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Abstract

The volume of online data content has shown an un-
precedented growth in recent years. Fueling this growth
are new federal regulations which warrant longer data re-
tention and a general increase in the richness of data con-
tent. To cope with this growth, high performance comput-
ing and enterprise environments are making use of large
disk-based solutions that consume power all the time, un-
like tape-based solutions. As a consequence, the energy
consumption of the storage solutions has grown signifi-
cantly. In this work we propose a storage solution called
GreenStor, which makes use of application hinting on top
of Massive Arrays of Idle Disks (MAID) to improve en-
ergy efficiency. GreenStor is centered on MAID, but with
more efficient data movement to aid in energy conserva-
tion. Specifically, we propose an Extent-based Metadata
Manager that achieves better space efficiency without sac-
rificing cache utilization and an Opportunistic Scheduling
scheme that helps provide better use of application hints
in a MAID system. Results show that our proposed oppor-
tunistic scheme for application hint scheduling consumes
up to 40% less energy compared to traditional non-MAID
storage solutions, whereas use of standard schemes for
scheduling application hints on typical MAID systems is
only able to achieve a smaller energy savings of about 25%
versus non-MAID storage.

1. Introduction

Rapid digitization of content has led to extreme de-
mands on storage systems. The nature of data access such
as simulation data dumps, checkpointing, real-time data ac-
cess queries, data warehousing queries, etc., warrant an on-
line data management solution. Most online data manage-
ment solutions make use of hierarchical storage manage-
ment techniques to accommodate the large volume of dig-
ital data. In such solutions, a major portion of the data set
is usually hosted by tape-based archival solutions, which
offer cheaper storage at the cost of higher access latencies.

This loss in performance due to tape-based archive solu-
tions limits the performance of the higher-level applica-
tions that make these different types of data accesses. This
is particularly true since many queries may require access
to older, archived data.

An attractive option for large distributed sites or data
centers is to exploit large disk arrays to keep more data
in low-latency storage. The decreasing cost and increas-
ing capacity of commodity disks is rapidly changing the
economics of online storage and making the use of these
large disk arrays more practical. Large disk arrays also en-
able system scaling, an important property as the growth of
online content is predicted to be enormous, both in at-rest
storage (terabytes or more) and in delivered data (gigabytes
or more per day). The enhanced performance offered by
disk-based solutions comes at a price, however. Keeping
huge arrays of spinning disks has a hidden cost, i.e., en-
ergy. Industry surveys suggest that the cost of powering
the nation’s data centers is growing at the rate of 25% ev-
ery year [1]. Among various components of a data center,
storage is one of the biggest energy consumers, consuming
almost 27% of the total. To make matters worse, increasing
performance demands have led to disks with higher power
requirements; moreover, storage demands are continuously
growing by 60% annually according to an industry report
[2]. Given the well-known growth in Total Cost of Owner-
ship, a solution which can mitigate the high cost of power,
yet keep data online, is needed.

Massive Array of Idle Disks (MAID) is a design philos-
ophy adopted by [3]. The central idea behind MAID is that
all disks in a MAID storage array are not spinning all the
time. Within a MAID subsystem, disks remain dormant
(i.e., powered off) until the data they hold is requested.
When a request arrives for data on a disk that is off, the
controller turns on the disk, which takes around 10 sec-
onds, and services the request. Additionally, a set of disks
is designated as cache disks, which are always spinning
(i.e., never turned off). This disk-based caching is neces-
sary because the regular memory cache is usually not large
enough to hold all of the frequently accessed data. MAID
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controller tries to make sure that frequently accessed data
is moved to the always-on cache disks. For this reason,
the response time of the system is very tightly tied to the
size of the cache disk set. By increasing the cache hit ratio,
the controller tries to minimize the response time and also
conserve energy. In addition to lowering power consump-
tion, reducing the number of disks that are concurrently ac-
tive significantly lowers overall storage subsystem costs by
simplifying controller complexity. The savings increase as
the storage environments get larger. A commercial product
based on this idea, Copan MAID, has seen a great deal of
success in the realm of archival systems. The main limita-
tion is that, MAID concept works on the assumption that
less than 5% of the stored data actually gets accessed on
any given day and hence it tries to keep the most frequently
accessed data in the cache disk set. However, this will not
ensure good response time for non-cached data (10s of sec-
onds). Data that is not cached could include data being
accessed for the first time or data that cannot be cached due
to its sheer volume or the access pattern, which is usually
the case in most nearline systems.

