A Prototype Tape System Using Multi Channel Stack Heads and Metal Evaporated Tape

Hiroaki Ono

Shinichi Fukuda Yusuke Tamakawa Masaaki Sekine Tomoe Iwano Seiichi Onodera Sony Corporation

Contents

- Introduction
- Writing 1.5um track with multi-channel head
- New Reading technology for 1.5um track
- Prototype drive
- Corrosion resistance of spin-valve head and ultra-thin metal evaporated tape
- Conclusion

Contents

- Introduction
- Writing 1.5um track with multi-channel head
- New Reading technology for 1.5um track
- Corrosion resistance of spin-valve head and metal evaporated tape
- Prototype drive
- Conclusion

Previous Works

An SNR of 26dB was obtained using a spin-valve head with a width of 0.8μm, and a metal evaporated tape with a contact tape/head interface.

--- reported in TMRC-2001

Possibility of a high track-density tape-drive

However, these were laboratory works using a spin-stand tape tester, not a drive.

Target

To create a helical-scan tape drive with a track pitch of $1.5\mu m$ using a spin-valve head.

Progress of Track Density in Helical Scan

Track pitch should be reduced drastically from around 5um to 1.5um.

Contents

- Introduction
- Writing 1.5um track with multi-channel stack head
- New Reading technology for 1.5um track
- Prototype drive
- Corrosion resistance of spin-valve head and metal evaporated tape
- Conclusion

Azimuth Recording

Signal to Crosstalk Noise Ratio

Influence of Mechanical Accuracy

Head 1 Head 3 Head 2 Head 4

Multi-channel stack write head

Write Gaps

tape

ch4

Track Pattern of Multi-channel Stack Head

NASA/IEEE MSST2006

Contents

- Introduction
- Writing 1.5um track with multi-channel head
- New Reading technology for 1.5um track
- Prototype drive
- Corrosion resistance of spin-valve head and metal evaporated tape
- Conclusion

NANT (Non-azimuth, Non-tracking)

2006.05.18

NASA/IEEE MSST2006

Multi-channel stack read head

Read Gaps

 _		_
_		
_		
 10.0	100.000	

8ch Read Elements

NASA/IEEE MSST2006

NANT Error Rate Off-track Characteristics

NASA/IEEE MSST2006

Worst-Phase Error Rate at SNR* of 20dB

Contents

- Introduction
- Writing 1.5um track with multi-channel head
- New Reading technology for 1.5um track
- Prototype drive
- Corrosion resistance of spin-valve head and metal evaporated tape
- Conclusion

channels channels

Prototype Drive

Prototype Drive

Specifications

Drum Diameter	40mm	
Track Width of Ch1 to Ch3	1.5um	1 625µm Average
Track Width of Ch4	2um	
Tape Width	8mm	
Write Channel	4ch	One head with 4 char
Read Channel	8ch	One head with 8 char
Coding Rate	8/9	
Channel	PR4ML	
Write Data Transfer Rate	20MBps	
Channel Clock	148MHz	
Minimum Wavelength	0.24um	
Linear Density	188kbpi	
Track Density	15.6ktpi]
Areal Density	2.94Gbpi ²]

Read Channel Block Diagram

NASA/IEEE MSST2006

Recorded Pattern (enlargement)

NASA/IEEE MSST2006

NASA/IEEE MSST2006

Contents

- Introduction
- Writing 1.5um track with multi-channel head
- New Reading technology for 1.5um track
- Prototype drive
- Corrosion resistance of spin-valve head and metal evaporated tape
- Conclusion

Key Devices for High Recording Density

High Sensitivity Head

Frequency Response

Low Noise Media

Noise Spectrum (15MHz)

NASA/IEEE MSST2006

Corrosion resistant spin-valve head

Battelle Class 2 test

Temperature	30 (degree C)
Humidity	70 (%)
H ₂ S gas	0.01 (ppm)
Cl ₂ gas	0.01 (ppm)
NO_2 gas	0.2 (ppm)
Test time	20 days

