

SmartMig: Risk-Modulated Proactive Data
Migration for Maximizing Storage System

Utility

Li Yin (U.C. Berkeley)

Joint work with:

Sandeep Uttamchandani (IBM Almaden)
Randy H. Katz (U.C.Berkeley)

Need For Corrective Actions

Storage Virtualization
(Mapping Application-data to Storage Resources)

E-mail

Application Data
Warehousing

Web-server

Application

Corrective actions tune the application-resource mapping

Storage
Devices

• Increasing trend for storage system consolidation
• Virtualization is the key: determines the application-resource mapping
• Mapping is not static – need for corrective actions

– Change in application priorities at run-time
– Workload changes; load surges; hardware failures

Invoking Data Migration
• Migration is a commonly used corrective action in enterprise

storage systems
• Migration invocation parameters:

– What to move
– Where to move
– How to move (migration speed)
– When to move

• Existing solutions:
– Can decide < what, where and how > parameters automatically

• QoSMig, Aqueduct, Hippodrome
– <when> is determined by the administrator or using some default

policies
• Example: Invoke the migration when the system load is low

What is Missing?

Migration can be
invoked at any time,
as a foreground
process

Contributions
of SmartMig

Services are
becoming global –
systems “never
sleep”

Real World
Operations

When the system is
lightly loaded, as a
background process

Existing
approaches

When to invokeUnaddressed
Problems

Account for both the
current and look-
ahead system states

The system is
optimized with a
Look-ahead
(optimization) window

Migration decision is
made to optimize the
current state

Optimization
window

Take the risk of
migration operation
into account

Risk is involved:
May migrate
terabytes of data

No notion of risk:
selects migration
plans that utilize the
system better

Risk Consideration

Outline

• Motivation/Contributions
• SmartMig

– Architecture
– Key Modules

• Evaluation
• Conclusion

SmartMig: Utility Based Optimization
• Goal: Find migration parameters that maximize the

system utility for a given optimization window
• Defining utility functions:

– Reflect user’s satisfaction
– Defined on a per-workload basis
– Example Utility functions can be:

• System utility value:

• Maximum utility value

• System utility loss:

>
<

=
mslatifthru
mslatifthru

latthruU
6*10
6*60

),(

∑
=

=
N

i
iiisys latthruUU

1
,)(

∑
=

=
N

i
latii i

SLODemandUU
1

,max)(

syssys UUUL −= max

SmartMig Architecture

Future
Forecasting

Performance
Prediction

Utility
Evaluation

Optimization Planning Risk
Modulation

Migration
Executor

Monitor
Information

Predicted
Demands

Estimated
Performance

Estimated
Utility

Decide What
And where

Decide How
And when

Risk
Assessment

Input
Modules

Plan Generator

Outline

• Motivation/Contributions
• SmartMig

– Architecture
– Design details of key modules

• Evaluation
• Conclusion

Optimization Phase: What and Where
• Formulated as a constraint optimization problem

Find time tk with maximum UL

Set Migration Candidate Set S to Ø

Calculate UGij of moving workload j
to component i

If MAX(UG)
> Threshold

Add (workload n, component m) to S

Update data placement configuration

Output Migration candidate set S

UG = Usys(New) – Usys(Old)

• Finding top K <what, where> solutions
• Block the <workload, component> pair leading to minimum UG/Size

Illustration of Optimization Phase
Migration Candidate Set S={ }

1
2

3
4

5
5

6
6

Pool A Pool B Pool C

1

1

UG1B = Utility (W1 on Pool B) – Utility (W1 on Pool A)
UG1C = Utility (W1 on Pool C) – Utility (W1 on Pool A)
MAX(UG) = Max(UG1B, UG1C, UG2B, UG2C, …, UG6B, UG6C)

2

{(2:AC)}

5
5

3

{(2:AC), (5:AB), (3:AC)}

Planning Phase: How and When
• Migration Speed: optimization problem

– Greedy approximation – simulated annealing algorithm
• When: choose migration starting time

– Goal: find time t with minimum overall system utility loss
• Overall System Utility Loss: cumulative utility loss across the

optimization window

Before Region Utility Loss

Ongoing Region Utility Loss

After Region Utility Loss

Overall solution Utility Loss

Start time
t1

Finish time
t2

Time

Utility
Loss

Optimization
Window

Illustration of Planning: Choosing Start Time

X1 X2 X3 X4 Xi Xj Xn

Y1 Y2 Y3 Y4 Yi Yj Yn

Z1 Z2 Z3 Z4 Zi Zj Zn

Overall UL =

• For migration option starts at time “i” and ends at time “j”

