
Global Data Services
Developing Data-Intensive Applications

Using Globus Software

Ian Foster
Computation Institute

Argonne National Lab & University of Chicago

2

Acknowledgements

● Thanks to Bill Allcock, Ann Chervenak,
Neil P. Chue Hong, Mike Wilde, and
Carl Kesselman for slides

● I present the work of many Globus
contributors: see www.globus.org

● Work supported by NSF and DOE

3

Context

● Science is increasingly about massive &/or
complex data

● Turning data into insight requires more than
data access: we must connect data with
people & computers

4

Science 1.0  Science 2.0:
For Example, Digital Astronomy

Tell me about
this star Tell me about

these 20K stars

Support 1000s
of users!!

E.g., Sloan Digital
Sky Survey, ~40 TB;
others much bigger soon

5

Data Challenges
● “Connecting data with people & computers”

◆ Finding data of interest
◆ Moving data to where it is needed
◆ Managing large-scale computation
◆ Scheduling resources on data
◆ Managing who can access data when

● Scaling to address massive & distributed
◆ Massive, distributed, & heterogeneous data
◆ Massive & distributed computation
◆ Massive & heterogeneous workloads

● Requires global data services

6

Global Data Services

● Deliver rich analysis capabilities on large &
complex data—to distributed communities

◆ Enable on-demand processing & analysis
◆ Federate many (distributed) resources
◆ Support (large) (distributed) communities
◆ Manage ensemble to deliver performance

● Do so reliably and securely
● Scale to large data & computation
● Scale to large numbers of users

7

Overview

● Global data services
● Globus building blocks
● Building higher-level services
● Application case studies
● Summary

8

Overview

● Global data services
● Globus building blocks

◆ Overview
◆ GridFTP
◆ Reliable File Transfer Service
◆ Replica Location Service
◆ Data Access and Integration Services

● Building higher-level services
● Application case studies
● Summary

9

Globus Software

● (Mostly Web Services) middleware providing
key functionality relating to scaling

◆ Access to data, and data movement
◆ Authentication & authorization
◆ Access to computation
◆ Discovery and monitoring

● An enabler
◆ Of solutions & tools for data access,

distribution, and manipulation
◆ Of infrastructures & applications

10

Grid Infrastructure:
Open Standards/Software

Web Services
(WSDL, SOAP, WS-Security, WS-ReliableMessaging, …)

WS-Resource Framework & WS-Notification*
(Resource identity, lifetime, inspection, subscription, …)

Data Access & Management Services (DAIS, RFT, DRS)
Compute Access & Management Services (GRAM), etc.

Applications of the framework
(Compute, network, storage provisioning,

job reservation & submission, data management,
application service QoS, …)

*WS-Transfer, WS-Enumeration, WS-Eventing, WS-Management define similar functions

11

Available in High-Quality
Open Source Software …

Data
MgmtSecurity Common

Runtime
Execution

Mgmt
Info

Services

GridFTPAuthentication
Authorization

Reliable
File

Transfer

Data Access
& Integration

Grid Resource
Allocation &

 Management
Index

Community
Authorization

Data
Replication

Community
Scheduling
Framework

Delegation

Replica
Location

Trigger

Java
Runtime

C
Runtime

Python
RuntimeWebMDS

Workspace
Management

Grid
Telecontrol

Protocol

Globus Toolkit v4
www.globus.org

Credential
Mgmt

 I. Foster, Globus Toolkit Version 4: Software for Service-Oriented Systems, LNCS 3779, 2-13, 2005

12

Building Blocks
● Stage/move large data to/from nodes

◆ GridFTP, Reliable File Transfer (RFT)
◆ Alone, and integrated with GRAM

● Locate data of interest
◆ Replica Location Service (RLS)

● Replicate data for performance/reliability
◆ Distributed Replication Service (DRS)

● Provide access to diverse data sources
◆ File systems, parallel file systems,

hierarchical storage: GridFTP
◆ Databases: DAIS

13

Overview

● Global data services
● Globus building blocks

◆ Overview
◆ GridFTP
◆ Reliable File Transfer Service
◆ Replica Location Service
◆ Data Access and Integration Services

● Building higher-level services
● Application case studies
● Summary

14

What is GridFTP?

● A secure, robust, fast, efficient, standards-
based, widely accepted data transfer protocol

◆ Independent implementations can interoperate
◆ E.g., both the Condor Project and FermiLab

have servers that work with ours
◆ Many people have developed independent

clients

● GT4 supplies a reference implementation:
◆ Server
◆ Client tools (globus-url-copy)
◆ Development libraries

15

GridFTP: The Protocol

● FTP protocol is defined by several IETF RFCs
● Start with most commonly used subset

◆ Standard FTP: get/put etc., 3rd-party transfer

● Implement standard but often unused features
◆ GSS binding, extended directory listing, simple

restart

● Extend in various ways, while preserving
interoperability with existing servers

◆ Striped/parallel data channels, partial file,
automatic & manual TCP buffer setting, progress
monitoring, extended restart

16

GridFTP: The Protocol (cont)

● Existing FTP standards
◆ RFC 959: File Transfer Protocol
◆ RFC 2228: FTP Security Extensions
◆ RFC 2389: Feature Negotiation for the File

Transfer Protocol
◆ Draft: FTP Extensions

● New standard
◆ GridFTP: Protocol Extensions to FTP for the Grid
◆ Grid Forum Recommendation, GFD.20
◆ www.ggf.org/documents/GWD-R/GFD-R.020.pdf

