
Object-Based
Cluster Storage Systems

Brent Welch & David Nagle
{welch,dnagle}@panasas.com

Panasas, Inc

Slide 2 May 25, 2006

New Object Storage Architecture

Raises storage’s level of abstraction
From logical blocks to objects (object is a container for data and attributes)

Allows storage to understand how different blocks of a object are related

Provides storage with necessary info to optimize storage resources

An evolutionary improvement to standard (SCSI) storage interface

Block Based Disk Object Based Disk

Source: Intel

Operations:
Create object

 Delete object
 Read object
 Write object
 Get Attribute
 Set Attribute
Addressing:

[object, byte range]
Allocation:

Internal

Operations:
Read block

 Write block

Addressing:
 Block range
Allocation:

External

Slide 3 May 25, 2006

Object Storage Timeline

CMU NASD Lustre

NSIC NASD SNIA/T10 OSD
OSD V1
Standard

Panasas

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Started with NSIC NASD research 1995-1999
 HP, IBM, Quantum, STK, Seagate, and CMU
Eventually became SNIA Technology working group in ‘99

45 participating companies
1999 moves to SNIA/T10 working group
1/2005: ANSI ratifies V1 T10 OSD standard (ANSI/INCITS
400-2004)

SNIA TWG already working on OSD V2 features
Snapshots, import/export, multi-object capabilities and
extended attributes

IBM / Seagate / Emulex
OSD V1

Prototype

OSD
V2

http://www.veritas.com/;jsessionid=QZXP0N0ZE5KN3QFIYBTCFEQ
http://www.ibm.com/us/

Slide 4 May 25, 2006

About Us

Brent Welch (welch@panasas.com)
Director of Architecture, Panasas

Berkeley Sprite OS

Authored definitive TCL book

IETF pNFS

David Nagle (dnagle@panasas.com)
Advanced Development Architect, Panasas

Parallel Data Lab, CMU
NASD, Active Storage Networks and MEMS-based storage projects

ANSI T10 OSD V1.0 and V2.0 standards

Slide 5 May 25, 2006

Agenda

Intro
Objects and the T10 OSD Standard Interface
Scalable Storage System Architectures

Files over Objects
File Systems that support direct client-storage communcations
Performance

OSD Security
Example Systems

Lustre
IBRIX
EMC Centera
pNFS

Slide 6 May 25, 2006

Review: Today’s File System/Storage Protocol
Stack

OS / File System
OS performs file system policy checks

User authorization
Permission checks (read, write)
File attributes

Physical size, logical length, timestamps
(last access time, last modified time), quota

Translates file to sector mapping
OS is responsible for performance of
storage device

Layout, organization of storage requests
Prefetching to the clients

Disk has primitive caching and prefetching
algorithms

Based on physical layout
No knowledge of application behavior

Best way to improve IO performance …
avoid touching the platter at all cost
Next best way, layout contiguous data on
contiguous sectors/tracks

File System
User Component

File System
Storage Component

Applications

System Call Interface

Storage Device

Sector/LBA Interface

Block I/O Manager

CPU

Slide 7 May 25, 2006

Object-based Storage (OSD)

File System
User Component

File System
Storage Component

Applications

System Call Interface

Storage Device

Sector/LBA Interface

Block I/O Manager

OSD Interface

Storage Device

Block I/O Manager

File System
Storage Component

CPU

Applications

File System
User Component

System Call Interface

CPU

Storage Device

Block I/O Manager

File System
Storage Component

Storage Device

Block I/O Manager

File System
Storage Component

Storage Device

Block I/O Manager

File System
Storage Component

Storage Device

Block I/O Manager

File System
Storage Component

At 10,000 feet, migrate the lowest part of
the client file system into the storage device

Storage understands logical data
layout and not just sectors

Storage interface evolves from blocks to
“objects”

Re-divides responsibility for managing
the access to data

Assigns additional activities to the
storage device (space management)

Offloads inode processing to OSD
Management of block to file mapping
distributed to storage device

Provides secure access control on every
command

A client sends an OSD command + capability
(secure permission slip) that the OSD uses to
decide if it’s ok to process the command

Example, Read cmd w/CAP(R + W + Create)

Slide 8 May 25, 2006

Objects

An object is a logical unit of storage
Lives in (almost) flat name space – addressed via object ID
Contains application data AND metadatametadata

Metadata: block allocation, physical length (similar to inode)

And contains user accessible attributesattributes
OSD interpreted: QoS requirements, capacity quota, etc.
Opaque to OSD: file system and app metadata

Object access via file-like methods
read, write, create, delete, getattr, setattr

ID x123
Blocks:3,42
Length:512

An Object

Slide 9 May 25, 2006

Type of Objects (con’t)

Object Hierarchy and Types
User-object

Up to 264 per partition
Basic storage unit for user data + attributes

Partition-object
Up to 264 per device
Container for user-objects that share security & space mgmt characteristics

Root-object
One per device, defines device characteristics (e.g., device capacity)
Container for partition objects

Collection-object
Up to 264 per partition ... share namespace with user-objects
Collection holds list of user-objects
Fast index that applications can use to create arbitrary set of user-objects

Audio collection that lists all of my MP3s

Useful support for fault-tolerance/recovery
V2 support for multi-object operations (e.g., delete, query, list)

Root & User Information Attribute Page

Slide 10 May 25, 2006

T10 OSD Object Attributes

Every object has a set of associated attributes
Stores various information (e.g., capacity used, last-access time,
object_version_number)

Some attributes defined by standard ... others available for higher-level software

Attribute Pages
2^32 attribute pages
with 2^32 attributes per page

All attributes virtually exist on object create

Attributes written with explicit setattr()

Attributes read with explicit getattr()

Attribute page definition/contents differ by object type and
categories

Defined by T10 OSD Standard, other standards, manufacturers, etc

Most commands embed set- or getattr()
Piggy-backed operations minimize message traffic

Slide 11 May 25, 2006

Object attributes

size length

Slide 12 May 25, 2006

OSD Commands (from ANSI T10 Spec)

Basic Protocol
READ

WRITE

CREATE

REMOVE

GET ATTR

SET ATTR

Specialized
FORMAT OSD

APPEND – write w/o offset

CREATE & WRITE – save msg

FLUSH – force to media

FLUSH OSD – device-wide

LIST – recovery of objects

Security
Authorization – each request

Integrity – for args & data

SET KEY

SET MASTER KEY

Groups
CREATE COLLECTION

REMOVE COLLECTION

LIST COLLECTION

FLUSH COLLECTION

Management
CREATE PARTITION

REMOVE PARTITION

FLUSH PARTITION

PERFORM SCSI COMMAND

PERFORM TASK MGMT

very basic

shared
secrets

space mgmt

attributes
• timestamps
• vendor-specific

• opaque
• shared

Slide 13 May 25, 2006

Read – 0x8805

byte addressable

64 bits
64 bits

What do commands look like?
SCSI extended CDB (cmd desc block of up to 250 Bytes)