Various studies of data access patterns in data centers
suggest that on any given day the total amount of data ac-
cessed is less than 5% of the total stored [4]. Most energy
conservation techniques make use of various optimizations
to conserve energy, but this usually comes with a huge per-
formance penalty. Access patterns for certain High Perfor-
mance Computing (HPC) and enterprise applications have
a lot of predictability, and this predictability could be more
intelligently used to conserve power. The predictability
of data access, or nature of future accesses, could be ei-
ther learned by the system or be provided to the system by
the applications that access the data hosted on the system.
Learning techniques for this purpose have been met with
limited success. This difficulty can be attributed to the dy-
namic nature and different purposes of various applications
running on the same system. On the other hand, the idea
of applications themselves supplying the hints about their
future accesses does not suffer from these limitations. [5]
and [6] have explored the idea of using application hints
for the purpose of prefetching data ahead of time, thereby
reducing the file system 1/O latencies.

Our research is centered on the idea of using applica-
tion hinting on top of MAID systems to build an energy
efficient, near-online storage solution. The focus of our re-
search is to identify and address the challenges in building
a MAID-based storage solution that can exploit application
hints efficiently. The primary challenges that we address in
this paper are as follows.

Challenge 1: Storage Subsystem Architecture to Facilitate
Energy Efficiency

Enterprise and high-end computing environments rely
heavily on virtualization of storage resources. Virtualiza-

tion provides flexibility in resource allocation by decou-
pling the physical location of the resource from the logical
view of the resource presented to the user/server. In other
words, many physical disks can be viewed logically as a
single large virtual disk. Though it drastically improves
the usability of the system, the technique with which vir-
tualization is implemented dictates the performance of the
overall system. One of the main challenges in designing
a virtualized system is determining the physical placement
of the virtual cache/prefetch space. Since the system is vir-
tualized, the cache could be either centrally located or dis-
tributed among the disk arrays. Though this choice of cen-
tralized or distributed location is not available for the large
volume of regular data, both regular and cache data can still
be laid out in different ways; i.e., on a collection of one or
more single disks, striped across multiple disks within an
array, or striped across multiple disk arrays. The choice of
cache location and the cache and regular data layouts can
have a drastic impact on the performance and energy effi-
ciency of the overall system; hence, identifying the optimal
architecture is very critical.

Challenge 2: Cache Metadata Management

In high performance computing and enterprise environ-
ments, the volume within data sets is huge; hence, any
system designed based on caching or prefetching needs to
be able to accommodate an entire working set in cache
that is on the order of hundreds of gigabytes to a few
terabytes. Since MAID arrays facilitate using disks for
caching/prefetching, cache space is not the primary con-
cern. The main problem is the amount of metadata that
needs to be maintained in memory on the disk array or
metadata server for mapping Logical Block Addresses
(LBAs) to Cache Block Addresses. In the worst case,
if we were to maintain a one-to-one mapping of LBAs
and Cache Block Addresses, the metadata structure will
be huge. For instance, consider a storage system con-
taining 500TB of data (part of one or more virtualized
LUNSs/Address Spaces) with a block size of 32KB. If we
decide to maintain a cache of 10%, or 50TB, using the
one-to-one mapping would still require close to 15.6 billion
mapping entries; that is, one entry for each logical block of
the entire 500 TB data set.

A simple lookup table with these entries for the entire
virtual address space would be the best option in terms of
lookup times, but the size occupied by this structure would
be close to 62GB, assuming each address entry takes 4
bytes. As described in Section 4, use of other, slightly more
sophisticated, techniques would still require a large meta-
data structure. If one resorts to setting the granularity of
data flow in and out of the cache to a fixed-size set of con-
tiguous logical blocks instead of just one, the size of the
mapping structure is reduced, but it results in poor utiliza-
tion of the cache/prefetch space. Hence, we need a more
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adaptive solution which exploits the nature of data access.
Challenge 3: Prefetch/Cache Space Management
Prefetch/cache space is a limited resource. Though MAID
uses a large disk-based cache, the use of this cache space is
manifold and hence leads to contention. This cache space
is used for holding prefetched data blocks from the dor-
mant disks and staged write data blocks heading to the dor-
mant disks from higher-level applications. Since idle peri-
ods in servers are used for hint generation, the deadlines of
hints could be spread out in time. When a storage subsys-
tem receives 1/O hints from multiple servers connected to
it, the storage system has to make an informed decision to
schedule these hinted requests based on their correspond-
ing deadlines and the state of the cache. Making this in-
formed scheduling choice is a complex task as the state of
the system depends on various parameters such as incom-
ing read 1/0O rate, incoming hint rate, incoming write 1/0
rate, outgoing write destage rate, the amount of used cache
space, etc. Traditional schemes for prefetch scheduling [5]
use cost-benefit analysis to try to maximize the utility of
each buffer/cache slot while at the same time ensure fair-
ness of scheduling (i.e., earlier deadlines first). However,
in the proposed framework, the objective of the prefetch
scheduler is to maximize the time a disk receives to service
a hinted request. In doing so, each disk is given a greater
chance to work in batch mode by executing requests in a
collective manner, which leads to energy conservation.