17

GridFTP in GT4
● 100% Globus code

◆ No licensing issues
◆ Stable, extensible

● IPv6 Support
● XIO for different transports
● Striping  multi-Gb/sec wide area transport

◆ 27 Gbit/s on 30 Gbit/s link

● Pluggable
◆ Front-end: e.g., future WS control channel
◆ Back-end: e.g., HPSS, cluster file systems
◆ Transfer: e.g., UDP, NetBLT transport

Bandwidth Vs Striping

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 10 20 30 40 50 60 70

Degree of Striping

B
an

dw
id

th
 (M

bp
s)

Stream = 1 # Stream = 2 # Stream = 4
Stream = 8 # Stream = 16 # Stream = 32

Disk-to-disk on
TeraGrid

18

Striped Server Mode
● Multiple nodes work together on a single file

and act as a single GridFTP server
● Underlying parallel file system allows all nodes

to see the same file system
◆ Must deliver good performance (usually the

limiting factor in transfer speed)—i.e., NFS
does not cut it

● Each node then moves (reads or writes) only
the pieces of the file for which it is responsible

● Allows multiple levels of parallelism, CPU, bus,
NIC, disk, etc.

◆ Critical to achieve >1 Gbs economically

19

MODE E
SPAS (Listen)
 - returns list of host:port pairs
STOR <FileName>

MODE E
SPOR (Connect)
 - connect to the host-port pairs
RETR <FileName>

18-Nov-03

GridFTP Striped Transfer

Host Z

Host Y

Host A

Block 1

Block 5

Block 13

Block 9

Host B

Block 2

Block 6

Block 14

Block 10

Host C

Block 3

Block 7

Block 15

Block 11

Host D

Block 4

Block 8 - > Host D

Block 16

Block 12 -> Host D

Host X

Block1 -> Host A

Block 13 -> Host A

Block 9 -> Host A

Block 2 -> Host B

Block 14 -> Host B

Block 10 -> Host B

Block 3 -> Host C

Block 7 -> Host C

Block 15 -> Host C

Block 11 -> Host C

Block 16 -> Host D

Block 4 -> Host D

Block 5 -> Host A

Block 6 -> Host B

Block 8

Block 12

20

Memory to Memory: TeraGrid
BANDWIDTH Vs STRIPING

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70

Degree of Striping

B
an

dw
id

th
 (M

bp
s)

Stream = 1 # Stream = 2 # Stream = 4 # Stream = 8 # Stream = 16 # Stream = 32

21

Disk to Disk: TeraGrid
BANDWIDTH Vs STRIPING

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 10 20 30 40 50 60 70

Degree of Striping

B
an

dw
id

th
 (M

bp
s)

Stream = 1 # Stream = 2 # Stream = 4 # Stream = 8 # Stream = 16 # Stream = 32

22

New Server Architecture
● GridFTP (and normal FTP) use (at least) two

separate socket connections:
◆ A Control Channel for carrying the commands

and responses
◆ A Data Channel for actually moving the data

● Control Channel and Data Channel can be
(optionally) completely separate processes.

● A single Control Channel can have multiple
data channels behind it

● Future plans:
◆ Load balancing proxy server
◆ Dynamically created data movers

23

Data Transport Process
Components

● The protocol handler. This part talks to
the network and understands the data
channel protocol

● Data Storage Interface (DSI). A well
defined API that may be replaced to access
things other than POSIX filesystems

● ERET/ESTO processing. Ability to
manipulate the data prior to transmission.

◆ Not implemented as a separate module for
4.0, but planned for 4.2

24

Data Storage Interfaces (DSIs)

● Posix file I/O
● HPSS (with LANL / IBM)
● NeST (with UWis / Condor)
● SRB (with SDSC)

25

Possible Configurations

Control
Data

Typical Installation

Control

Data

Separate Processes

Striped Server

Control

Data

Control

Striped Server (future)

Data

26

GridFTP: Caveats
● Protocol requires that the sending side do the

TCP connect (possible Firewall issues)
◆ Working on V2 of the protocol

● Add explicit negotiation of streams to relax the directionality
requirement above

● Optionally adds block checksums and resends
● Add a unique command ID to allow pipelining of commands

● Client / Server
◆ Currently, no server library, therefore Peer to

Peer applications are difficult
◆ Generally needs a pre-installed server

● Looking at a “dynamically installable” server

27

Extensible IO (XIO) system
● Provides a framework that implements a

Read/Write/Open/Close Abstraction
● Drivers are written that implement the

functionality (file, TCP, UDP, GSI, etc.)
● Different functionality is achieved by

building protocol stacks
● GridFTP drivers allow 3rd party applications

to access files stored under a GridFTP server
● Other drivers could be written to allow

access to other data stores
● Changing drivers requires minimal change to

the application code

28

Overview

● Global data services
● Globus building blocks

◆ Overview
◆ GridFTP
◆ Reliable File Transfer Service
◆ Replica Location Service
◆ Data Access and Integration Services

● Building higher-level services
● Application case studies
● Summary

29

Reliable File Transfer

● Comparison with globus-url-copy
◆ Supports all the same options (buffer size, etc)
◆ Increased reliability because state is stored in a

database.
◆ Service interface: The client can submit the

transfer request and then disconnect and go away
◆ Think of this as a job scheduler for transfer job

● Two ways to check status
◆ Subscribe for notifications
◆ Poll for status (can check for missed notifications)

30

Reliable File Transfer
● RFT accepts a SOAP description of the desired

transfer
● It writes this to a database
● It then uses the Java GridFTP client library to

initiate 3rd part transfers on behalf of the
requestor

● Restart Markers are stored in the database to
allow for restart in the event of an RFT failure

