
IEEE Mass Storage Systems and Technologies 2006

Ismail Ari, Melanie Gottwals, Dick
Henze
HP Labs, Palo Alto, CA

SANCache

Performance Boosting &
Workload Isolation in

Storage Area Networks

05/25/06 IEEE MSST’06 2

Problems in Current Data Centers
• Problem

− Fast, dynamic, cost-competitive business environment
− Continuous (24x7) pressure on computing infrastructures
− Flash (surges of) demand for high system performance
− CPUs are fast, disk-based storage is the bottleneck

• Current business practice to reduce costs
− Consolidate/Pool resources physically
− Allow resource sharing increase utilization
− Simplify management

• End Result
− Workload consolidation of different customers
− Unpredictable performance

05/25/06 IEEE MSST’06 3

SANCache Problem Statement
I/O-intensive workloads can

overwhelm disk-based storage
• Unpredictable application performance due to workload

variations & interference
− Difficult to isolate workload streams or guarantee performance
− Example: database storage serving concurrent OLTP, Decision Support,

and Backup phases in a 24 x 7 enterprise

• Throughput & access-density [IOPS/GB] limitations of disks
− Disk capacity is over-provisioned to meet IOPS goals, which increases

space, power, and management cost

• Solution? Static partitions in solid-state-disk (SSD)
storage?
− No! Manual configurations are management intensive and they do not

optimize utilization of this costly resource under dynamic conditions

05/25/06 IEEE MSST’06 4

SANCache Solution
• Automatically allocates a SAN-wide cache resource across

workloads to meet quality of storage service requirements:
− “My OLTP transaction load requires a guaranteed 20,000 IOPS from 2

specific volumes for the next 40 minutes”

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

I/O’s per Second
(IOPS)

• A mechanism to dynamically
augment disk-based storage
in the SAN

• This feature is selectively
enabled on a Logical Unit
(LUN) basis

LUN on disk-array:
performance varies
with workload

dynamic requirements

clients see
boosted

LUN
capability

05/25/06 IEEE MSST’06 5

SANCache Technology Challenges
• Designing policies to select hot

data
− Across varied workloads and storage

configurations
− Adapting parameters to maintain heat

of the cache contents
• Controlling migration rate

− To avoid saturation of disk, array
controller, or fabric resources

• Out-of-band implementations
• Allocating cache resource optimally

− Across multiple LUNs to maximize
utility

− Tie-in to storage services

Policy goals:
Achieve exclusivity
Maximize access density
Minimize migration
overheads

disk array cache

SSD SANCache

05/25/06 IEEE MSST’06 6

SANCache Implementation
• For enabled LUNs, “hot” chunks of

data are selectively migrated to a
SAN-attached caching resource

• Existing host and disk-array
resources remain unchanged

• Policies are implemented at the SAN
fabric virtualization layer

• SANCache resource is provisioned
independently from disk-array
storage

• Current prototype uses an enterprise
SSD connected to SAN

disk array storage

Policies in
virtualization

software

LUN(1), LUN(2), . . LUN(n)

SAN-wide
cache resource

solid-state disk

Host Host Host Host

SANCache

05/25/06 IEEE MSST’06 7

Design Requirements
• Justify Price($)/Performance (IOPS, MBps)

− Maximize IOPS/GB = heat or access density
− Has temporal (seconds) and spatial (GB) dimensions

• Automate hot data management
− Too complex and time-consuming to be done manually
− Requires continuous monitoring and tuning
− Complexity = [#Applications] x [#OS] x [# H/W drivers]

• Adapt: change caching policies and cache allocations
− 1- Workload characteristics change and workloads mix
− 2- Storage environment changes
− 3- Performance requirements change on demand (SLA)

05/25/06 IEEE MSST’06 8

Design Requirements (Cont’d)
• Be useful in a heterogeneous (host-array) environment

− Don’t modify clients (hosts) and backend storage
− Operate with different disk arrays (MSA, EVA, XP, FAB)

• Be online (24x7)
− Addition/removal/modify policies when system is online
− Do not adversely affect the foreground process

• Facilitate workload performance isolation
− Enable boosting selectively for hosts, targets, LUNs

05/25/06 IEEE MSST’06 9

Design Features:
Threshold-based Cache Placement
• Most Frequently Used (MFU) placement into SSD

− Use static placement threshold No magic value !?
• So many storage configurations and dynamic workloads

− Our adaptive threshold tries to match “best current static”
• Performs better than any static when things change a lot

• Most Recently Frequently Used
− Cool candidates for migration periodically
− Selects currently hot chunks & moves less chunks

• Complements recency- & demand-based array cache
− Short-term vs Longer-term policies

05/25/06 IEEE MSST’06 10

Adapt threshold
• Track changes and adapt to maintain cache heat

− Changes in storage configuration and workloads
• Benefit-Cost Tradeoff (BCRatio = ∆hits/∆migs)