In this work, we first propose the design of a storage sub-
system called GreenStor, which is geared towards exploit-
ing application hints to achieve better energy efficiency.
Next, we propose a scheme which makes use of the semi-
sequential nature of accesses without fixing the granularity
of multi-block groups moved to/from cache. Specifically,
we present an extent-based scheme for managing a large
cache/prefetch space that keeps the amount of metadata
needed at minimal levels without sacrificing the utilization
of the cache. Finally, we propose a scheduling scheme that
achieves the goals of energy conservation by facilitating
opportunistic batch processing in an efficient manner and at
the same time preserves fairness without adversely affect-
ing the completion times of prefetch requests or the utiliza-
tion of cache. The paper is organized as follows: Section
3 describes our proposed design of the GreenStor storage
subsystem, Section 4 describes the extent-based metadata
management scheme, Section 5 describes the deadline-
based prefetch scheduling scheme, Section 6 discusses the
simulation evaluation, and Section 7 provides the conclu-
sions, and future work.

2. Related Work

[7] proposes a new energy conservation technique for
disk array-based network servers called Popular Data Con-
centration (PDC). According to this scheme, frequently ac-
cessed data is migrated to a subset of the disks. The main

assumption here is that data exhibits heavily clustered pop-
ularities. PDC tries to lay data out across the disk array
so that the first disk stores the most popular disk data, the
second disk stores the next most popular disk data, and so
on. The least popular disk data, and the data that are never
accessed, will then be stored on the last few disks. [8] pro-
poses a new solution called Hibernator, which is a disk ar-
ray energy management system that provides improved en-
ergy savings while also meeting certain performance goals.
The main idea here is the dynamic switching of disk speeds
based on observed performance. This approach makes use
of multi-speed disk drives which can run at different speeds
but have to be shut down to make a transition between dif-
ferent speeds. Such disks have been demonstrated by Sony.
However, such multi-speed disks have been proven to be
costly to manufacture and hence have seen limited interest
for large-scale production. A key point of interest here is
the mapping of data blocks. Since data blocks are always
moved around to different locations in the disk array, this
mapping mechanism becomes very important. The scal-
ability of the above mentioned approaches would heavily
depend on this mapping mechanism, but the above works
do not mention much about the mapping or its scalability.

[9] proposes a new type of hard disk drive which can
operate at multiple speeds. Using Dynamic Rotations Per
Minute (DRPM) speed control for power management in
server disk arrays can provide large savings in power con-
sumption with very little degradation in delivered perfor-
mance. This technique dynamically modulates the hard
disk rotation speed so that the disk can service requests
at different RPMs. For such a scheme to work, a multi-
speed disk must first be designed, for which there are sev-
eral manufacturing/mechanical challenges. The RPM of
the disk generally dictates the design of all the disk compo-
nents. Hence, designing a disk which can operate at multi-
ple speeds is very complex and almost infeasible; therefore,
it has not been heavily pursued by disk vendors.

Application hinting has been studied in depth by several
researchers. [5], [10], and [11] deal with the use of applica-
tion hinting to minimize application response times by ac-
tively prefetching hinted data from disks into main memory
ahead of time. Specifically, they explore tradeoffs of var-
ious scheduling schemes built using cost-benefit analysis.
[12] explores the idea of cooperative processes to achieve
energy conservation. Specifically, the authors propose a
system where applications/processes provide hints (about
10 operations) to the operating systems to aid in energy
conservation of all types of 10 devices. The main differ-
ence in our work, is that we focus on consolidated storage
systems that are shared across multiple servers.