First 7 bytes of CDB have special code to specify extended CDB

Slide 14 May 25, 2006

List – 0x8803

buffer size available

continuation across LISTs

only one option –
ascending object id

List command allows retrieval of all object IDs w/in a partition
Necessary for recovery

Slide 15 May 25, 2006

how much
buffer host
has
available

Num of attribs
bytes being
sent

which attrib

which attrib

Commands Can Read/Write Attributes

To minimize number of commands (messages), almost every command
can read and write the objects attributes

Read (object=0x1234, offset=0, length=100bytes, readAttr=physicalSize)

Slide 16 May 25, 2006

T10 OSD V2.0 Work in Progress

Collections and Multi-object collection operations
Single command instructs OSD to operate on set of objects

Efficient error handling
Fast error detection and recovery

Error handling for multi-object operations

Snapshot support

Slide 17 May 25, 2006

Collections

OSD Collection Object is an object used to store a list of user object IDs
User objects are added to or removed from a collection by performing a
SETATTR on the user object’s collection page

Enables collection manipulation as side effect of other command (e.g.,
WRITE)

Use case 1: Fast Index
Transaction needs to record all objects it touches
Using piggyback SETATTR(into collection X) to add each object into the
collection as the object is dirtied
If client fails (e.g., reboots), it can discover which objects are dirty by listing
the collection

Use case 2: List of related objects
EX: Pseudo directory of all MP3 objects

Basic collection commands
CREATE COLLECTION, REMOVE COLLECTION

Slide 18 May 25, 2006

Multi-object Operations

GET MEMBER ATTRIBUTES
Returns the specified attribute(s) from every object listed in the collection

SET MEMBER ATTRIBUTES
Sets the specified attribute(s) on every object listed in the collection

REMOVE MEMBER OBJECTS
Deleted every user object listed in the collection

QUERY
Match against one or more specified <attribute, value> pairs, returning the list
of a user objects that successfully matched

Ordering of internal command processing is unspecified
Allows for efficient disk-directed processing

But how do you restart a command?

Slide 19 May 25, 2006

Error Handling – Multi-object Operations

Multi-object operation may fail in the middle
e.g., REMOVE MEMBER OBJECTS dies ½ way through removing all of the
objects
Recovery solutions

Collection’s list of objects is ordered and client is informed of where in the list the
command died (tricky if not impossible)
As member objects are removed from the collection, their entries are deleted from
the collection

Restart is as simple as replaying the command again
Use same trick for other multi-object operations

Before performing multi-object operation, clone the collection object
Operate on the collection object, removing entries as objects are processed

Eliminates need for identifying position where failure occurred
Allows OSD to process objects in any order

Efficient head/resource scheduling opportunity

Slide 20 May 25, 2006

Error Handling – Damaged Objects

Objects can be damaged for several of reasons including media defects
and software bugs

Management should be alerted when a damaged object is detected
Proactively: OSD sends message to manager

Discovered: Object damage is recorded inside OSD and may be queried by
manager

OSD marks damaged objects
Specific object is fenced (topmost bit of object version # is set)

Prevents client access to object until manager can examine object

Partition and root attribute set to timestamp of latest discovered damage
Manager can poll timestamps to discover new damage has been detected by OSD

Slide 21 May 25, 2006

Error Handling – Rebuilding Damaged Objects

Damaged object may be repairable by OSD itself or may require outside
intervention (e.g., damaged object is to be repaired by rewriting via RAID
when RAID is done above the OSD interface)

Internal repairs done either automagically or with explicit FSCK command

Reconstructing a file could be as simple as re-reading all surviving
objects

But what about optimizations under the OSD interface (e.g., space efficient
holes)

Requires outside entity to know some details of the object
Repair entity requests map of object’s {holes, damaged regions}

Using the map, the outside entity can efficient repair the holes or selectively repair
only the damaged regions

READDIFF and READMAP

Slide 22 May 25, 2006

OSD Snapshot

OSD V2.0 defines snapshots to be point-in-time copies of partitions
Used partition as basis for snapshot because partitions are the basic unit of
space management

Snapshots may be implemented as
Efficient copy-on-write
Sync byte-by-byte copy
Async byte-by-byte copy

OSD keeps list of snapshots (parent / child relationships in snapshot
attribute page
Set of snapshot commands

CREATE SNAPSHOT
RESTORE SNAPSHOT
REFRESH PARTITION
DELETE SNAPSHOT

Slide 23 May 25, 2006

Strengths of Object Storage

Object maintains data relationship within OSD
Decisions on data layout can be optimized based on object size and
usage
OSD can be self-organizing, self-optimizing

Extensible attributes
E.g. size, timestamps, ACLs, etc.

Access Control decisions are signed, cached at clients,
enforced at device

Clients can be untrusted (bugs & attacks expose only authorized
object data)

Command set works with SCSI architecture model (SAM)
Encourages cost-effective implementation by storage device vendors

Slide 24 May 25, 2006

Wide Variety of Object Storage DevicesWide Variety of Object Storage Devices

“Smart” disk for objects

2 SATA disks, CPU and GE NIC

Disk array subsystem

Ie. LLNL with Lustre

Prototype Seagate OSD

Highly integrated, single
disk

Slide 25 May 25, 2006

Interfaces: Blocks, Files and Objects

Storage Interface
Block-based architecture: fast but private

Traditional SCSI and FC approaches
Expensive fabric, difficult to share between hosts
Lack of security
Large amount of metadata to describe layout of files

File-based architecture: sharable, but bottlenecked performance
NAS storage (NFS, CIFS, AFS and DFS)
Optimized for centralized server architecture
Coherence and security models vary widely

Object-based: fast, shared, secure device
Storage device exports objects (collection of related data) instead of blocks
Building block for higher-level file systems

Slide 26 May 25, 2006

Storage Architectures: In- & Out-of-Band

In-band
Data flows through server or cluster of servers

Server touches/manages all data and metadata
Easy to build and maintain at limited scale
Limited load balancing across head-node(s)
Narrow, well-defined failure modes
Security is function of server node

Out-of-band
Data flows directly from client to storage

Get rid of central bandwidth bottlenecks
Metadata is managed off the datapath
Performance proportional to number of storage nodes
Load-balance workload across system