● Supports concurrency, i.e., multiple files in
transit at the same time, to give good
performance on many small files

31

Data Transfer Comparison

Control

Data

Control

Data

Control

Data

Control

Data

globus-url-copy RFT Service

RFT Client

SOAP
Messages

Notifications
(Optional)

32

Overview

● Global data services
● Globus building blocks

◆ Overview
◆ GridFTP
◆ Reliable File Transfer Service
◆ Replica Location Service
◆ Data Access and Integration Services

● Building higher-level services
● Application case studies
● Summary

33

Replica Management

● Data intensive applications produce
terabytes or petabytes of data

◆ Hundreds of millions of data objects

● Replicate data at multiple locations for:
◆ Fault tolerance: Avoid single points of failure
◆ Performance: Avoid wide area data transfer

latencies; load balancing

34

A Replica Location Service

● A Replica Location Service (RLS) is a
distributed registry that records the locations
of data copies and allows replica discovery

◆ RLS maintains mappings between logical
identifiers and target names

◆ Must perform and scale well: support hundreds
of millions of objects, hundreds of clients

● RLS is one component of a Replica
Management system

◆ Other components include consistency services,
replica selection services, reliable data transfer

35

RLS
Framework

• Local Replica Catalogs
(LRCs) maintain
logical-to-target mappings

● Replica Location Index (RLI) node(s)
aggregate information about LRC(s)

● LRCs use soft state updates to inform RLIs
about their state: relaxed consistency

● Optional compression of state updates
reduces communication, CPU, & storage costs

● Membership service registers participating
LRCs and RLIs and deals with changes in
membership

LRC LRC LRC

RLIRLI

LRCLRC

Replica Location Indexes

Local Replica Catalogs

36

Replica Location Service In Context

Replica Location Service Reliable Data
Transfer Service

GridFTP

Reliable Replication Service

Replica Consistency Management Services

Metadata
Service

● The Replica Location Service is one component in a layered
 data management architecture
● Provides a simple, distributed registry of mappings
● Consistency management provided by higher-level services

37

Components of RLS
Implementation

● Common server implementation
for LRC and RLI

● Front-End Server
◆ Multi-threaded, written in C
◆ GSI Authentication using X.509

certificates

● Back-end Server
◆ MySQL or PostgreSQL Relational

Database (later versions support
Oracle)

◆ No database back end required for
RLIs using Bloom filter compression

● Client APIs: C and Java
● Client command-line tool

DB

LRC/RLI Server

ODBC (libiodbc)

myodbc

mySQL Server

clientclient

38

RLS Implementation Features

● Two types of soft state updates from LRCs
to RLIs

◆ Complete list of logical names registered in
LRC

◆ Compressed updates: Bloom filter
summaries of LRC

● User-defined attributes
◆ May be associated with logical or target

names

39

RLS Implementation Features
● Soft state updates from LRCs to RLIs

◆ Complete list of registered logical names
◆ Compressed updates: Bloom filter summaries

● Immediate mode
◆ Incremental updates

● User-defined attributes
◆ May be associated with logical or target names

● Partitioning (without Bloom filters)
◆ Divide soft state updates among RLI index

nodes using pattern matching of logical names

● Currently, static membership configuration
◆ No membership service

40

Soft State Update:
(1) LFN List

● Send list of Logical Names stored on LRC
● Can do exact and wildcard searches on RLI
● Soft state updates get increasingly

expensive as number of LRC entries
increases

◆ Space, network transfer time, CPU time on
RLI

● E.g., with 1 million entries, takes 20 minutes
to update mySQL on dual-processor 2 GHz
machine (CPU-limited)

41

Soft State Update:
(2) Bloom Filters

● Construct a summary of LRC state by
hashing logical names, creating a bitmap

● Compression
● Updates much smaller, faster
● Supports higher query rate
● Small probability of false positives (lossy

compression)
● Lose ability to do wildcard queries

42

Immediate Mode for
Soft State Updates

● Immediate Mode
◆ Send updates after 30 seconds (configurable)

or after fixed number (100 default) of updates
◆ Full updates are sent at a reduced rate
◆ Tradeoff depends on volatility of

data/frequency of updates
◆ Immediate mode updates RLI quickly, reduces

period of inconsistency between LRC and RLI
content

● Immediate mode usually sends less data
◆ Because of less frequent full updates

● Usually advantageous
◆ An exception would be initially loading of large

database

43

Performance Testing
(see HPDC paper)

● Performance of individual LRC (catalog) or
RLI (index) servers

◆ Client program submits requests to server

● Performance of soft state updates
◆ Client LRCs sends updates to index servers

● Software Versions:
◆ Replica Location Service Version 2.0.9
◆ Globus Packaging Toolkit Version 2.2.5
◆ libiODBC library Version 3.0.5
◆ MySQL database Version 4.0.14
◆ MyODBC library (with MySQL) Version 3.51.06

44

Testing Environment
● Local Area Network Tests

◆ 100 Megabit Ethernet
◆ Clients (either client program or LRCs) on

cluster: dual Pentium-III 547 MHz workstations
with 1.5 GB memory running Red Hat Linux 9

◆ Server: dual Intel Xeon 2.2 GHz processor with
1 GB memory running Red Hat Linux 7.3