To the best of our knowledge, the idea of application
hinting has not been explored before in the context of stor-
age system energy conservation, specifically in the con-
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Figure 1. GreenStor Architecture

text of large shared disk farms. Our work primarily deals
with taking an existing design (i.e., MAID) and optimizing
the design for large-scale nearline storage using application
hinting. We do not deal with multi-speed or DRPM disks.
Instead, we assume standard disks in a MAID configuration
with the ability to intelligently transition between Standby
and ON states.

3. GreenStor Storage System Architecture

Enterprise and high performance computing environ-
ments typically make use of a set of disk arrays to satisfy
their data storage demands. The storage subsystem in such
scenarios is made up of several disk arrays that are con-
nected to clusters of servers by means of a high speed Stor-
age Area Network (SAN). These disk arrays can be con-
nected to the servers in different configurations based on
the requirements of the environment. In recent years, vir-
tualization of the storage subsystem has gained importance
as it facilitates better management of resources by allowing
dynamic addition and removal of storage. Figure 1 shows
our proposed GreenStor virtualized storage subsystem.

3.1. Virtualization Mechanism

Storage virtualization separates logical address space
from the physical location of data. In essence, it adds a
level of indirection between the file systems on servers or
initiators and the storage subsystem. This type of indirec-
tion allows the storage subsystem to place, or lay out, the
data blocks according to its own knowledge of the envi-
ronment, and it also provides the flexibility to move data
blocks around without having to inform the file system
on the servers or initiators. This flexibility is very impor-
tant for our design considering that locality of data has a
strong impact on power conservation and the performance
observed by end users or initiators. All requests made by
the servers to the storage subsystem are directed to the Stor-
age Virtualization device (SV), since this device presents
virtual logical volumes, or VLUNS, to the servers. Typical
storage virtualization devices can be categorized into two

groups; namely, in-band storage virtualization devices and
out-of-band storage virtualization devices. With in-band
storage virtualization devices, the SV is in the data path.
Specifically, all read and write requests are made to the SV,
and it services or redirects the requests accordingly. For
read requests, the SV fetches the requested data and returns
it to the requesting server. For write requests, the SV ab-
sorbs the writes and acknowledges back to the servers. The
main issue with this approach is that the SV itself could be-
come a bottleneck as it is in the data path. With out-of-band
storage virtualization devices, the SV acts like a metadata
server; that is, it is only in the control path and not in the
data path. When a read request is made to the SV by a
server, the SV converts the virtual addresses into physical
addresses and returns this information to the server, and
the server then uses this information to request the block
from the original disk array. In the case of a write request,
the same process is followed and the SV remains only in
the control path. The main limitation of this approach is
that for every read or write request, two exchanges take
place, one between the server and the SV (metadata ex-
change), and the other between the server and the storage
array (data exchange). If network latencies are high, this
could severely affect the performance.

The choice of which form of storage virtualization to use
is solely driven by performance considerations. This design
choice does not have much impact on the energy efficiency
of the storage subsystem. We make use of out-of-band vir-
tualization as it is a more scalable solution, and the chances
of the virtualization device becoming the bottleneck are re-
duced as only control information flows through it.

3.2.  Application Hint Specification

Automatic hint generation is one of the key inputs to
our scheme. Hint generation could be performed in sev-
eral ways. [11] shows that several HPC applications can
be modified to generate hints online, specifically, by mod-
ifying the binaries of these programs. [10] shows that cer-
tain classes of HPC applications can disclose their 1/O re-
quirements ahead of time. At the beginning of their ex-
ecution, these applications could be made to disclose all
future 1/0O accesses along with certain QoS requirements.
Some researchers even suggest that application program-
mers, given the incentive of energy efficiency, could, by
themselves, rewrite some of their application code to gen-
erate, either online or before execution, hints in advance.
Both [11] and [10] show that compilers could be made to
embed application hints by speculative execution of code.
Our focus is on the efficient use of these hints and not the
mechanism of hint generation; hence, we work indepen-
dent of the mechanism of hint generation. However, we
make one key assumption here: Instead of the applications
just passing the hints about future access in a sorted man-
ner, we assume that they can be programmed to also pass
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an approximate time of future access. This assumption is
reasonable considering that the applications know their ex-
ecution rates and can predict their own progress rate better
than the storage subsystem, unlike [13] where the disk sub-
system infers the application execution rate by monitoring
the incoming 1/0 rate. This assumption is needed in our
design because we work from the level of remote consoli-
dated storage that is shared by multiple servers and appli-
cations; thus, estimation of the application execution rate
becomes very difficult given the fact that most 1/O inter-
faces hide the initiating application information from the
target storage devices.