Performance and capacity
Security is function of storage protocol

Slide 27 May 25, 2006

Out-of-Band OSD System Architecture

File manager is not File manager is not
in the data pathin the data path

File System Client

I/O Application

Storage Device

File System Policy

OSD Logic

Object-Based Architecture
Distributes the System

Control

Configuration
DataStorage Device

File System Client

I/O Application

OSD Security
Protocol

Storage Server

Clients

(aka Manager)

Slide 28 May 25, 2006

Out-of-Band OSD System Architecture

File System Client

I/O Application File System Policy1) Open

4) Data

OSD Security
Protocol

Clients

(aka Manager)

(1) Client initially contacts File
Manager

File Manager checks file
system policy

(2a) File Manager returns list of
objects
<OSD 987, OID 23>

(2b) File Manager also returns a
security CAPABILITY

Capability is security token
used by client to access OSD -
CAPABILITY authorizes client
requests

(3) Client sends requests (read,
write) directly to OSD along with
signature based on CAPABILITY

OSD checks signature,
CAPABILITY, performs request

(4) Direct-data transfer
between client and OSD

2) Map & Caps

3) OSD CMD (e.g., READ) + CAP

Storage Device

OSD Logic

Slide 29 May 25, 2006

Objects as Building Blocks

Object
Comprised of:

User Data

Attributes

Layout

Interface:
ID <dev,grp,obj>
Read/Write
Create/Delete
Getattr/Setattr
Capability-based

File Component:
Stripe files across
storage nodes
1 File == 1 Virtual Object

striped across 1 or
more physical objects

File
(virtual object)

64K 64K

Component
Objects

64K

Object Storage Devices

Byte 0K 64K 128K 192K

By striping a file across multiple OSDs, the application(s) can
realize the aggregate bandwidth of all OSDs in the system, including
1) Bandwidth, 2) Load balancing, 3) Reliability – RAID

Slide 30 May 25, 2006

Example: Client Read Operation

Steps in a client read operation
Client determines file ID and responsible director from the directory entry

Client requests permission to read from the director (read cap)

Director returns permission + file map identifying components

Client determines byte ranges within components and initiates a network
transfer for each, all in parallel, ignoring the parity blocks

Client can re-use permission and map until told otherwise by director

Client

OSD
(d)

Manager

Request

Map

OSD
(d)

OSD
(d)

OSD
(d)

OSD
(p)

Slide 31 May 25, 2006

Client Read Operation

Different files can use different sets of OSDs

Bandwidth is achieved via parallel transfers from multiple OSDs
More OSDs ⇒ higher parallelism ⇒ higher bandwidth

No serialization at a server machine, no bottleneck at a RAID controller

Many OSDs and ample switch infrastructure together allow many cluster
nodes to simultaneously achieve high bandwidth from storage

Client need not keep track of sector mapping: it requests a single byte
range from a single named object

OSD is free to optimize: cache, read-ahead, write-behind, relocate

Slide 32 May 25, 2006

Example: Client Write Operation

Director must assure that concurrent writes do not corrupt parity, and
that clients see coherent data in storage

Therefore follow “start-write / end-write” policy (LAYOUTGET/LAYOUTCOMMIT)

Client accumulates “enough” dirty data to get high bandwidth transfer

Client requests permission to write, writes all dirty data and updates
parity, releases write permission back to the director

Distinct from reads in that permission to read is long-lived

Client

OSD
(d)

Manager

Request

OSD
(d)

OSD
(d)

OSD
(d)

OSD
(p)

Client

Map OK

StartW

Manager

Client

OK

EndW

Slide 33 May 25, 2006

Managing Metadata

Out-of-band architecture manages metadata off the datapath
All clients contact metadata manager(s) that manage:

File to storage mapping
File system security policy
File system sharing and cache coherence policy

Clients obtain the following from the metadata manager
Layout that maps file to object(s)
Object and file attributes (e.g., access time)
Capability that grants access to objects (and specific ranges w/in objects)
Callbacks to provide file coherence when shared

Slide 34 May 25, 2006

Managing Metadata (con’t)

Issues
High-level file system metadata management

Where is this information?
How does it scale in size and performance?

File system data and metadata consistency
Ensure consistency among sharing clients
Ensure file system metadata consistency

Protocol support for efficient metadata management
Minimize network traffic between client and server
Minimize network traffic between server and storage

Slide 35 May 25, 2006

Optimizing an object-based file system

Distributed cache consistency (not a new problem)

Parallel create for efficiently creating redundant files

High performance crash recoverability via logging

Snapshots

Reconstruction and object movement with snapshots

OSD delayed block allocation and read ahead

Slide 36 May 25, 2006

Caching and Cache Consistency

Caching information on client reduce network traffic
Clients cache file data, directory data, attributes, and capabilities

Clients cache both clean (read) and dirty (written) data

Managers keep “callbacks”
Client indicates interest in file by registering callback

Director promises to notify the client if cached data or attributes
become invalid, or other client wants to access file, via “callback
break” message

Callback type indicates sharing state, similar to CIFS opportunistic
lock (oplock)

Exclusive callback = no other clients using file; we can cache reads and writes
Read-only shared callback = other clients reading, but no writers; we can cache
reads
Read/write shared callback = other clients reading or writing; don’t cache anything
Concurrent write callback = special sharing mode for cooperating apps

Callbacks are leased & expire after ~8 hrs unless renewed

Slide 37 May 25, 2006

Example: Parallel Create

Create a mirrored file (2 objects) and insert into directory
Timeline

client:syscall_create()
mgr: log operation
mgr: generate capability for manager
mgr-to-osd: OSD_CREATE & OSD_CREATE for redundant user object
mgr-to-osd:OSD_WRITE & OSD_WRITE for redundant directory update
mgr: generate capability for client
Mgr: clean up create log entry, remember write capability

syscall_create()

OSD_CREATE
OSD_WRITE

Log ops

Cap generation

TIME

Slide 38 May 25, 2006

Metadata journaling

Operations across multiple objects must be recoverable
OSD operation could fail

Metadata manager could crash

Storage must remain consistent or be returned to consistent state

Types of logging
Ledger: add record, do operation, delete record

State log: longer term memory of FS state
write cap, client participants, repair log

Reply cache for non-idempotent operations

Where to log
NVRAM (5 usec), remote memory (120 usec)

manager disk, object storage (.5 to 5 msec)

Slide 39 May 25, 2006

Snapshots

Copy-on-write objects
CLONE_OBJECT and CREATE_SNAPSHOT OSD commands

No overwrite block allocation

Metadata managers coordinate snapshots
Pause client activity

Clone partitions that store objects

Resume client activity

Provide namespace for snapshot access (e.g., .snapshot sub directories)

Slide 40 May 25, 2006

Snapshots and object movement

Reconstruction and data migration must be snapshot aware
Reconstruction is the generation of a lost object from redundant data

Migration is movement of an object for load balancing

Naïve implementation expands shared blocks
10 GB object with 20 clones => 200 GB when copied or reconstructed

10 GB object with 9 GB hole, 1 GB => 10 GB when copied or reconstructed

OSD commands support recreating snapshot chains
READDIFF – what ranges differ between two objects

READMAP – what ranges of object are really holes?