● Wide Area Network Tests (Soft state updates)
◆ LRC clients (Los Angeles): cluster nodes
◆ RLI server (Chicago): dual Intel Xeon 2.2 GHz

machine with 2 GB memory running Red Hat
Linux 7.3

45

LRC Operation Rates (MySQL Backend)
Operation Rates,

LRC with 1 million entries in MySQL Back End,
Multiple Clients, Multiple Threads Per Client,

 Database Flush Disabled

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Number Of Clients

O
pe

ra
tio

ns
 P

er

se
co

nd

Query Rate w ith 10 threads per client
Add Rate w ith 10 threads per client
Delete Rate w ith 10 threads per client

• Up to 100 total
 requesting
 threads

• Clients and
 server on LAN

• Query: request
 the target of a
 logical name

• Add: register a
 new <logical
 name, target>
 mapping

• Delete a
 mapping

46

Comparison of LRC to
Native MySQL Performance

Operation Rates for MySQL Native Database,
1 Million entries in the mySQL back end,

Multiple Clients, Multiple Threads Per Client,
Database flush disabled

0
500

1000
1500
2000
2500
3000
3500
4000

1 2 3 4 5 6 7 8 9 10

Number of Clients

O
pe

ra
tio

ns
 p

er

se
co

nd

Query Rate w ith 10 threads per client
Add Rate w ith 10 threads per client
Delete Rate w ith 10 threads per client

LRC Overheads

Highest for
queries: LRC
achieve 70-80%
of native rates

Adds and deletes:
~90% of native
performance for
1 client (10
threads)

Similar or better
add and delete
performance with
10 clients (100
threads)

47

Bulk Operation Performance
● For user convenience,

server supports bulk
operations

● E.g., 1000 operations
per request

● Combine adds/deletes
to maintain approx.
constant DB size

● For small number of
clients, bulk operations
increase rates

● E.g., 1 client
(10 threads) performs
27% more queries,
7% more adds/deletes

Bulk vs. Non-Bulk Operation Rates,
1000 Operations Per Request,
10 Request Threads Per Client

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

Number of clients

O
pe

ra
tio

n
R

at
es

Bulk Query
Bulk Add/Delete
Non-bulk Query
Non-bulk Add
Non-bulk Delete

48

Bloom Filter Compression

● Construct a summary of each LRC’s state by
hashing logical names, creating a bitmap

● RLI stores in memory one bitmap per LRC
● Advantages:

◆ Updates much smaller, faster
◆ Supports higher query rate (satisfied from

memory rather than database)

● Disadvantages:
◆ Lose ability to do wildcard queries, since not

sending logical names to RLI
◆ Small probability of false positives (configurable)
◆ Relaxed consistency model

49

Bloom Filter Performance:
Single Wide Area Soft State Update

(Los Angeles to Chicago)

50 million91.66.85 million
entries

10 million18.41.671 million
entries

1 million2Less than 1100,000
entries

Size of bloom
filter (bits)

Avg. time for
initial bloom
filter
computation
(seconds)

Avg. time to
send soft
state update
(seconds)

LRC
Database
Size

50

Scalability of
Bloom Filter Updates

● 14 LRCs with 5 million mappings send Bloom filter updates
continuously in Wide Area (unlikely, represents worst case)

● Update times increase when 8 or more clients send updates
● 2 to 3 orders of magnitude better performance than

uncompressed (e.g., 5102 seconds with 6 LRCs)

Average Time to Perform
Continuous Bloom Filter Updates From

Increasing Number of LRC Clients

0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of LRC Clients

A
ve

rg
e

C
lie

nt

U
pd

at
e

Ti
m

e

51

Bloom Filter Compression
Supports Higher RLI Query Rates

RLI Bloom Filter Query rate,
Each Bloom Filter has 1 Million Mappings,
Multiple Clients with 3 Threads per Client

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10

Number of Clients

A
ve

ra
ge

 Q
ue

ry
 ra

te

Query Rate w ith 3 threads per client. 1 Bloom filter at RLI
Query Rate w ith 3 threads per client. 10 Bloom filters at RLI
Query Rate w ith 3 threads per client. 100 Bloom filters at RLI

• Uncompressed
updates: about
3000 queries per
second

• Higher rates
with Bloom filter
compression

• Scalability
limit: significant
overhead to
check 100 bit
maps

• Practical
deployments:
<10 LRCs
updating an RLI

52

Data Services
 in Production Use: LIGO

● Laser Interferometer Gravitational Wave
Observatory Currently use RLS servers at 10 sites

◆ Contain mappings from 6 million logical files to over 40
million physical replicas

● Used in customized data management system: the
LIGO Lightweight Data Replicator System (LDR)

◆ Includes RLS, GridFTP, custom metadata catalog, tools for
storage management and data validation

53

Data Services
in Production Use: ESG

● Earth System Grid: Climate
modeling data (CCSM, PCM,
IPCC)

● RLS at 4 sites
● Data management

coordinated by ESG portal
● Datasets stored at NCAR

◆ 64.41 TB in 397253 total files
◆ 1230 portal users

● IPCC Data at LLNL
◆ 26.50 TB in 59,300 files
◆ 400 registered users
◆ Data downloaded: 56.80 TB

in 263,800 files
◆ Avg. 300GB downloaded/day

● (These data are fall 2005)

54

Data Services in Production Use:
Virtual Data System

● Virtual Data System (VDS)
◆ Maps from a high-level, abstract definition of

a workflow onto a Grid environment
◆ Maps to a concrete or executable workflow in

the form of a Directed Acyclic Graph (DAG)
◆ Passes this concrete workflow to the Condor

DAGMan execution system

● VDS uses RLS to
◆ Identify physical replicas of logical files

specified in the abstract workflow
◆ Register new files created during workflow

execution

55

Overview

● Global data services
● Globus building blocks

◆ Overview
◆ GridFTP
◆ Reliable File Transfer Service
◆ Replica Location Service
◆ Data Access and Integration Services

● Building higher-level services
● Application case studies
● Summary

56

OGSA-DAI: Data Access and
Integration for the Grid

● Focus on structured data (e.g., relational,
XML)

● Meet data requirements of Grid applications
◆ Functionality, performance and reliability
◆ Reduce development cost of data-centric apps
◆ Provide consistent interfaces to data resources

● Acceptable and supportable by database
providers

◆ Trustable, imposed demand is acceptable, etc.
◆ Provide a standard framework that satisfies

standard requirements

57

OGSA-DAI Contd.