= 10 years in office

Transfer Curves of the spin-valve head

Ultra-thin ME tape with new lubricant

Test sample

Magnetic layer	33 (nm)
DLC Protective layer	10 (nm)
Lubricant A	No carboxyl group
Lubricant C	With 2 carboxyl group

Surface image of Tested samples

Battelle Class 2 test

Temperature	30 (degree C)
Humidity	70 (%)
H_2S gas	0.01 (ppm)
Cl_2 gas	0.01 (ppm)
NO_2 gas	0.2 (ppm)
Test time	100 days
NO ₂ gas Test time	0.2 (ppm) 100 days

= 50 years in office

Error rate of the sample C

Conclusion

✓ Multi-channel stack heads and NANT were developed for narrow track helical scan tape system.

✓ Corrosion resistant spin-valve element were developed.

✓ New lubricant were developed for ultra-thin metal evaporated tape.

✓ Prototype drive was created with minimum Tp=1.5 μ m.

Backup

Azimuth Loss Effect

- *E*: Signal from an adjacent track to home track ratio,
- Wh: Home track width,
- Wa: Head width on the adjacent track,
- G: Head gap length,
- λ : Write/read waveform period,
- θ : Azimuth angle

NANT Error-rate vs Off-track Characteristics

NASA/IEEE MSST2006

Abandoning the Azimuth Recording

- We cannot count on the azimuth effect at the target track pitch of 1.5um.
- It is difficult to make a thin-film multi-channel write head with azimuth angle.
- Multi-channel stack write head has merit to reduce the influence of mechanical accuracy.

Good by and thank you azimuth recording we have employed for many years.

Read Signals and C1 Syndromes

NASA/IEEE MSST2006

Data Transfer Experiment

- 1. Recorded a file from PC to tape,
- 2. Reconstructed the recorded file from tape to PC,
- 3. Compared the reconstructed file to the original file. → same file!
 - * Recording transfer rate was 20MBps (160Mbps).

Contents

- Introduction
- Writing 1.5um track with multi-channel head
- New Reading technology for 1.5um track
- Simulations
- Prototype drive
- Corrosion resistance of spin-valve head and metal evaporated tape
- Conclusion

2006.05.18

NANT Read Tracking Phase

Critical Tracking Phase = +/-90 degrees

on the adjacent track

Track Error =
$$\Delta T p + \Delta T w + \Delta T d$$
 (definition)

NASA/IEEE MSST2006

Definition of track error

Most stable case

Critical case (mechanical error-less)

Track Error =
$$\Delta T p + \Delta T w + \Delta T d$$

(definition)

NASA/IEEE MSST2006

NANT Error-rate Off-track Characteristics

Compensation for Error between Scans

Recording Methods

	Tracking reading	Non-tracking reading	
Azimuth recording	General helical scan systems	NT (audio), DAT walkman, Micro MV (video)	
Non-azimuth recording	General magnetic recording systems (except helical scan)	Next generation for helical scan systems? (presents in this report)	

Narrow Track Reading

Azimuth, Tracking

Worst-Phase Error Rate at SNR* of 20dB

Average Error Rate at SNR* of 20dB

Introduction

Progress of Track Density in Helical Scan

Format	DAT DDS	DDS2	DV	DDS3	AIT-1	AIT-2	DDS4	MMV	AIT-3	Prototype	unit
λ min	0.666	0.666	0.500	0.333	0.350	0.243	0.333	0.286	0.291	0.240	μm
Track Pitch (Tp)	13.6	9.1	10.0	9.1	11.0	11.0	6.8	5.0	5.5	1.6	μm
Tp/ λ min Ratio	20	14	20	27	31	45	20	17	19	6.7	
Equalize	Int	Int	PR4	PR1	PR1	PR1	PR1	PR4	EPR4	PR4	
Coding	8/10	8/10	24/25	8/10	8/10	16/20	8/10	24/27	16/18	24/27	
Azimuth Angle	± 20	± 20	± 20	± 20	±25	±25	± 20	±25	±25	0	degrees