Reconstruction
Read oldest object in chain. Create and write oldest copy

READDIFF next object

CLONE then READ and WRITE ranges that changed

Proposed
For OSDv2

Slide 41 May 25, 2006

Read ahead and write behind

OSD maintains many read-ahead contexts
SATA drive firmware implements 10 block-based read ahead contexts

OSD can implement 100’s of object-aware read ahead contexts

Read ahead data in response to initial GETATTR

Read ahead other object descriptors in response to GETATTR
Requires higher level hints to relate objects

Delayed block allocation for optimal layout
Buffer IO (in NVRAM)

Onodes, block pointers, refmap updates, and data blocks

Allocate blocks at the last moment before IO

Slide 42 May 25, 2006

NFS/CIFS Access

Gateway is a NFS/CIFS server on a Panasas FS
client

Same Panasas FS client as Linux FS client
FreeBSD NFS server, Samba CIFS server

All clients, including Gateways, have coherent view
All gateways provide identical view of PanFS,
coherent with Panasas FS
Cache coherency provided by Panasas FS client
Each gateway accesses all data in system—one NFS
mount or CIFS share for whole Panasas cluster

Legacy systems does not need special software
NFS / CIFS are built in modern operating systems

Managers translate file requests
From NFS / CIFS to object and exports data to realm
Maintaining permissions and other key attributes

Scalable performance via additional Managers
Same volumes available

Via Panasas FS, NFS and CIFS simultaneously

O
bj

ec
t

O
bj

ec
t

O
bj

ec
t

O
bj

ec
t

N
FS

/C
IF

S

N
FS

/C
IF

S

N
FS

/C
IF

S

Slide 43 May 25, 2006

Scaling the system

Scale the system and clients at the same time (N-to-N IOzone)

IOZone Read and Write
Sequential I/O Performance (4MB Block Size / Direct Flow)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

10/8 40/32 80/64 120/96

Number of Storage Blades / Clients

A
gg

re
ga

te
 B

an
dw

id
th

 (M
B

/s
ec

)

Write

Read

Slide 44 May 25, 2006

Scaling Clients

Fixed system size, grow the number of clients (N-to-N over Direct Flow)

IOzone Sequential IO Read / Write BW

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120

Number of Clients

Ag
gr

eg
at

e
BW

 (M
B/

se
c)

1-shelf Read
1-shelf Write
5-Shelf Read
5-Shelf Write

Slide 45 May 25, 2006

Scaling NFS

IOZone over Panasas NFS (each shelf is 3 Directors + 8 Storage Blades)

IOZone Write Bandwidth (NFS)

0
100
200
300
400
500
600
700
800
900

1000

0 10 20 30 40 50 60 70 80 90

of Clients

Ag
gr

eg
ate

 M
B/

se
c

1 Shelf

2 Shelves

4 Shelves

6 Shelves

IOZone Read Bandwidth (NFS)

0

200

400

600

800

1000

1200

0 20 40 60 80 100

of Clients

Ag
gr

eg
at

e M
B/

se
c

1 Shelf

2 Shelves

4 Shelves

6 Shelves

Slide 46 May 25, 2006

SFS Performance

Stat existing files, cache hits

Creating more working set

Warmup phase Run phase

SFS ORT Run. 10 Runs at successively higher target loads: 1000 to 10,000 ops/sec

Overshoot Target

Slide 47 May 25, 2006

Concurrent Read/Write Performance

N-to-1 read and write performance using MPI-IO benchmark (over Direct
Flow)

MPIIO-N1 Read and Write
Sequential I/O Performance (4MB Block Size)

0

500

1,000

1,500

2,000

2,500

3,000

10/8 40/32 80/64 118/96

Number of OSDs/Clients

A
gg

re
ga

te
 B

an
dw

id
th

 (M
B

/s
ec

)

Write

Read

Slide 48 May 25, 2006

Random IO

IOZone over Direct Flow

Iozone Random I/O Performance (64KB Block Size)

0

100

200

300

400

500

600

700

800

10/8 40/32 80/64 118/96

Number of StorageBlades/Clients

A
gg

re
ga

te
 B

an
dw

id
th

 (M
B

/s
ec

) Random Read

Random Mix

Random Write

StorageBlade == OSD

Slide 49 May 25, 2006

Object-based Parallel Reconstruction

Many systems manage a set of disks with a single RAID controller
Bottleneck for general I/O … but can be balanced with cache and limited
number of spindles
Bottleneck for reconstruction

By striping over objects and performing RAID at the clients, we eliminate
these bottlenecks

And we only reconstruct used capacity (vs. the entire disk)
Per-file Object reconstruction

Manager reads data from surviving objects
and writes to new object
Achieves 10 MB/sec for large files

Parallel reconstruction
Each manager given list of files to reconstruct
Each manager works concurrently

64K 64K 64K

Slide 50 May 25, 2006

Reconstruction Performance

Reconstruction BW

0

20

40

60

80

100

120

1 4 8 12

of Shelves (1 DirectorBlade, 10 StorageBlades per shelf)

A
gg

re
ga

te
 M

B
/s

ec

1G Files

Slide 51 May 25, 2006

Achieving High Performance Storage

Build a System that delivers linear scalability of BW
Adding disks increases both capacity & storage bandwidth all the
way to client apps
Requires elimination of all bottlenecks between storage & clients

Remove server bottleneck: Direct client-storage transfers
Scalable storage devices: Object-based storage
Scalable file system: DirectFlow
Scalable NW: Ethernet/TCP

Plot shows BW increasing
as StorageBlades (OSDs) are added
Details of graph

Single client reading from N StorageBlades
File data is striped across StorageBlades,
with each data point restriping the file
Network iSCSI, TCP/IP, Gigabit ethernet
Storage: Object-based cmds T10 OSD
Panasas File System – Direct Flow

Client Read BW vs. # of StorageBlades

0

20

40

60

80

100

3 4 5 6 7 8 9 10

of StorageBlades (OSDs)

B
W

 (M
B

/s
ec

)
A

Slide 52 May 25, 2006

Scalability ?