● A base for developing higher-level services
◆ Data federation
◆ Distributed query processing
◆ Data mining
◆ Data visualisation

58

Integration Scenario

● A patient moves hospital

DB2 Oracle CSV
file

A: (PID, name, address, DOB) B: (PID, first_contact) C: (PID, first_name, last_name,
address, first_contact, DOB)

Data A Data B

Data C

Amalgamated patient record

59

Why OGSA-DAI
(and not JDBC)?

● Language independence at the client end
◆ Need not use Java

● Platform independence
◆ Need not worry about connection technology and drivers

● Can handle XML and file resources
● Can embed additional functionality at the service end

◆ Transformations, compression, third party delivery
◆ Avoiding unnecessary data movement

● Provision of metadata is powerful
● Usefulness of the registry for service discovery

◆ Dynamic service binding process
● The quickest way to make data accessible on the Grid

◆ Installation and configuration of OGSA-DAI is fast and
straightforward

60

OGSA-DAI: A Framework
for Building Applications

● Supports data access, insert and update
◆ MySQL, Oracle, DB2, SQL Server, Postgres
◆ XML: Xindice, eXist
◆ Files – CSV, BinX, EMBL, OMIM, SWISSPROT,…

● Supports data delivery
◆ SOAP over HTTP
◆ FTP; GridFTP
◆ E-mail
◆ Inter-service

● Supports data transformation
◆ XSLT
◆ ZIP; GZIP

61

OGSA-DAI: Other Features

● Supports security
◆ X.509 certificate-based security

● A framework for building data clients
◆ Client toolkit library for app developers

● A framework for developing functionality
◆ Extend existing activities, or implement new
◆ Mix & match activities to need your needs

● Highly extensible
◆ Customise DAIS out-of-the-box product
◆ Provide your own services, client-side support,

and data-related functionality

62

OGSA-DAI Services
● OGSA-DAI uses three main service types

◆ DAISGR (registry) for discovery
◆ GDSF (factory) to represent a data resource
◆ GDS (data service) to access a data resource

ac
ce

ss
es

 represents

DAISGR GDSF GDS

Data
Resource

locates creates

63

Activities Express Tasks
to be Performed by a GDS

● Three broad classes of activities
◆ Statement
◆ Transformations
◆ Delivery

● Extensible
◆ Easy to add new functionality
◆ No modification to service interface required
◆ Extensions operate within OGSA-DAI framework

● Functionality
◆ Implemented at the service
◆ Work where the data is (need not move data)

64

OGSA-DAI Deck

65

Activities and Requests

● A request contains a set of activities
● An activity dictates an action to be

performed
◆ Query a data resource
◆ Transform data
◆ Deliver results

● Data can flow between activities

HTML
data

web rowset
data

SQL
Query

Statement

XSLT
Transform

Deliver
ToURL

66

Delivery Methods

Web Server

GDS

GridFTP server Local
Filesystem

FTP
 server

DeliverFromURL

DeliverTo/FromURL

DeliverTo/FromGFTP

DeliverTo/FromFile

DeliverTo/FromStream

DeliverTo/FromSMTP

67

Client Toolkit

● Why? Nobody wants to write XML!
● A programming API which makes writing

applications easier
◆ Now: Java
◆ Next: Perl, C, C#?, ML!?

// Create a query
SQLQuery query = new SQLQuery(SQLQueryString);
ActivityRequest request = new ActivityRequest();
request.addActivity(query);

// Perform the query
Response response = gds.perform(request);

// Display the result
ResultSet rs = query.getResultSet();
displayResultSet(rs, 1);

68

Data Integration Scenario

GDS2 GDS3
Relational
Database

Relational
Database

GDS1
Relational
Database

Client
select +

output stream

select +
output stream

deliver

deliver

deliver from GDT
bulk load

join tables

69

Distributed Query Processing

● Higher level services
building on OGSA-DAI

● Queries mapped to
algebraic expressions for
evaluation

● Parallelism represented
by partitioning queries

◆ Use exchange operators

table_scan
(protein)

table_scan
termID=S92
(proteinTerm)

reduce

reduce

hash_join
(proteinId)

op_call
(Blast)

reduce

exchange

exchange

3,4

1 2

70

MySQL

OGSA-DAI service

Engine

SQLQuery

JDBC Data
Resources

Activities

DB2

The OGSA-DAI Framework

GZip GridFTPXPath

XMLDB

XIndice

readFile

File

SWISS
PROT

XSLT

SQL
Server

Data-
bases

Application
Client Toolkit

71

MySQL

OGSA-DAI service

Engine

SQLQuery

JDBC

SQL

JDBC

SQL

JDBC

SQL

JDBC

SQL

JDBC

Multiple
SQL GDS

SQLQuery

Extensibility Example

72

Overview

● Global data services
● Globus building blocks
● Building higher-level services

◆ GRAM execution management service
◆ Data replication service
◆ Workflow management