− Benefit = ∆hits; Cost = migrations (∆migs)
• Example: adapting to different cache sizes

− More selective for smaller caches SPC-1 Workload
Adaptive Threshold
+ Cooling

0 10 20 30 40 50 600
2
4
6
8

10
12
14
16
18
20

Th
re

sh
ol

d

Time (minutes)

4GB
2GB
1GB
512MB

05/25/06 IEEE MSST’06 11

Adaptation Rule

0 10 20 30 40 50 600

20

40

60

80

100

120

140

160

Time (minutes)

TPC-C Workload - C/S Boost
Adapt Thresh +Cooling, 2GB SSD

BC Ratio
Justify
Threshold

if(∆Migs > JUSTIFY) {
 if(BCRatio < JUSTIFY)

THRESHOLD++
 elseif (BCRatio >= JUSTIFY)

JUSTIFY++
} else {

THRESHOLD--;
JUSTIFY--;

}

Slow down
migrations

Push to achieve
higher BCRatio

Speed up & Don’t
push too much

05/25/06 IEEE MSST’06 12

Accesses: Random vs. Sequential
• Disk arrays perform better with sequential accesses

− A result of read-ahead (prefetching) policy
• Let disk arrays take care of sequential runs How?

− Migrate random-accessed hot chunks into SSD
− Don’t increment access count for sequential accesses

Block #

TIME TIME

RANDOM SEQUENTIAL

Chunk Block #

05/25/06 IEEE MSST’06 13

Workload Filters: Sequential & Cooling

05/25/06 IEEE MSST’06 14

SANCache Performance Results

• Improves response time &
throughput to clients

• For SANCache-enabled LUNs:
− I/O’s in “hot” regions are served by fast

solid-state storage

• All LUNs benefit from
decreased I/O load to disk
arrays:
− Fewer random I/O’s to disk
− Longer sequential runs to disk 0 10 20 30 40 50 60

0

5

10

15

20

25

30

average
respons

e
time

(msec)

I/O’s
per

secon
d

Sample results for boosting most active LUN
in the SPC-1 storage benchmark workload

All LUNs
LUN 1
LUN 2
LUN 3

0 10 20 30 40 50 60
0

400

800

1200

1600

2000

2400

2800

Boost
invoked

LUN1 IOPS to the client

Migration + Replacement I/O

LUN1 IOPS
to disk arraySPC-1

baseline

filling
phase

1750 IOPS
Served by
SANCache

Time (minutes)

05/25/06 IEEE MSST’06 15

Performance Results (SPC1 on
MSA)

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
se

c)

IO Requests per Second (IOPS)

MSA 1000 Attached to CASA

no boost
LUN 1 boost

increased throughput

decreased response time

05/25/06 IEEE MSST’06 16

Performance Results (TPCC on
XP1024)

05/25/06 IEEE MSST’06 17

SANCache Isolation Results
• While SPC-1 workload is operating

on an XP1024 array, a write
intensive workload is introduced

• The write workload is on a different
LUN, port, & set of disk groups, but
it shares the array’s 32 GB of cache
with SPC-1. 0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
se

c)

Time (minutes)

Alleviating Cache Interference

boost
8K random writes

LUN 1
LUN 2
LUN 3
8K random writes

SPC-1
baseline

• The cache fills, causing the array to flush to disk with limited
IOPS. This builds queue length, adversely impacting response
time.

• Boosting SPC-1 LUN1 with 4 GB of SANCache absorbs I/O load
from the XP array, restoring acceptable response time to SPC-1.

05/25/06 IEEE MSST’06 18

Ongoing and Future Work
• Testing SANCache over decentralized block

storage (e.g. FAB)
− SANCache migrates lots of chunks causing storage

reconfigurations
− Needs an efficient distributed metadata management

algorithm

• QoSS issues and business aspects
− Implemented API for clients to enter IOPS-latency

goals (i.e. service contracts or utility functions)
− Dynamic allocation of SANCache to maximize utility

05/25/06 IEEE MSST’06 19

Related Work
• Cache replacement algorithms

− ARC-2Q, UBM-PCC

• Exclusive caching
− Using heterogeneous algorithms or demotions

• Automated array configuration and data migration
− Hippodrome, Aqueduct

• Web content distribution & placement
− MFUPlace

• Quality of Storage Service
− CacheCOW, Triage

• Disk array “cache partitioning”
− RAMDisk or Cache LUN

05/25/06 IEEE MSST’06 20

Summary and Conclusions
• Addressed performance problems in SAN

− Disk limitations and workload interference issues
− A finer granularity, faster response, and higher

accuracy method compared to manual configurations

• We prototyped SANCache and demonstrated…
− Storage performance and workload isolation results
− Using SPC-1, TPC-C loads on MSA & XP1024 arrays

• We believe that a balanced storage system
design can only be achieved through automation
& adaptation in today’s complex SANs.

