nnnnnn

SANCache

Performance Boosting &
Workload Isolation in
Storage Area Networks

Ismail Ari, Melanie Gottwals, Dick
Henze

HP Labs, Palo Alto, CA

IEEE Mass Storage Systems and Technologies 2006

nnnnnn

Problems in Current Data Centers

Problem
Fast, dynamic, cost-competitive business environment
Continuous (24x7) pressure on computing infrastructures
Flash (surges of) demand for high system performance |
CPUs are fast, disk-based storage is the bottleneck

Current business practice to reduce costs

Consolidate/Pool resources physically
Allow resource sharing = increase utilization
Simplify management

End Result
Workload consolidation of different customers
Unpredictable performance

05/25/06 IEEE MSST’06 2

SANCache Problem Statement (@

I/O-intensive workloads can
overwhelm disk-based storage

Unpredictable application performance due to workload
variations & interference

Difficult to isolate workload streams or guarantee performance

Example: database storage serving concurrent OLTP, Decision Support,
and Backup phases in a 24 x 7 enterprise

Throughput & access-density [l0PS/GB] limitations of disks

Disk capacity is over-provisioned to meet IOPS goals, which increases
space, power, and management cost

Solution? Static partitions in solid-state-disk (SSD)
storage?

No! Manual configurations are management intensive and they do not
osi2s06 Optimize utilization of this costlymesource under dynamic conditions 3

SANCache Solution

Automatically allocates a SAN-wide cache resource across
workloads to meet quality of storage service requirements:

“My OLTP transaction load requires a guaranteed 20,000 |OPS from 2
specific volumes for the next 40 minutes”

A mechanism to dynamically .
dynamic requirements|——

augment disk-based storage ¢ i
in the SAN 5 LUN on disk-arrdy= | |
% performance varies |
Q with workload
. . . (14 I
This feature is selectively o . .
] / o : clients se¢
enabled on a Logical Unit S q '/ boosted
' > & LUN
(LUN) basis i) | capability
1/0’s per Second
(IOPS)

05/25/06 IEEE MSST’06 4

SANCache Technology Challenges

Designing policies to select hot

nnnnnn

data SSD SANCache

0 66

Across varied workloads and storage

configurations | 5{
® &

disk array cache

Adapting parameters to maintain heat —
of the cache contents o
Controlling migration rate Policy goals:
To avoid saturation of disk, array Achieve exclusivity
controller, or fabric resources . :
Maximize access density
Out-of-band implementations Minimize migration

: : overheads
Allocating cache resource optimally

Across multiple LUNs to maximize
utility
Tie-in to storage services

05/25/06 IEEE MSST’06

nnnnnn

SANCache Implementation

For enabled LUNSs, “hot” chunks of [HOStr] [HAOSt][o][HOSt]

data are selectively migrated to a \ / //
SAN-attached caching resource v /L SAN-wide
Policies in cache resour
T . virtualization]

Existing host and disk-array software £———»| = ;#1

resources remain unchanged "
/ solid-state disk

Policies are implemented at the SAN

fabric virtualization layer LUN(1), LUN(), .. LUN(n)

SANCache resource is provisioned E ms m=

independently from disk-array
storage disk array storage

Current prototype uses an enterprise - SANCache

SSD connected to SAN IE] IE] [E]

05/25/06 IEEE MSST’06 6

nnnnnn

Design Requirements
Justify Price($)/Performance (IOPS, MBps)

Maximize IOPS/GB = heat or access density
Has temporal (seconds) and spatial (GB) dimensions

Automate hot data management
Too complex and time-consuming to be done manually

Requires continuous monitoring and tuning
Complexity = [#Applications] x [#OS] x [# H/W drivers]

Adapt: change caching policies and cache allocations
1- Workload characteristics change and workloads mix
2- Storage environment changes
3- Performance requirements change on demand (SLA)

05/25/06 IEEE MSST’06 7

nnnnnn

Design Requirements (Cont'd)

Be useful in a heterogeneous (host-array) environment

Don’t modify clients (hosts) and backend storage
Operate with different disk arrays (MSA, EVA, XP, FAB)

Be online (24x7)

Addition/removal/modify policies when system is online
Do not adversely affect the foreground process

Facilitate workload performance isolation
Enable boosting selectively for hosts, targets, LUNs

05/25/06 IEEE MSST’06 8

Design Features: (@
Threshold-based Cache Placement

Most Frequently Used (MFU) placement into SSD

Use static placement threshold = No magic value !?
So many storage configurations and dynamic workloads

Our adaptive threshold tries to match “best current static”
Performs better than any static when things change a lot

Most Recently Frequently Used

Cool candidates for migration periodically

Selects currently hot chunks & moves less chunks

Complements recency- & demand-based array cache
Short-term vs Longer-term policies

05/25/06 IEEE MSST’06 9

nnnnnn

Adapt threshold

Track changes and adapt to maintain cache heat
Changes in storage configuration and workloads

Benefit-Cost Tradeoff (BCRatio = Ahits/Amigs)
Benefit = Ahits; Cost = migrations (Amigs)

Example: adapting to different cache sizes
2
- 1§ [— a8 SPC-1 Workload
o 16 | — 2cB Adaptive Threshold
§ 14 | ;fz"’;WB """ WV_WWWV'\UJW'VN—MW + Cooling
0 12 . | ‘
e e e & J”'M_WW”A_M_”N-WMWNM_VJM
= ~ -
8 J_fJJ ,__m_“
6 o s
4 [
2 ’ i WY W W VW W
% 10 20 30 40 50 60