Greater than 15 StorageBlades, BW begins to decline
Why? Possible culprits include …

Longer storage access times - striping wider decreases amount of data fetched
per disk
Interference with other requests … but data was collected on unloaded system
Client can’t receive data fast enough

Each StorageBlade can transmit at 1Gbit/sec (peak), but client only receive at
1Gbit/sec max

Real culprit … the network
We call this problem INCAST (opposite
of multicast)
Can effect any application that receives
data from multiple sources
Network congestion between sources
and destination cause packet loss

Common data access pattern
for striped storage

Object-based Storage, iSCSI,
NFS Aggregation

Can Incast be avoided ?
Can Incast be solved ?

Client Read BW vs. # of StorageBlade

0

20

40

60

80

100

3 6 9 12 15 18 21 24 27 30

of StorageBlades (OSDs)

B
W

 (M
B

/s
ec

)

BW decline

A

B

Slide 53 May 25, 2006

How Does TCP Perceive Incast?

red shows timeouts
and retransmits

TCP Sequence Number Plot (Time vs. Sequence Number)
Many ODSs sending to single client (picture of one 1 OSD/Client flow)

Steep black line shows rapid
data flow w/out packet loss

A

C

B

Slide 54 May 25, 2006

TCP Plot of Retransmissions

Network buffers overflow and packets
are dropped

TCP retransmit will eventually kick in

TCP timeouts on scale 100’s of msec,
SAN operates on usec scale

TCP fast retransmit and SACK defeated
by significant taildrop packet loss

SACK ineffective is receiver doesn’t
know packets were dropped

Important difference between storage and
traditional network flows

Storage is much more bursty
More difficult for TCP flow control to adapt
to storage flows

By striping across devices, storage
requires ALL flows to
respond before the app can proceed

Any interrupted flow hurts total throughput

red shows timeouts
and retransmits

C

Slide 55 May 25, 2006

Overcoming Incast

Option 1: Fix the network
Link-level flow control

Can penalize good senders
Large network buffers

Work with vendors
Reduce socket buffers

Use small socket buffers (< 64KB)
Since receiver has N TCP streams
working in concert … ideally buffer sizing
would consider aggregate of all flows

VERY fast retransmit … TCP timeouts
not designed for SAN latencies

Modified TCP to reduce timeout by
factor of 4X
Tail-drop is still a problem

SAN-optimized Ethernet and TCP would be
excellent research topic

Still want to stay on commodity curve
All fixes above were not sufficient …

Client Read BW vs. # of StorageBlade

0

20

40

60

80

100

3 6 9 12 15 18 21 24 27 30

of StorageBlades (OSDs)

B
W

 (M
B

/s
ec

)

Slide 56 May 25, 2006

Overcoming Incast (2)

Option 2: Reduce number of
senders (aka StorageBlades)

Stripe only wide enough to achieve “peak”
bandwidth

Con: Reduces aggregate bandwidth
because bandwidth is limited to number
of StorageBlades file is striped across

Con: Restricts maximum file size

Con: Potential hot spots

What we really want is to: 1) limit stripe width to avoid INCAST while 2)
striping across all of the storage blades

Client Read BW vs. # of StorageBlade

0

20

40

60

80

100

3 6 9 12 15 18 21 24 27 30

of StorageBlades (OSDs)

B
W

 (M
B

/s
ec

)

max stripe
width

Slide 57 May 25, 2006

Option 3: 2-Level RAID Map

Begin by striping the file across a limited number of OSDs

1

Parity Stripe

Slide 58 May 25, 2006

2-Level RAID Map

Begin by striping the file across a set of OSDs
As the file grows, write more stripes

1

2

Parity Stripe

Slide 59 May 25, 2006

2-Level RAID Map

Begin by striping the file across a set of OSDs
As the file grows, write more stripes

1

2

3

4

Parity Stripe

5

Slide 60 May 25, 2006

2-Level RAID Map

Begin by striping the file across a set of OSDs
As the file grows, write more stripes
Once a “sufficient” number of stripes has been written (aka DEPTH),

stripe across a new set of OSDs

1

2

3

4

Parity Stripe

5

D
E
P
T
H

Slide 61 May 25, 2006

2-Level RAID Map

Begin by striping the file across a set of OSDs
As the file grows, write more stripes
Once a “sufficient” number of stripes has been written (aka DEPTH),

stripe across a new set of OSDs

1

2

3

4

Parity Stripe

5

D
E
P
T
H

6

Parity Stripe

Slide 62 May 25, 2006

2-Level RAID Map

Begin by striping the file across a set of OSDs
As the file grows, write more stripes
Once a “sufficient” number of stripes has been written (aka DEPTH),

stripe across a new set of OSDs

1

2

3

4

Parity Stripe

5

D
E
P
T
H

6

7

8

9

Parity Stripe

10

Slide 63 May 25, 2006

2-Level RAID Map

Maximize bandwidth by
striping across ALL
StorageBlades in the system

Minimize incast by only
communicating with one RAID
group at a time

Optimize disk utilization by
making stripe depth large
enough to read sequentially
from multiple tracks

Load balance by distributing
clients across all Storage
Blades

Each file is striped using a
different set of RAID
Groupings

Multi-client/single file
accesses fan out across RAID
groups

1

2

3

4

Parity Stripe

5

D
E
P
T
H

6

7

8

9

Parity Stripe

10

Data Stripe

11

12

13

14

15

D
E
P
T
H

16

17

18

19

20

RAID Group 0 RAID Group 1

Slide 64 May 25, 2006

Scalable BW

N-to-N Reads and Writes
Client-based RAID requires extra 10% parity overhead

Read and Write Bandwidth Across 90 StorageBlades

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60

of clients

M
B

/s
ec

 (
A

g
g

re
g

at
e) Read

Write

Slide 65 May 25, 2006

The Need for Storage Security

SAN Security Today:
Essentially doesn't exist
Assume only trusted clients

Work arounds
Zoning/Fencing

Hard to use
Physical level

LUN Masking/Logical Unit (LU) access
controls

At best, provide all or nothing for an LU
Too many actively used blocks to
provide block-level security

Data IP Network

(FibreChannel)
Storage Area

Network

File HTTP
Database

Database
Server

File
ServersWeb

Servers........

Security Slides courtesy of the SNIA/T10 OSD Working Group,
www.snia.org

Slide 66 May 25, 2006

Object Store Security Goals

Increased protection/security
Fine-grained protection on objects rather than LU
Hosts do not access/modify metadata directly, hidden w/in OSD interface

Allow non-trusted clients to sit on SAN
Allow shared access to storage without giving clients access to all data on volume
From the OSD ver1.0 Roadmap value proposition:

Robust, shared access by many clients, OS’s
Strong, fine-grain, end-to-end security
Scalable performance via offloaded data path

Prevent attacks on individual objects
Prevent network attacks
Must not duplicate the cost of security – layered approach

Provide a stand-alone solution that works without a network security infrastructure
Provide a solution that leverages standard network security infrastructures.

