Cooling Strategies for Ultra-High Density Racks and Blade Servers

Wahid Nawabi Director - WW Enterprise Segment APC E-mail: wahid.nawabi@apcc.com

Market Driver - High Density/Blade Computing

- IT Loads are Greatly Exceeding Rated Capacity
- Legacy Data centers are not designed or instrumented to provide information about localized density capability
- Users may not realize there is a problem until they attempt deployment

Blades greatly exceed the capabilities of Today's Data Centers!

Market Driver - Actual power draws in real data centers

- Blades Exceed Raised Floor Capabilities of Existing and New Data Centers
- Blade Servers Require up to 20 times Power & Cooling of Average Data Center Design Values

Blades exceed raised floor capabilities of existing <u>and new</u> data centers

Compaction does not mean less area or cost

Room

Rack

 Reduced IT Equipment Area...Yet May Increase Overall Area Required (For NCPI Supporting Power & Cooling Equipment)

Row

- Reducing Power Consumption – Operating Costs
 - TCO Savings Driven by Power Related Costs

Key Benefits are Realized from Reducing Power Consumption versus Increasing Power Density

© 2005 APC Corporation

Excerpt – APC White Paper 46

Cooling Capability Limitations of Data Centers

Row

Room

Rack

Same racks, same room, slightly different cooling design

Temperature (deg F)

Totally different cooling airflow results! Current approaches provide unpredictable performant

Cooling the data center

© 2005 APC Corporation

Five Strategies for deployment of High Density Racks

Row

ш
C
R
Ο
S
ш
\mathbf{N}

Legendary Reliability*

Deployment Strategy	Description	Application
Spread the Load	Split the equipment among enclosures to keep peak load down.	Existing data centers, when high density equipment is a small fraction of the total load.
Borrowed Cooling	Provide average cooling capability with rules to allow borrowing of underutilized	Existing data centers, when high density equipment is a small fraction of the total load.
Supplement al Cooling	Provide average cooling capability with provision for supplemental cooling equipment.	 New construction or renovations Mixed environment High density equipment location is not known in
Dedicated High Density Areas	Create a special high density row or zone within the data center.	 advance New construction or renovations Density 10-25kW per rack When requirement exist to co-locate high
Whole Room	Provide high density cooling capability to every rack.	density devices Rare and extreme cases of large farms of high density equipment with very limited physical space

Room

ve Strategies Cover Practical Solutions for Both New & Existing Data Centers

White Paper 245

Rack

Five Strategies For High Density Deployment

Spread loads

 2 "Borrowing" rules
 3 Supplemental cooling High-density
 5 Maximum density for whole room "Free" strategy

"Free" strategy – but must enforce rules Up to 2x average design density

Requires additional equipment Up to 10 kW / rack

State-of-the-art technology 10-25 kW / rack

Extreme cost, rarely used

whole room Best method depends on <u>facility</u> <u>constraints</u> and <u>business</u> <u>needs/preferences</u>/hite Paper #46

Make Cooling Predictable

InfraStruXure[®] Systems for High Density Applications

Range of System Configurations

Price and performance systems available for all budgetary high density needs

Rack Design

Enclosure design enables a variety of cooling options to ensure high availability at any density

Server-specific Designs

Designs are based on major OEM blade server manufacturers to minimize time required in integrating and pre-testing

Increase cooling predictability in extreme high-density environments with racklevel solutions that neutralize the hot exhaust air at the rack or row level

Supports up to 30kW in a rack with enhanced modular, scalable solution

High Density NCPI Should be Flexible Enough to Deploy at a Rack-, Row- or Room-Level

Make Cooling Predictable – up to 20kW per Rad

Approaches which are NOT Recommended

Room

Approaches <u>NOT</u> <u>Recommende</u> <u>d</u>

Rack

 Reducing Air
 Temperatur
 e

 Replacing Tile with Grates

 Installing Top of Rack Fans

plating

Approaches which are NOT Recommended

Reducing Air Temperature

Row

- Reduce capacity of air conditioners
- Dramatically increase humidifier water consumption
- Dramatically decrease operating efficiency of DC (and significantly increase electrical bill)

Replacing Vented Tile with Floor Grates

- Decrease airflow in other areas
- Unpredictable variations to occur in airflow

Installing Top of Rack Fans

- Doesn't address problematic hot air at front intake
- Fans make more heat

Isolating Racks to Area Open on All Sides

Allows hot exhaust air to return to server intake

Will Not Address and Often Worsen High Density Challenges

© 2005 APC Corporation

Excerpt – APC White Paper 125

Conclusion

- Conventional data center designs have poor electrical efficiency, and are unable to meet density requirements
- Expect to see increasing use of hard-floor environments in data centers of all sizes
- Expect to see cooling more closely integrated & coupled with rows and racks, instead of rooms & areas
- Expect to see modular solutions that can deploy as needed; this is the most effective way to save energy and TCO while increasing availability.