Time (minutes)
05/25/06 IEEE MSST’06 10

Adaptation Rule

Slow down
. migrations
Push to achieve J TPC-C Workload - C/S Boost
higher BCRatio A Adapt Thresh +Cooling, 2GB SSD
A / 16(
\ » N
if(AMigs % JUSTIFY) { — BC Ratio A |
if(BCRato < JUSTIFY) 120 | e [T A
HRESHOLD++ 100 | , AL TR
elseif (BCRatio >= JUSTIFY)
JUSTIFY++ 8
} else {
THRESHOLD--; G JA
JUSTIFY--;]
} 4
\ 2 /__F/\,M\'AWNM
Speed up & Don't o 10 20 30 40 50
push too much Time (minutes)

05/25/06 IEEE MSST’06 11

nnnnnn

Accesses:. Random vs. Sequential

Disk arrays perform better with sequential accesses
A result of read-ahead (prefetching) policy

Let disk arrays take care of sequential runs—> How?
Migrate random-accessed hot chunks into SSD
Don’t increment access count for sequential accesses

RANDOM SEQUENTIAL
ABlock # Chunk ABlock #

r \L/ r 2

8)

8 ()
e o
s O)
\y y \y y
>TIME >TIME

05/25/06 IEEE MSST’06 12

Workload Filters: Sequential & Cooling

10

Original Workload
LEN
Time
Sequential Filter
Non-sequential \ Sequential
Streams Streams
& W //
//
//
Cooling Filter “*-..5
v am
| "I" , \\5 - @ P
Ko SRy Disk 5
[] o - T
»
Selected Rejected
Hot Chunks Cooler Chunks

05/25/06 IEEE MSST’06

Total Migrated Data (GB)

0.9
0.8

Time (minutes)

[

inmvent

13

SANCache Performance Results

Sample results for boosting most active LUN

|mproves response time & 28(;5‘ the SPC-1 storage benchmark workload
throughput to clients /O’s 2400 — LUN1 IOPS to the client -
per 2000f 1
Secon 1e00p spc1 |/ :' o”g‘i;,i‘if.’; 1750 IOPS
d 1200} - basgllne Served by
For SANCache-enabled LUNs: g, iing \ SANclzache
e n » e arm carsad ki fact a00 b phase RO PV b
I/Or 2 |r][Fot treglons are served by fast 4000 Y e e
Solid-state storage 0 10 20 30 40 50 60
30 X
: 2 Boost — All LUNSs
All LUNs benefit from ol invoked —LUN1
: ‘ — LUN 2
decreased I/O load to disk 15 A — LUN3
average
arrays. respons 10
Fewer random I/O’s to disk ti:,e 5 =
Longer sequential runs to disk (msec) 0 —— e

Time (minutes)
05/25/06 IEEE MSST’06 14

Performance Results (SPC1 on
MSA)

05/25/06

Average Response Time (msec)

50

40

30

20

10

MSA 1000 Attached to CASA

—&— no boost
—e— LUN 1 boost

T

increased throughpu

-

>
Z

/

decreased response ti

e

500 1000

1500 2000

2500

10 Requests per Second (IOPS)

IEEE MSST’06

3000

3500

15

Performance Results (TPCC on

XP1024)

5000, 12000
4500 10800
19.2% throughput gain
4000t : L9600 o
baseline 5
3500t 8400 S
=
300 7200 &
2 5
5250 6000 :.é
= Cust & Stock
200 " 4800 £
— ISC E
150 - Log 3600
= tpm
1000 2400
soof —-— - — —— 1200
0 0
0 10 20 30 40 50 60

05/25/06

Time (minutes)

IEEE MSST’06

nnnnn

16

nnnnnn

SANCache Isolation Results

Alleviating Cache Interference

While SPC-1 workload is operating o 8K random S22t —»
| - >

on an XP1024 array, a write
intensive workload is introduced

=— LUN1
- LUN 2
— LUN3
— 8K random writ€s

N W A OO O N

£

The write workload is on a different
LUN, port, & set of disk groups, but
it shares the array’s 32 GB of cache
with SPC-1.

Average Response Time (msec)

—
20 30 40 50 60
Time (minutes)

(=]

o
-
o

The cache fills, causing the array to flush to disk with limited

|IOPS. This builds queue length, adversely impacting response
time.

Boosting SPC-1 LUN1 with 4 GB of SANCache absorbs 1/O load

from the XP array, restoring acceptable response time to SPC-1.
05/25/06 IEEE MSST’06 17

I Ongoing and Future Work o

Testing SANCache over decentralized block
storage (e.g. FAB)

SANCache migrates lots of chunks causing storage
reconfigurations

Needs an efficient distributed metadata management
algorithm

QoSS issues and business aspects

Implemented API for clients to enter IOPS-latency
goals (i.e. service contracts or utility functions)

Dynamic allocation of SANCache to maximize utility

05/25/06 IEEE MSST’06 18

Related Work

Cache replacement algorithms
ARC-2Q, UBM-PCC

Exclusive caching
Using heterogeneous algorithms or demotions

Automated array configuration and data migration
Hippodrome, Aqueduct

Web content distribution & placement
MFUPlace

Quality of Storage Service
CacheCOW, Triage

Disk array “cache partitioning”
RAMDisk or Cache LUN

05/25/06 IEEE MSST’06

19

nnnnnn

I Summary and Conclusions

Addressed performance problems in SAN

Disk limitations and workload interference issues

A finer granularity, faster response, and higher
accuracy method compared to manual configurations

We prototyped SANCache and demonstrated...

Storage performance and workload isolation results
Using SPC-1, TPC-C loads on MSA & XP1024 arrays

We believe that a balanced storage system
design can only be achieved through automation
& adaptation in today’s complex SANS.

05/25/06 IEEE MSST’06 20