Allow low cost implementation of the critical path
Allow efficient implementation on existing network transports

Slide 67 May 25, 2006

Concepts

capability: The fields in a CDB that specify what command functions the
command may request and on what objects. A capability (CAP) is
included in every request to an OSD.
credential: A capability that is protected by an integrity check value that
is sent to an application client in order to grant defined access to an
OSD
security manager: The component of an OSD configuration that
manages secret keys and prepares secure credentials containing
capabilities thus granting application clients specified access to a
specified OSD logical unit.
integrity check value: A value computed using a security algorithm
(e.g., HMAC-SHA1), a secret key and an array of bytes.
capability key: The integrity check value of the capability that is used by
an application client to compute integrity check values for a single OSD
command.

Slide 68 May 25, 2006

Basic Security Model

All operations are secured by a
capability

Is the command valid?

Is the command allowed to access the
specified object ?

Manager and OSD are trusted

Security achieved by cooperation of:
Manager – authenticates/authorizes clients

and generates credentials.

OSD -- validates credential that a client
presents.

Credential is cryptographically
hardened

OSD and Manager share a secret

Client

Object Store

Security
Manager

Shared Secret,
refreshed periodically

Authorization Req

Capability,
CAP_keyReq,

Capability,

MACcap_key(Req)

Slide 69 May 25, 2006

Security Methods

NOSEC
No security but capability must allow required commands

Can prevent some mistakes, e.g., accessing wrong object

CAPKEY
Secure (i.e., signed) capability

When used with a secure network provides security for entire exchange

CMDRSP
Secure capability and command but not data

ALLDATA
Secure capability, command and data

Provides security for entire exchange when network is not secure
Duplicate work if the network is secure

Slide 70 May 25, 2006

Security Methods

Slide 71 May 25, 2006

Capability Structure

Key Version – identifies secret key for integrity check
Algorithm – algorithm used for integrity check
Security Method - Verified that security method is allowed is at the device
Expiry – expires a credential, allowing different lifetimes for credentials
Audit – allows Manager to associate the capability with a specific client
Capability Discriminator – ensures all credentials are unique (aka nonce)
Creation time – creation time of the object

Distinguished between objects with the same Object ID
Permission Bit Mask – operations the client is entitled to perform

Multiple operations can be set {read, write, create, delete, get-, set-attributes, ...}
Object Descriptor – Partition ID, Object ID and Policy tag

Policy Tag
Version Tag - Used to invalidate all credentials for an object
Fence – allows OSD to prevent access to an object

Key
version Alg. Expiry Audit Discriminator Obj Creation time PermissionsObj descSec.

Method

Slide 72 May 25, 2006

Credential Structure

Secret Key is the key shared between the Manager and Client

A Credential is derived from the capability arguments.

CAP_Key = MAC secret key (CAP_Args, OSD System ID)

It holds a signature over the capability using the device secret key

That signature is used as another signing key over OSD commands

OSD can unwrap the two levels of signatures to verify commands

Capability Integrity Check
ValueOSD System ID

CAP_Key

Audience:
Wake up

Here

Slide 73 May 25, 2006

OSD Security Misc

Capabilities are not bound to a specific client
Allow clients to delegate capability

Capability

Special commands
to set keys for each
object

Master and working keys

Root and partition
objects

Slide 74 May 25, 2006

The CAPKEY Mode

Secret Key

Secret Key

Security Manager

Client

Object Store

1 Client/SM communication
over security channel

2
Security Manager returns:

1. CAP arguments
2. CAP-key

CAP arguments = {rights-string, …
CAP-key = MACsecret-key (CAP arguments)

Security Manager &
Object Store
share a secret key

Slide 75 May 25, 2006

The CAPKEY Mode

Secret Key

Secret Key

Security Manager

Client

Object Store

1 Client/SM communication
over security channel

2
Security Manager returns:

1. CAP arguments
2. CAP-key

CAP arguments = {rights-string, …
CAP-key = MACsecret-key (CAP arguments)

Client sends
1. Command
2. CAP Arguments
3. ReqMAC = MACCAP-key(CMD, CAP)

Notice how the client uses the CAP-key
sent from the Security Manager as
the key for the message digest

Security Manager &
Object Store
share a secret key

3Channel ID

Slide 76 May 25, 2006

The CAPKEY Mode

Secret Key

Secret Key

Security Manager

Client

Object Store

4 Object Store verifies request AND
1. X = MACsecret-key (CAP arguments)
2. Y = MACx(0, Channel ID)
3. Y =? ReqMAC

1 Client/SM communication
over security channel

2
Security Manager returns:

1. CAP arguments
2. CAP-key

CAP arguments = {rights-string, …
CAP-key = MACsecret-key (CAP arguments)

Client sends
1. Command
2. CAP Arguments
3. ReqMAC = MACCAP-key(0, Channel ID)

Security Manager &
Object Store
share a secret key

Calculated Once
Per Credential

5 Return (status, data)

3Channel ID

Slide 77 May 25, 2006

Object-based Storage Systems

Slide 78 May 25, 2006

Lustre

Open source object-based storage system
Based on NASD architecture from CMU

Lots of file system ideas from Coda and InterMezzo

Key design issues
OSD

Separation of data from metadata paths

Security

Slide 79 May 25, 2006

Lustre High Level Architecture

Lustre material from from www.lustre.org and various talks

Direct client-storage
communication

Clients communicate with OSS
(Object Storage Servers)

Also known as OST (Object
Storage Targets)

Data is striped RAID 0 over
set of OSS’s

Stripe width determined by file
bandwidth requirements

Concurrent access typically
requires wider stripes

Data reliability (RAID 1,5)
is managed by RAID controllers
in OSS or RAID array

MDS 2
(standby)

Lustre Object Storage
Servers (OSS, 100’s)

Metadata
Servers

Lustre Clients
1-10,000’s

Failover

MDS 1
(active)

Commodity
SAN or disks

Enterprise class
Raid storage

Failover

QSW Elan

Myrinet

IB

GigE

OSS1

OSS2

OSS3

OSS4

OSS5

OSS6

OSS7

Multiple storage
networks are supported

http://www.lustre.org/

Slide 80 May 25, 2006

Lustre Metadata Server

Lustre material from from www.lustre.org and various talks

Clients contact Metadata
server to locate data and
obtain capability

File System Metadata
Supports lookup, file creation,
file and directory attribute
manipulation and mapping of
file to OSS

File system metadata stored
on metadata server (vs on
OSSs)

