7 8 9LBN:

Write to LUN 0 LBN 0

Second Write of Same Content
6

LUN Map 0

LUN Map 1
0

1

2

3

4

5

6

7

8

Block Cache 0 1 2 3 4 5 6 7 8 9LBN:

0 1 2 3 4 5 6 7 8 9LBN:
1

Write to LUN 0 LBN 0

Write to LUN 1 LBN 5

Third Write of Same Content
6

LUN Map 0

LUN Map 1
0

1

2

3

4

5

6

7

8

Block Cache 0 1 2 3 4 5 6 7 8 9LBN:

0 1 2 3 4 5 6 7 8 9LBN:
1

3

Write to LUN 0 LBN 0

Write to LUN 1 LBN 5

Write to LUN 0 LBN 3

First Write CBBC
6

LUN Map 0

LUN Map 1
0

1

2

3

4

5

6

7

8

0/0

6

Write to LUN 0 LBN 0

Second Write of Same Content
6

6

LUN Map 0

LUN Map 1
0

1

2

3

4

5

6

7

8

0/0

6

1/5

Write to LUN 0 LBN 0

Write to LUN 1 LBN 5

Third Write of Same Content
6 6

6

LUN Map 0

LUN Map 1
0

1

2

3

4

5

6

7

8

0/0

6

1/5 0/3

Write to LUN 0 LBN 0

Write to LUN 1 LBN 5

Write to LUN 0 LBN 3

Content Collision Example

6

4

1/2

0/0 1/5 0/3

6 6

4 6

LUN Map 0

LUN Map 1
0

1

2

3

4

5

6

7

8

Write to LUN 1 LBN 2

Content Collision Example

6

4

1/2

0/0 1/5 0/3

6 6

4 6

LUN Map 0

LUN Map 1
0

1

2

3

4

5

6

7

8

Write to LUN 1 LBN 2

Write to LUN 0 LBN 7

Hash
Function

Hashtable
Lookup

Content Collision Example

6

4

1/2

0/0 1/5 0/3

6 6

4 6

LUN Map 0

LUN Map 1
0

1

2

3

4

5

6

7

8

Write to LUN 1 LBN 2

Write to LUN 0 LBN 7
Memcompare? !=

Content Collision Example

6

4 8

0/7

1/2

0/0 1/5 0/3

6 6 8

4 6

LUN Map 0

LUN Map 1
0

1

2

3

4

5

6

7

8

Write to LUN 1 LBN 2

Write to LUN 0 LBN 7

Overhead for Comparisons

Disk Operation Cost

• Assuming Sequential Transfer Rate of
30MB/s 10 comparisons can be done for
every block transferred

• Assuming a random disk access time of
10ms almost 7000 comparisons can be
done for every block transferred

• Assume 10 to be conservative

How Big to Make Content
Hashtable?

Overview

• Thesis
• Motivation
• System Design
• Results
• Related Work
• Conclusion

Disksim System Performance

Overview

• Thesis
• Motivation
• System Design
• Results
• Related Work
• Conclusion

Hashing
• Bell Labs – Venti

– Uses SHA-1 of block as address to store single copy of blocks.
– Used as backup device
– No write logging (discrete snapshots)

• Farsite – Microsoft (ICDCS ’02)
– Big, Distributed File Server
– Convergent Encryption to Coalesce Identical Files (Very Cool!)

• Hash a File, Encrypt file with Hash, Encrypt Hash with Pub Key
• Low-Bandwidth File System

– Semantic Block Chunking
– Hash of block to save network traffic

Caching Related Work
• Compression caching

– Compress available cache space to increase effective
cache size

• Cache replacement policies
– LRU to LFU spectrum

• Orthogonal (content-caching uses a replacement policy)
– Multi-Queue cache replacement algorithm

• Keeps blocks around based on their access frequency and
time

• More effective for second level caches

Conclusion

• Content-Based Block Caching is a novel
addition which provides several benefits
by using content tracking to increase
effective cache size

Future Work
• CIMStore (Come for my WIP tonight)
• http://systems.cs.colorado.edu/~cbmorrey

BACKUP SLIDES

Is There Repeated Content?
Average Operations Per Day (or Trace)

Disk # Writes Repeated Writes Zero Block Writes Reads # of Days

1 1,476,573 1,265,093 66,781 105,227 13
2 1,545,183 1,322,575 75,710 71,898 14
3 1,556,154 1,332,916 72,537 56,449 14
4 780,208 670,227 36,983 82,446 12
5 628,096 540,547 29,431 89,734 3
6 1,432,974 1,227,173 70,582 92,678 14
7 1,174,403 1,006,937 53,712 92,761 8
8 1,251,825 1,071,016 63,778 170,958 5
9 657,768 532,934 69,530 168,617 26
10 603,793 407,582 59,448 418,060 45
win2k 142,932 69,280 2,895 3,087 16

Caching Related Work
• DEMOTE (Exclusive Caching) Wilkes et. al.

(USENIX ’02)
– Adds the DEMOTE operator to multi-level disk caches

to improve cache coverage
• Cooperative Caching - Dahlin et. al. (OSDI ‘94)

– Remote Client Memory to improve File System
Performance

• Cooperative Caching - Voelker et. Al.
(SIGMETRICS ’98)
– Prefetching and Caching in a Globally Managed

Memory System