● Application case studies
● Summary

73

Execution Management (GRAM)

● Common WS interface to schedulers
◆ Unix, Condor, LSF, PBS, SGE, …

● More generally: interface for process
execution management

◆ Lay down execution environment
◆ Stage data
◆ Monitor & manage lifecycle
◆ Kill it, clean up

● A basis for application-driven provisioning

74

GT4 WS GRAM

● 2nd-generation WS implementation
optimized for performance, flexibility,
stability, scalability

● Streamlined critical path
◆ Use only what you need

● Flexible credential management
◆ Credential cache & delegation service

● GridFTP & RFT used for data operations
◆ Data staging & streaming output
◆ Eliminates redundant GASS code

75

GRAM
services

GT4 Java Container

GRAM
services

Delegation

RFT File
Transfer

Transfer
request

GridFTP
Remote
storage
element(s)

Local
scheduler

User
job

Compute element

GridFTP

sudo

GRAM
adapter

FTP
control

Local job control

Delegate

FTP data

C
lie

nt

Job

functions

Delegate

Service host(s) and compute element(s)

GT4 WS GRAM Architecture

SEGJob events

76

GRAM
services

GT4 Java Container

GRAM
services

Delegation

RFT File
Transfer

Transfer
request

GridFTP
Remote
storage
element(s)

Local
scheduler

User
job

Compute element

GridFTP

sudo

GRAM
adapter

FTP
control

Local job control

Delegate

FTP data

C
lie

nt

Job

functions

Delegate

Service host(s) and compute element(s)

GT4 WS GRAM Architecture

SEGJob events

Delegated credential can be:
Made available to the application

77

GRAM
services

GT4 Java Container

GRAM
services

Delegation

RFT File
Transfer

Transfer
request

GridFTP
Remote
storage
element(s)

Local
scheduler

User
job

Compute element

GridFTP

sudo

GRAM
adapter

FTP
control

Local job control

Delegate

FTP data

C
lie

nt

Job

functions

Delegate

Service host(s) and compute element(s)

GT4 WS GRAM Architecture

SEGJob events

Delegated credential can be:
Used to authenticate with RFT

78

GRAM
services

GT4 Java Container

GRAM
services

Delegation

RFT File
Transfer

Transfer
request

GridFTP
Remote
storage
element(s)

Local
scheduler

User
job

Compute element

GridFTP

sudo

GRAM
adapter

FTP
control

Local job control

Delegate

FTP data

C
lie

nt

Job

functions

Delegate

Service host(s) and compute element(s)

GT4 WS GRAM Architecture

SEGJob events

Delegated credential can be:
Used to authenticate with GridFTP

79

Overview

● Global data services
● Globus building blocks
● Building higher-level services

◆ GRAM execution management service
◆ Data replication service
◆ Workflow management

● Application case studies
● Summary

80

Motivation for
Data Replication Services

● Data-intensive applications need higher-level
data management services that integrate
lower-level Grid functionality

◆ Efficient data transfer (GridFTP, RFT)
◆ Replica registration and discovery (RLS)
◆ Eventually validation of replicas, consistency

management, etc.

 Provide a suite of general, configurable,
higher-level data management services

◆ Data Replication Service is the first of these

81

Data Replication Service

● Design based on the publication component of
the Lightweight Data Replicator system

◆ Scott Koranda, U. Wisconsin Milwaukee

● Ensures that specified files exist at a site
◆ Compares contents of a local file catalog with a

list of desired files
◆ Transfers copies of missing files other locations
◆ Registers them in the local file catalog

● Uses a pull-based model
◆ Localizes decision making; load balancing
◆ Minimizes dependency on outside services

82

● Pull “missing” files to a storage system

List of
required

Files

GridFTP
Local

Replica
Catalog

Replica
Location
Index

Data
Replication

Service

Reliable
File

Transfer
Service Local

Replica
Catalog

GridFTP

Data Replication Service

“Design and Implementation of a Data Replication Service Based on the Lightweight
Data Replicator System,” Chervenak et al., 2005

Replica
Location
Index

Data Movement
Data Location

Data Replication

83

A Typical DRS Deployment

At requesting site, deploy:

● Three Web Services
◆ Data Replication Service
◆ Delegation Service
◆ Reliable File Transfer

Service

● Two other services
◆ Replica Location Service

(Local Replica Catalog,
Replica Location Index)

◆ GridFTP Server

Web Service Container

Data
Replication

Service
Replicator
Resource

Reliable
File

Transfer
Service

RFT
Resource

Local
Replica
Catalog

Replica
Location

Index

GridFTP
Server

Delegation
Service

Delegated
Credential

Local Site

84

DRS as a WSRF Service
● Web service standards
● CreateReplicator
● State Management

◆ Resource
◆ Resource Property

● State Identification
◆ Endpoint Reference

● Inspection Interfaces
◆ GetRP, QueryRPs,

GetMultipleRPs
● Notification Interfaces

◆ Subscribe
◆ Notify

● Lifetime Interfaces
◆ SetTerminationTime
◆ ImmediateDestruction

RPs

Replicator

DRS
Create

GetRP

GetMultRPs

QueryRPs

Subscribe

SetTermTime

Destroy

EPR
EPR

EPR

85

DRS Functionality
● Delegate credential via

Delegation Service
● Create a Replicator resource via

DRS
● Discover replicas of desired files

in RLS, select among replicas
● Transfer data to local site with

Reliable File Transfer Service using
GridFTP Servers

● Register new replicas in RLS
catalogs

● Monitor Replicator resource and
trigger events

● Inspect state of DRS resource
and Resource Properties

● Destroy Replicator resource

RPs

Replicator

DRS

RPs

Transfer

RFT

RLS
Index

RLS
Catalog

GridFTP
Server

GridFTP
Server

Client

86

Performance Measurements:
Wide Area Testing

● Destination site for pull-based transfers is
Information Sciences Institute (LA)