Metadata server maintains
transactional record of file
system metadata changes

Supports failover in case of
failure

OSS1 OSS2 OSS3

Odd blocks, even blocks

Lustre Client

File open request

Metadata Server

Achieve parallel
Bandwidth to all

OSS’s

Linux VFS
Lustre client FS

LOV

OSC
3 MDC MDS

File metadata
Inode A (obj1, obj2)

Write (obj 1) Write (obj 2)

OSC
1

http://www.lustre.org/

Slide 81 May 25, 2006

Lustre Clients

Client uses LDAP, Kerberos
to obtain configuration
information

Uses Lustre RPC over
Portals for
network-agnostic
communication

OST provides locking

Lustre material from from www.lustre.org and various talks

Metadata Server

MDS

Object Storage
Targets

OST

Clients

Recovery, file status,
&file creation

Directory operations,
metadata & concurrency

Configuration information,
Network connection details,

& security management

File I/O &
file locking

LDAP, Kerberos/pki, snmp etc

Device Library
(Elan,TCP,Myr,…)

Portal NAL’s

Portal Library

NIO API

Lustre Request
Processing

http://www.lustre.org/

Slide 82 May 25, 2006

Lustre OSS

Does not follow T10 OSD standard
OST is transactional – two-phase reply to enable recovery

OST is built on top of other file systems (e.g., ext3)
Objects can belong to several groups

Allows OST to log information about object (e.g., marked for deletion)
Command differences

Open and close – Lustre maintains ref counts
Preallocate – creates N objects, used for efficient create
Read and write – support scatter-gather lists
Sync – can specify range of object to sync
Migrate – move a data range from one object to other on the same OST
Iterate – OST applies function to all objects within a group
Lock_{enqueue, convert, cancel}

Lustre material from www.lustre.org and various talks

http://www.lustre.org/

Slide 83 May 25, 2006

Lustre Security

Similar to T10 Security

Capability-based

Capability on ACL instead
of per-object

Lustre material from from www.lustre.org and various talks

OST

MDS

Step 3
Traverse ACL’s

Clients
Step 8

Decrypt file data

LDAP group server Kerberos

Step 2
Authenticated open RPCs

Step 4
Get OST ACL

Step 1
Authenticated user,

get session key

Step 6
Read encrypted

file data

Step 5
Send ACL capability

& cookie

Audit Logs

Step 7
Get SFS file data

http://www.lustre.org/

Slide 84 May 25, 2006

Lustre Performance

Testing across 64 OSTs fronting 8 racks of DataDirect S2A8500
storage (estimate about 500 drives)

Peak at about 4.5GB/sec (network max is 6.4GB/sec ethernet)
Write file-per-process (FPP)

Read FPP is ~2.5 GB/sec

Other performance measurements up to 11 GB/sec over
specialized networks

Slide 85 May 25, 2006

IBRIX

Not an object-based storage
system, but draws on decoupled
data/metadata architecture
Segments instead of objects

File can span one or more
segments (storage devices)

Hardware RAID / SAN
RAID under the segments

NFS and CIFS servers running
IBRIX software
Client can run IBRIX driver for
direct storage access
Metadata owning Segment Servers
can take ownership of metadata or
proxy requests

File

File 1

File 2

Folder

Metadata

File 1
File 2

2

1

3

SAN

NAS

IP

Cluster

Single Namespace

5

7

4

6

8

Slide 86 May 25, 2006

IBRIX Performance

Dell PowerEdge 1750 Xeon processor (3 GHz) as segment servers

EMC CX7000 storage system
Eighty 10K RPM FC drives

Read BW scales from 1 to 8 servers

Write BW scales from 1 to 4 servers

Slide 87 May 25, 2006

EMC Centera Highlights

Software enables Content-addressed Storage
Similar to OSD … present storage system with data, get back a single
“handle” for future references

Different from SCSI or NFS/CIFS interface, requires application support

Designed for fixed content (write-once)
Any “object” presented to system is unchangable and authenticated (C-Clip
technology)

Physical Design (2 years old)
Storage: 4.8TB – 9.6TB RAID 1/RAIN (19.2TB Raw storage) per cabinet
(up to 16 cabinets)

Up to 16 cabinets per cluster (150 TB) … and up to 7 clusters (1.2 PB)

ATA-based

Slide 88 May 25, 2006

What’s this Content Stuff
Entire BLOB (Binary Large Object) is presented to the Centera system
Application delivers data object to Centera API which generates claim check

Claim check is
RSA MD-5 generate a 256-bit signature
Inserted into XLM file called C-Clip Descriptor File (CDF)

Data blob and CDF are written (mirrored) to disk
CDF is also returned to application
Application maps CDF to actual file name
CF included {date, time, system, creator, project, content address, size, and file name}

If data changes, Claim Check will detect change

API
Applications are written to new Centera Object-based Storage API

Basic API is
Store, Retrieve, Exists, Delete, Query

Delete is controlled by protection that disallows deletion until specified time
Query can retrieve list of objects stored over time interval

Slide 89 May 25, 2006

Seagate, IBM and Emulex OSD V1

Emulex, IBM & Seagate Team Up to Demonstrate Industry's
First Standards-Compliant Object-Based Storage Devices
- OSD Technology Demonstration Signals Move Toward More Powerful, Intelligent and Simplified Storage

Demonstration: video files written into file system & played
Files were written to explicit
devices by OSD system
All in a common file system
File system did not know or
care where the files
were located

Slide 90 May 25, 2006

First prototype – not high performance
Block architecture based HDD

First iteration of OSD implementation

Can be made very competitive
Some small changes to HDD required

Working set > OOM smaller than host based file system

Big savings in I/O communication time

HDD OSD order of magnitude < Host FS working set
Huge difference in path lengths

Huge difference in memory requirements

Similar to drive-based IO management
Host consumes MB’s to manage I/O stream

Drive manages same stream in 10’s of KBs (excluding buffer)

Constrained, tailored environment

Seagate/IBM OSD: Lessons

Slide 91 May 25, 2006

Out-of-Band Interoperability Issues

Clients

Vendor X
File Servers

Storage

ADVANTAGES
Capacity scales
Bandwidth scales

DISADVANTAGES
Requires client kernel addition
Many non-interoperable solutions
(But, pNFS may change this)

Vendor X
Kernel Patch/RPM

EXAMPLE FEATURES
POSIX Plus & Minus
Global mount point
Fault tolerant cache coherence
RAID 0, 1, 5 & snapshots
Distributed metadata and online
growth, upgrade

Slide 92 May 25, 2006

File Systems Standards: Parallel NFS

IETF NFSv4 initiative
U. Michigan, NetApp, Sun, EMC, IBM,
Panasas, ….
Enable parallel transfer in NFS

Extension to NFSv4 for parallel I/O
Parallel NFS requests routing / file virtualization