Utility loss of old data
placement at time i

Utility loss of migrating
data at time i

Utility loss of new data
placement at time i

Before [0, i) + Ongoing [i, j) + After [j, n]

• End time “j” is estimated according to the migration speed

When: the “t” leading to minimum overall utility loss

X1 X2 X3 X4 Yi Zj Zn

Risk Modulation Phase

• Account for future uncertainty and migration overhead
• Future uncertainty consideration

• Overhead consideration

• Scale utility loss for each migration option:

• If min(UL*)<threshold, send for execution. Otherwise,
no migration option is returned

TConfidenceVaR *65.1)%95(σ−=

VaRMRF

UtilSys
sourceonbytestotal

movedbytes

k

k

k

Mk

M
M

*)1()(

_*

_

α

α

+−=

=

kk MkM ULMRFUL *))(1(* +=

Outline

• Motivation/Contributions
• SmartMig

– Architecture
– Key Modules

• Evaluation
• Conclusion

Experimental Results
• Three sets of tests

– Sanity check: parameter’s impact on the migration
decision

– Efficiency test: improvement in the system utility
– Sensitivity test: impact of model errors on the decision

• Test setup
– Initial data placement: create unbalanced system

randomly
– Workloads features: Gaussian mixture distribution
– Workload trending

• Mixture of increasing and decreasing workloads

Sanity Check
• Default settings

– 20 workloads on 4 components.
– 14 days optimization window

• Impact of Optimization Window T

1169441040820(5:02) (13:03) (17:02)5

38981522552118(5:02) (13:03) (14:02)4

1220811040828(5:02) (3:03) (13:03)3

43715422552152(5:02) (3:03) (4:01)2

1162951040819(5:02) (1:02)1

Scaled Utility
Loss

Start Time
(hour)

Utility LossSize
(GB)

Migration Candidates and
Targets

Option #

1143616(5:02) (13:03)5
42282140(4:02) (5:02)4
1150117(3:02) (5:02)3
8785012(6:01)2
1130814(1:0 2)1

Scaled
Utility Loss

Size
(GB)

Migration Candidates
and Targets

#

162009(5:02) (17:02)5
279620(17:02)(5:02)(13:0

3)
4

15813144(17:02) (4:02)(5:03)3
2370016(17:02)(3:02)2
294930(17:0 2)(3:02) (1:0

2)
1

Scaled
Utility Loss

Size
(GB)

Migration Candidates
and Targets

#

• Impact of Utility Configuration

Efficiency Test and Decision Time
• Improvement on system utility

• SmartMig Decision Time
– Linux, Pentium 4, 2.66GHZ CPU, 512MB memory.

(a) CDF of percentage of
overall utility loss without
migration operation

(b) CDF of percentage of overall
utility loss with SmartMig

(c) CDF of percentage of
overall utility loss
eliminated by SmartMig

0.7% - 55%

0.7%
83%

• Testing Methodology
– Synthetic workload models for ‘predicted latency’
– A random error percentage (normal distribution) is applied to

generate the ‘real latency’

• Model error should be within 20%

Sensitivity Test

(b) (Real Utility Loss – Predicted Utility Loss)
Predict no action utility loss

(a) Predicted Utility Loss
 Real Utility Loss

Conclusions
• We proposed SmartMig

– Decide migration invocation time automatically
– Account for both the current and future system states
– Select migration option with minimum risk

• Future work
– Impact of future prediction errors
– Real system implementation (GPFS)
– Improve the decision making time

Questions?

Backup Slides
•

• When future forecasting has large errors
– Defensive strategy: invoke the migration

option with minimum invocation cost and
maximum utility gain

Time

Accuracy of Knowledge

Defensive Migration Optimization
Planning

Risk Modulation

Significant System Variation

Time Series Prediction
• HP Cello99, Nov/01/99 – Dec/30/99

– First 41 days as training data
• ARIMA algorithm

Component Model Examination
• Regression tree based algorithm-GUIDE
• 5 workloads running on GPFS system

