Data Allocations in a Heterogeneous Disk Array (HDA)

Alexander Thomasian & Jun Xu

athomas@cs.njit.edu
Integrated Systems Laboratory
Computer Science Department
New Jersey Institute of Technology
Newark, NJ 07102

Outline

- Motivation for HDA
- Description of HDA
- Allocation methods
- Simulation results
- Preliminary conclusions

Motivation

- Varied storage requirements
- One disk array for all applications
- High data management costs
- Efficient disk utilization

Diverse Application Requirements

- Match RAID levels to requirements:
 - ✓ Datasets requiring high protection RAID6
 - ✓ Cost-effective reliable storage RAID5
 - ✓ Reliability and high performance RAID1
 - ✓ Low integrity or temporary data –RAID0
- No single RAID level meets all requirements.

High storage management cost

- Storage management tasks:
 - Configuring disk arrays
 - Monitoring performance
 - Dealing with disk failures
- Storage managers highly paid.
- Disk prices dropping.
- Disk management cost >> storage cost.
- Disk array as self-managed as possible.

Desirable storage system

- New disk drives/bricks utilized well (heterogeneous devices).
- Combine multiple RAID levels in same physical array (heterogeneous RAID levels).
- Roughly balance disk loads.
- Provide acceptable response time.

Heterogeneous Disk Array-HDA

- Dataset attributes used to map requests to a VA with appropriate RAID level.
- HDA can store Virtual Arrays VA's at different RAID levels.
- Support for erasure coding and replication to handle VAs in different categories
- Disk array controllers supporting VAs in different categories: RAID0/1/5/6 feasible.

Entities in HDA

Allocation Requests for Virtual Arrays

- VA allocations become available one at a time & processed immediately (no batching).
- RAID level deduced from dataset attributes.
- Allocation size depends on RAID level.
- Replication and parity cost additional.
- Required disk bandwidth depends on workload:
 - Rate of requests to read/write data blocks.
 - Fraction of reads/writes.
 - Size of data blocks being accessed.
 - Distribution of requests.

VA Allocation Requests

- Given RAID level, 2 characteristics:
 - Disk bandwidth utilization
 - Disk capacity requirement
- VA width determines number of Virtual Disks (VDs), includes disks for replication and parity.
- Two parameters: max bandwidth and capacity per VA at each disk

Allocation Methods for VDs

- 1. Round Robin: Allocate on disk drives sequentially.
- 2. Random: Select disk drives randomly.
- 3. **Best Fit**: Select disk drive with minimum remaining bandwidth.
- 4. First Fit: Allocate VD on first disk that can hold it.
- 5. Worst Fit: Allocate starting with disks sorted in non-increasing order of bandwidth utilization.
- 6. Minimize F1: minimize the maximum utilizations of disks throughput and capacity.
- 7. Minimize F2: minimize the variance for utilizations of throughput and capacity

Algorithm

Starting with first allocation request (i=1).

- Determine VA RAID level (RAID1 or RAID5).
- Determine VA size.
- Determine access rate (depends on RAID level, VA size, bandwidth boundedness).
- Determine VA width based on disk capacity and bandwidth constraints.
- Make sure disk failures do not cause overload.
- Stop if a successful allocation is not possible.
- Increment the utilization of devices to which the VDs of a VA are assigned.
- Increment counter i and return to Step 1.

Simulation configuration

- 12 "IBM18ES" disk drives, 9.17GB, max 85 1/sec. to small (4 KB) blocks, uniformly distributed
- RAID1:RAID5 = 1:3
- Read/Write ratio = 1:0
- Three cases:
 - Bandwidth bound
 - Capacity bound
 - Balanced

Results—Bandwidth bound

		Utilizations		Allocations	
Method	Best of 100	BW %	Cap %	R1	R5
Best Fit	0	53.00	24.00	7	25
Worst Fit	73	83.33	39.00	9	39
Round Robin	2	70.67	32.67	8	33
Random	35	80.33	36.67	10	37
First Fit	0	55.33	25.33	6	26
Min F1	75	84.00	39.00	9	39
Min F2	75	84.00	39.00	10	39

Results—Balanced

		Utilizations		Allocations	
Method	Best of 100	BW %	Cap %	R1	R5
Best Fit	0	51.00	45.00	13	45
Worst Fit	73	86.00	76.00	20	76
Round Robin	0	74.67	66.00	18	66
Random	16	81.00	71.00	20	72
First Fit	0	51.67	45.67	12	46
Min F1	76	86.00	76.00	20	76
Min F2	83	86.00	76.67	20	77

Results—Capacity bound

		Utilizations		Allocations	
Method	Best of 100	BW %	Cap %	R1	R5
Best Fit	1	32.00	59.00	17	60
Worst Fit	1	46.00	86.67	23	87
Round Robin	4	49.00	91.00	25	91
Random	9	49.33	91.67	26	92
First Fit	0	32.33	60.33	17	60
Min F1	84	53.00	98.00	27	98
Min F2	86	53.00	98.00	27	98

Conclusion

- Need consider disk bandwidth utilization and capacity to get robust allocations.
- Minimize F1 and F2 consistently the best in terms of the number of allocations.
- First Fit is the worst among all methods.
- Worst Fit comparable with F1 & F2 when balanced or bandwidth bound, but worse when capacity bound.
- Much more work remains, e,g., the effect of max bandwidth/ capacity limits!

THANK YOU! Any Questions?