Provides asymmetric architecture
(metadata and data servers) for NFS
Framework supports

Blocks: SBC/FCP/FC or SBC/iSCSI for
flies built on blocks
Objects: OSD/iSCSI/TCP/IP/GE for files built
on objects
Files: NFS/ONCRPC/TCP/IP/GE for files built
on subfiles

Inode-level encapsulation in server &
client code

Local File
system

pNFS server

pNFS IFS

Client Apps

Disk
driver

1. SBC (blocks)
2. OSD (objects)
3. NFS (files)

NFSv4 extended
w/ orthogonal
“disk” metadata
attributes

“disk” metadata
grant & revoke

pNFS

Slide 93 May 25, 2006

pNFS Architecture

NFSv4+pNFS enhances pNFS to enable
direct client/storage communication on
Read, Write and Flush

Client sends all metadata operations to
server
Client decides on-the-fly to send data to
server or storage

Enabled by layout
Client requests layout information from
pNFS server

Layout includes:
 TYPE - Storage protocol specific (blocks,
files, objects)
IOMODE – permission type (READ, RW)
LAYOUT – list of devices and storage
“location” identifiers

Local File
system

pNFS server

pNFS IFS

Client Apps

Disk
driver

Storage Protocol
(block, obj, file)

NFSv4 + PNFS

Storage
Specific
Control
Protocol

pNFS

Slide 94 May 25, 2006

Proposed pNFS Layouts

Block Storage
list of extents defined as
struct {

file_offset
file_length
VolumeID
storage_offset
storage_state {RW, READ, INVALID_DATA, NONE_DATA}

}

Slide 95 May 25, 2006

Proposed pNFS Layouts (con’t)

Object Storage
objectid {

device_id
partition_id
object_id

}

object_cred {
object_id
osd_version
opaque credential

}

osd_layout {
file_size
list of components
data map

}

data map {
stripe_unit
group_width
group_depth
mirror_cnt
raid_algorithm

}

Slide 96 May 25, 2006

Distributing and Managing Layouts

Client requests layout with LAYOUTGET
Client specifies {file, offset+length, IOTYPE, layout-type}

Server may return one or more layouts
Layout describing a file could be vary large TB file stored in blocks)

LAYOUTCOMMIT returns layout to client
For writes, LAYOUTCOMMIT informs server:

Which data segments were written (using a map)
Logical length of file
File’s new capacity

Server will also update file’s attributes, including:
Change attribute – file serial number to detect/denote changes

Modify/access time

LAYOUTCOMMIT informs server of changes while allowing the client to
continue operating on the file

Slide 97 May 25, 2006

Layouts and Access Control

Layouts provide a mechanism for clients to access storage

But layouts do not provide permission

Access to files uses standard OPEN, LOCK, and ACCESS operations

Client and server must check access rights before using layout

If layout or access rights are modified behind the clients back, pNFS has
consistency model to recall layouts

Slide 98 May 25, 2006

Consistency

Consistency guarantees
Block and file storage cannot guarantee consistency of layout (objects have
object-version number and capability)
Therefore, when become “stale” due to map changes (e.g., restriping of data)
or file permissions change (e.g., RW layout type for a file that is chmod’d
READONLY)

pNFS requires that server immediately recall stale layouts using LAYOUTRECALL

Server recalls layout(s) from client(s) using CB_LAYOUTRECALL
Allows servers to maintain map consistency between clients (and server)

CB_LAYOUTRECALL specifies {fileID, offset, length, IOMODE} of layout recalled
Client replies immediately to CB_LAYOUTRECALL and will then begin to
(async) return the maps requested
Client then issues LAYOUTRETURN to return each layout covered by
CB_LAYOUTRECALL

LAYOUTRETURN removes client’s access to the map

Slide 99 May 25, 2006

pNFS Protocol Issues

Race conditions
Recall traffic could create deadlocks (e.g., server recalling layout while client
requests layout)

Handled by the server and client enforcing ordering
Server must reject new layout request to layout that is currently being recalled

Client must wait for server replied to any conflicting LAYOUTGET requests before
returning layouts

Leases
Client may only use layout who’s lease has not expired

Lease on layout ensures that layout can be reclaimed by system

Slide 100 May 25, 2006

Crash Recovery

Client recovery
Recovery similar to NFSv4 lock/delegation state

When client reboots, it throws away all layout information

Server can then reclaim layouts either with implicit expired lease or by explicit
LAYOUTRECALL

Server determines client reboot when client contacts server on reboot (via
SETCLIENTID protocol)

Metadata Server Recovery
Client discovers server reboot with STALE_STATEID or STALE_CLIENTID
reply

Informs client that current maps are invalid

Client will flush, if necessary, any dirty data
Flush can go directly to storage or through server

Requires new map request to go directly to storage

Slide 101 May 25, 2006

Crash Recovery (con’t)

Storage recovery
When storage crashes, client needs to discover this to recover

Failed read/write command

Client could write data via server if detects storage crash

Client could wait for device to be remapped (i.e., a new map)

Slide 102 May 25, 2006

Device Identification

GETDEVICEINFO op conveys device indentification and addressing
information from NFS server to pNFS client

SCSI device identification
SCSI has a tradition of verifying volume labels before scribbling on disks

OSD Name attribute on root object serves as a label

File server “device” identification
May be as simple as an IP address

Slide 103 May 25, 2006

pNFS

Active in the NFSv4 working group
Panasas, Sun, NetApp, EMC, IBM, others …

IETF pNFS Documents:
draft-gibson-pnfs-reqs-01.txt

draft-welch-pnfs-ops-03.txt (replaced by draft-ietf-nfsv4-pnfs doc)

draft-zelenka-pnfs-obj-01.txt (soon draft-ietf-nfsv4-pnfs-obj-00.txt)

draft-black-pnfs-block-01.txt (soon draft-ietf-nfsv4-pnfs-block-00.txt)

draft-ietf-nfsv4-pnfs-00.txt

Slide 104 May 25, 2006

References

http://www.pdl.cmu.edu/NASD

http://www.t10.org/scsi-3.htm

http://www.t10.org/ftp/t10/drafts/osd

http://www.intel.com/labs/storage/osd

http://www.panasas.com

http://www.lustre.org/

http://www.seagate.com/docs/pdf/whitepaper/tp_536.pdf
http://www.snia.org/education/tutorials/spr2005/storage/Object-basedStorageDevice(OSD)Basics.pdf

http://www.panasas.com/
http://www.lustre.org/
http://www.seagate.com/docs/pdf/whitepaper/tp_536.pdf
http://www.snia.org/education/tutorials/spr2005/storage/Object-basedStorageDevice(OSD)Basics.pdf