around $10\mu m$

Azimuth, Tracking

1 scan per track, Tp << Tw < 2Tp Maximum Tracking Margin = Tp/2

NASA/IEEE MSST2006

Azimuth, Non-tracking

2 scans per track, $Tp \ll Tw \leq 2Tp$

NASA/IEEE MSST2006

Non-azimuth, Tracking

1 scan per track, Tw << Tp Maximum Tracking Margin = Tp/4

Non-azimuth, Non-tracking

2 scans per track, Tw < Tp/2

Output Model of Track on Tape

Between the tracks, there are erase bands written by fringing magnetic force from the edge of the write head.

These curves were obtained by analyzing the MFM data of actual tape patterns.

Sensitivity Model of Spin-valve Head

Tw: effective track width

Inferred from track profile data. Those were read as recording tracks with width of 0.8µm and

NASA/IEEE MSST2006

2006.05.18

Error-rate Off-track Characteristics

NANT Error-rate Off-track Characteristics

NASA/IEEE MSST2006

NANT Error-rate Track-error Characteristics

NASA/IEEE MSST2006

Worst-Phase Error Rate at SNR^{*} of 18dB

2006.05.18

Average Error Rate at SNR^{*} of 18dB

Worst-Phase Error Rate at SNR* of 20dB

NASA/IEEE MSST2006

Average Error Rate at SNR* of 20dB

Trend and Prospect of Areal Density

蒸着テープにおける記録密度向上

- Thinner Magnetic Layer
- Finer Magnetic Particle with Under Layer
- Smooth Surface

High Sensitivity Read Heads for Tape System

Frequency Response

NASA/IEEE MSST2006

High Performance Magnetic Tapes

Read Head : Tw=0.8µm, Shield to shield=0.18µm, v=13.4m/s

磁性粒子サイズ&充填率 → 蒸着テープの方が高密度化に有利

NASA/IEEE MSST2006

Demonstration of 4.5Gbit/in² and 11.5Gbit/in²

Properties of evaporated tapes (ME-1,ME-2)

	ME-1	ME-2
Remnant Magnetism	300 kA/m	221 kA/m
Thickness of Magnetic Layer	33 nm	28nm
Mrt	10mA	6.2mA
Coercive Force	116kA/m	102kA/m
Magnetic Layer	Co-CoO	

Properties of spin valve heads (GMR-1, GMR-2)

	GMR-1	GMR-2
Track Width	0.8um	0.45um
Distance between Shields	0.18um	0.12um
Stripe Height	0.8um	0.5um
Element Type	Spin Valve	

100nm

30nm

Demonstration of 4.5Gbit/in² and 11.5Gbit/in²

T.Ozue, M.Kondo, Y.Soda, S.Fukuda, S.Onodera and T.Kawana;"

11.5Gb/in2 Recording Using Spin-Valve Heads in Tape Systems, IEEE Trans. on Magn. Vol.38, No1, pp136-140(2002)

4.5Gbit/in²、11.5Gbit/in²を適用すると...

	Inductive	GMR-1	GMR-2
Areal density(Gbit/in2)	0.7	4.5	11.5
Track Density(kTPI)	4.6	22.2	39.5
Linear density(kBPI)	155	203	290
Mrt of media(mA)	60	10	6
SNR(dB)	18	26	18
Capacity(AIT cassette)	100GB	640GB	1.6TB
Capacity(S-AIT cassette)	500GB	3.2TB	8.2TB
		<	
		テラバイト / 巻 能	級の容量か

Dynamic Tracking

- To control head position during reading dynamically by using actuator.
- To enable to trace narrow track even when the track is not straight.

