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Thesis

Content-Based Block Caching 
attempts to maintain a single copy 
of any block in memory according 
to its contents.  In the presence of 
repeated content, this mechanism 
increases the effective size of the 

buffer cache.



  

Motivation

• CPU and memory subsystems are 
experiencing performance growth much 
faster than disks.
– Trade a bounded amount of computation and 

small amount of cache memory for a better 
cache hit rate (in the presence of repeated 
content)

– Better cache hit rate should imply a shorter 
I/O stall time (hypothesis)



  

Testing For Repeated Content
• 11 Workstations configured to network 

boot an iSCSI disk which logged all writes
• 10 Mandrake Linux machines
• 1 Windows 2000 Machine inside VMWare 

Workstation 3.2 for Linux
• Test Systems used as student 

workstations for several weeks
– Email, Web Browsing, Editing, Debugging, 

Compilation



  

Is There Repeated Content?
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Research Artifacts

• Cache Simulator of CBBC
– provides only hit rate results

• Disksim 3.0 modified to add CBBC
– Provides accurate disk timing

• Several months of live system disk 
traces of Linux (ext3) and Windows 
(NTFS)
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Storage Server Configuration
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Another Configuration
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CBBC Integration
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Offset-Based Block Cache
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Content-Based Block Cache
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First Write Offset Cache
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Second Write of Same Content
6

LUN Map 0

LUN Map 1
0

1

2

3

4

5

6

7

8

Block Cache 0 1 2 3 4 5 6 7 8 9LBN:

0 1 2 3 4 5 6 7 8 9LBN:
1

Write       to LUN 0 LBN 0

Write       to LUN 1 LBN 5



  

Third Write of Same Content
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First Write CBBC
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Second Write of Same Content
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Third Write of Same Content
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Content Collision Example
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Content Collision Example
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Content Collision Example
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Content Collision Example
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Overhead for Comparisons



  

Disk Operation Cost

• Assuming Sequential Transfer Rate of 
30MB/s 10 comparisons can be done for 
every block transferred

• Assuming a random disk access time of 
10ms almost 7000 comparisons can be 
done for every block transferred

• Assume 10 to be conservative



  

How Big to Make Content 
Hashtable?
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Disksim System Performance
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Hashing
• Bell Labs – Venti

– Uses SHA-1 of block as address to store single copy of blocks.
– Used as backup device
– No write logging (discrete snapshots)

• Farsite – Microsoft (ICDCS ’02)
– Big, Distributed File Server
– Convergent Encryption to Coalesce Identical Files (Very Cool!)

• Hash a File, Encrypt file with Hash, Encrypt Hash with Pub Key
• Low-Bandwidth File System

– Semantic Block Chunking
– Hash of block to save network traffic



  

Caching Related Work
• Compression caching

– Compress available cache space to increase effective 
cache size

• Cache replacement policies
– LRU to LFU spectrum

• Orthogonal (content-caching uses a replacement policy)
– Multi-Queue cache replacement algorithm

• Keeps blocks around based on their access frequency and 
time

• More effective for second level caches



  

Conclusion

• Content-Based Block Caching is a novel 
addition which provides several benefits 
by using content tracking to increase 
effective cache size

Future Work
• CIMStore (Come for my WIP tonight)
• http://systems.cs.colorado.edu/~cbmorrey



  

BACKUP SLIDES

  



  

Is There Repeated Content?
Average Operations Per Day (or Trace) 

Disk #    Writes          Repeated Writes  Zero Block Writes Reads # of Days 

1 1,476,573 1,265,093 66,781 105,227       13 
2 1,545,183 1,322,575 75,710   71,898       14 
3 1,556,154 1,332,916 72,537   56,449       14 
4    780,208    670,227 36,983   82,446       12 
5    628,096    540,547 29,431   89,734         3 
6 1,432,974 1,227,173 70,582   92,678       14 
7 1,174,403 1,006,937 53,712   92,761         8 
8 1,251,825 1,071,016 63,778 170,958         5 
9    657,768    532,934 69,530 168,617       26 
10    603,793    407,582 59,448 418,060       45 
win2k    142,932      69,280   2,895     3,087       16 



  

Caching Related Work
• DEMOTE (Exclusive Caching) Wilkes et. al. 

(USENIX ’02)
– Adds the DEMOTE operator to multi-level disk caches 

to improve cache coverage
• Cooperative Caching - Dahlin et. al. (OSDI ‘94)

– Remote Client Memory to improve File System 
Performance

• Cooperative Caching - Voelker et. Al. 
(SIGMETRICS ’98)
– Prefetching and Caching in a Globally Managed 

Memory System