● Remote site where desired data files are
stored is Argonne National Lab (IL)

● DRS operations measured:
◆ Create the DRS Replicator resource
◆ Discover source files for replication using

local RLI and remote LRCs
◆ Initiate RFT operation (create RFT resource)
◆ Perform RFT data transfer(s)
◆ Register the new replicas in the LRC

87

Experiment 1: Replicate
10 Files of Size 1 Gigabyte

Component of Operation Time (msec)

Create Replicator Resource 317.0

Discover Files in RLS 449.0

Create RFT Resource 808.6

Transfer Using RFT 1,186,796.0

Register Replicas in RLS 3720.8

● Data transfer time dominates
● Wide area data transfer rate of 67.4 Mbits/sec

88

Experiment 2: Replicate
1000 Files of Size 10 Megabytes

Component of Operation Time (msec)

Create Replicator Resource 1561.0

Discover Files in RLS 9.8

Create RFT Resource 1286.6

Transfer Using RFT 963,456.0

Register Replicas in RLS 11,278.2

● Longer to create Replicator and RFT resources
◆ Need to store state for 1000 outstanding transfers

● Data transfer time still dominates
● Wide area data transfer rate of 85 Mbits/sec

89

Hypervisor/OS
Deploy hypervisor/OS

DRS: Dynamic Deployment

Physical machine
Procure hardware

VM VM
 Deploy virtual machine

State exposed & access uniformly at all levels
Provisioning, management, and monitoring at all levels

JVM
 Deploy container

DRS
 Deploy service GridFTP LRC

VO Services

GridFTP

90

Overview

● Global data services
● Globus building blocks
● Building higher-level services

◆ GRAM execution management service
◆ Data replication service
◆ Workflow management

● Application case studies
● Summary

91

Data-Intensive Workflow
(www.griphyn.org)

Enhance scientific productivity through…
● Discovery, application and management of

data and processes at petabyte scale
● Using a worldwide data grid as a scientific

workstation

 The key to this approach is Virtual Data –
creating and managing datasets through
workflow “recipes” and provenance recording.

92

Jim Annis, Steve Kent, Vijay Sehkri,
Fermilab, Michael Milligan, Yong Zhao,

 University of Chicago

1

10

100

1000

10000

100000

1 10 100

N
um

be
r o

f C
lu

st
er

s

Number of Galaxies

Galaxy cluster
size distribution

DAG

Virtual Data Example:
Galaxy Cluster Search

Sloan Data

93

What Must we “Virtualize”
to Compute on the Grid?

● Location-independent computing:
represent all workflow in abstract terms

● Declarations not tied to specific entities:
◆ Sites
◆ File systems
◆ Schedulers

● Failures – automated retry for data server
and execution site un-availability

94

Executing VDS Workflows

Abstract
workflow

Local planner

DAGman
DAG

Statically
Partitioned

DAG

DAGman &
Condor-GDynamically

Planned
DAG

VDL
Program

Virtual Data
catalog

Virtual Data
Workflow
Generator

Job
Planner

Job
Cleanup

Workflow spec Create Execution Plan Grid Workflow Execution

95

OSG:The “target chip” for
VDS Workflows

Supported by the National
Science Foundation and the
Department of Energy.

96

VDS Applications

In Devel11000sGTOMO

Image proc

In use32000 (core app runs

250 8-CPU jobs)

FOAM

Ocean/Atmos Model

In use1000sSCEC

Earthquake sim

In Use3-6<10QuarkNet

CosmicRay science

In Use1500KATLAS

HEP Event Simulation

Inspiral In Use2-5~700LIGO

Inspiral/Pulsar

Both In Use71000sNVO/NASA

Montage/Morphology

In Use140KGADU

Genomics: BLAST,…

In Devel12100sfMRI DBIC

AIRSN Image Proc

In Devel
/ CS Research

2
8

40K
500K

SDSS

Coadd; Cluster Search

StatusLevelsJobs / workflowApplication

97

A Case Study – Functional MRI

● Problem: “spatial normalization” of a images to
prepare data from fMRI studies for analysis

● Target community is approximately 60 users at
Dartmouth Brain Imaging Center

● Wish to share data and methods across country
with researchers at Berkeley

● Process data from arbitrary user and archival
directories in the center’s AFS space; bring data
back to same directories

● Grid needs to be transparent to the users:
Literally, “Grid as a Workstation”

98

A Case Study – Functional MRI (2)

● Based workflow on shell script that
performs 12-stage process on a local
workstation

● Adopted replica naming convention for
moving user’s data to Grid sites

● Creates VDL pre-processor to iterate
transformations over datasets

● Using resources across two distinct grids –
OSG and Dartmouth Green Grid

99

Functional MRI Analysis
3a.h

align_warp/1

3a.i

3a.s.h

softmean/9

3a.s.i

3a.w

reslice/2

4a.h

align_warp/3

4a.i

4a.s.h 4a.s.i

4a.w

reslice/4

5a.h

align_warp/5

5a.i

5a.s.h 5a.s.i

5a.w

reslice/6

6a.h

align_warp/7

6a.i

6a.s.h 6a.s.i

6a.w

reslice/8

ref.h ref.i

atlas.h atlas.i

slicer/10 slicer/12 slicer/14

atlas_x.jpg

atlas_x.ppm

convert/11

atlas_y.jpg

atlas_y.ppm

convert/13

atlas_z.jpg

atlas_z.ppm

convert/15

Workflow courtesy James Dobson, Dartmouth Brain Imaging Center

100

Functional MRI – Mapping Brain
Function using Grid Workflows

 <>

101

fMRI Virtual Data Queries
Which transformations can process a “subject image”?
● Q: xsearchvdc -q tr_meta dataType

 subject_image input
● A: fMRIDC.AIR::align_warp

List anonymized subject-images for young subjects:
● Q: xsearchvdc -q lfn_meta dataType subject_image
 privacy anonymized subjectType young
● A: 3472-4_anonymized.img

Show files that were derived from patient image 3472-3:
● Q: xsearchvdc -q lfn_tree 3472-3_anonymized.img
● A: 3472-3_anonymized.img

 3472-3_anonymized.sliced.hdr
 atlas.hdr
 atlas.img
 …
 atlas_z.jpg
 3472-3_anonymized.sliced.img

102

Overview

● Global data services
● Building blocks
● Case studies

◆ Earth System Grid
◆ Southern California Earthquake Center
◆ Cancer Bioinformatics Grid
◆ AstroPortal stacking service
◆ GADU bioinformatics service

● Summary

103

Earth System Grid

 Goal: address
technical
obstacles to the
sharing &
analysis of high-
volume data
from advanced
earth system
models

ESG

104

ESG

ESG Requirements

● Move data a minimal amount, keep it close
to computational point of origin when
possible

● When we must move data, do it fast and
with minimum human intervention

● Keep track of what we have, particularly
what’s on deep storage

● Make use of the facilities available at
multiple sites (centralization not an option)

● Data must be easy to find and access using
standard Web browsers

105

ESG

Major ESG Components

● Grid Services
◆ GRAM
◆ GridFTP (+striped

GridFTP server)
◆ MDS (+WebSDV,

+Trigger Service,
+Archiver)

◆ MyProxy
◆ SimpleCA
◆ RLS
◆ Catalog service

● Other Services
◆ OpenDAPg
◆ HPSS
◆ SRM
◆ Apache, Tomcat

● ESG-specific services
◆ Workflow Manager
◆ Registration Service

106

Under the Covers ESG

107

Security Needn’t Be Hard:
Earth System Grid

● Purpose
◆ Access to large data

● Policies
◆ Per-collection control
◆ Different user classes

● Implementation (GT)
◆ Portal-based User

Registration Service
◆ PKI, SAML assertions

● Experience
◆ >2000 users
◆ >100 TB downloaded

PURSE User Registration

Optional
review

www.earthsystemgrid.org

See also:
GAMA (SDSC),
Dorian (OSU)

108

Southern California
Earthquake Center (SCEC)

Number of jobs per day (23 days), 261,823 jobs total, Number
of CPU hours per day, 15,706 hours total (1.8 years)

1

10

100

1000

10000

100000

10
/19

10/2
1

10/2
3

10/2
5

10/2
7

10/2
9

10/3
1

11/2 11/4 11/6 11/8
11

/10

 JOBS
 HRS

● Seismic hazard analysis application: used VDS services to
manage 1.8 years of computation over 23 days to process
20 TB of data with 260,000 jobs

● Ewa Deelman et
al., ISI

● In collaboration
with Tom Jordan,
Phil Maechlin,
David Okaya
(USC); Rob
Graves (USGS)
and others in
SCEC

109

Example:
Cancer Bioinformatics Grid

Data Service
@ uchicago.edu<BPEL

Workflow
Doc> BPEL

Engine

Analytic service
@ osu.edu

Analytic service
@ duke.eduResearcher

Or Client App <Workflow
Results>

<Workflow
Inputs>

 Each workflow is also a service,
enacted by BPEL Engine

link

link

link

link

110

For Example: Biology

PUMA
Knowledge Base

Information about
proteins analyzed
against ~2 million
gene sequences

Analysis on Grid

Involves millions of
BLAST, BLOCKS, and

other processesNatalia Maltsev et al.
http://compbio.mcs.anl.gov/puma2

111

Astro Portal Stacking Service
● Purpose

◆ On-demand “stacks”
of random locations
within ~10TB dataset

● Challenge
◆ Rapid access to 10-

10K “random” files
◆ Time-varying load

● Solution
◆ Dynamic acquisition

of compute, storage

+
+
+
+
+
+

=

+

S4 Sloan
DataWeb page

or Web
Service

With Ioan Raicu & Alex Szalay

112

Astro Portal
Stacking Performance (LAN GPFS)

113

Summary

● Global data services
◆ Connecting data with people & computers,

often on a large scale

● Globus building blocks
◆ Core Web Services & security; enabling

mechanisms for data access & manipulation

● Building higher-level services
◆ E.g., Data replication service

● Application case studies
● Summary

114

For More Information
● Globus Alliance

◆ www.globus.org

● Dev.Globus
◆ dev.globus.org

● Global Grid Forum
◆ www.ggf.org

● TeraGrid
◆ www.teragrid.org

● Open Science Grid
◆ www.opensciencegrid.org

● Background information
◆ www.mcs.anl.gov/~foster

2nd Edition
www.mkp.com/grid2