3.3. Data/Cache Layout

In a virtualized storage subsystem, the virtual address
space can be physically allocated in different ways (usually
referred to as LUN Binding), namely:

1. Concatenating the address space of the individual
Logical Units (LUNS) that constitute the virtual LUN
to form a single virtual address space,

2. Striping the virtual address space across the LUNSs that
constitute the virtual LUN,

3. Using a mathematical mapping function for mapping
between the virtual address space and physical address
space, or

4. Using random allocation and storing the mapping in-
formation for each block in a lookup table.

Options 1&2 are the most popular approaches. Option 1 is
the most flexible approach since it easily facilitates addition
and deletion of constituent physical LUNs or growing and
shrinking of virtual LUNs. Option 2 is very good in terms
of avoiding hot spots and provides more parallel bandwidth
because the disk accesses are evenly distributed across all
constituent LUNs. However, addition or deletion of striped
constituent LUNSs requires reorganization of a large num-
ber of data blocks and hence limits its usefulness. Option
3 is very similar to Option 2 in that Option 2 uses a very
simple mapping function (i.e., modulo). Option 3 also suf-
fers from the same drawback of having to reorganize a lot
of physical data blocks on expansion or contraction of the
virtual LUN. Considering the size of data sets that we con-
sider here, Option 4 is not a feasible option as the size of
the lookup table needed to support such a scheme would be
prohibitively large.

For our design we have decided to use Option 1, the con-
catenated address space model, due to the features it offers.
It also aids in efficient destaging operation as shown in sub-
sequent sections. The bandwidth is not a major cause of
concern here; though we are concatenating address spaces,
the constituent LUNSs themselves may be internally striped

to provide sufficient parallel bandwidth. In our design, each
disk array that is a part of this storage subsystem presents
one or more LUNSs to the SV. The SV concatenates these
LUNSs from multiple disk arrays, creates a single large con-
catenated address space, and presents this Virtual LUN to
the servers. A SV may host multiple Virtual LUNs, each of
different size.

The Prefetch/Write Cache LUN, highlighted in Figure
1, primarily controls the effective read/write bandwidth of
the system. Hence, in our scheme, we have decided to use a
combination of concatenation and striping across multiple
disk arrays to exploit maximum parallel bandwidth. Each
disk array that is part of this storage subsystem has a cer-
tain set of disks designated as Prefetch/Write Cache disks,
which are always on. Each of these disk arrays creates an
internally striped address space across its cache disks and
presents this LUN to the SV. The SV concatenates these
cache LUNSs from different disk arrays to create a single
large Virtual Prefetch/Write Cache LUN. The point to note
here is that we force the striping of address space for con-
stituent cache LUNs, but LUNs that constitute data LUNs
may or may not striped. It is important that the cache LUNs
are striped to improve their performance because they con-
trol the effective bandwidth of read and write operations.

4. Extent-based Metadata Management

As in any virtualized storage subsystem that uses
caching or dynamic movement of logical blocks, the map-
ping of a given logical block address to its actual location in
the cache is a very key operation. The dynamic movement
of logical blocks within the system necessitates the mainte-
nance of additional metadata for this remapping operation.
The amount of metadata is primarily dictated by the gran-
ularity of movement, which in its simplest case is a sin-
gle logical block. File system block sizes range from 512
bytes to 256KB. Current systems commonly use a block
size of about 16KB. However, due to coalescing of writes
and read-ahead prefetching implemented by most file sys-
tems, 1/0 requests of about 32KB are very common.

Before going into the details of our mapping method,
let us first describe some of the limitations of current tech-
niques. As discussed in the introduction, a lookup table
with a one-to-one mapping for the entire virtual address
space is prohibitively expensive in terms of its size. A more
viable option, in terms of space, is an inverted mapping ta-
ble, which has an entry for each physical address in the
cache. Even for this scheme, a cache of 50TB with a block
size of 32KB would need close to 1.56 billion mapping en-
tries to be stored. Considering the overhead of inverted ta-
bles, the space occupied by such a structure would be close
to 12.5GB. Also, mapping operations on an inverted table
are known to be relatively expensive in terms of computa-
tion time. A more commonly used approach for this map-
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Figure 2. Hash Mapping Record
ping of logical blocks to their location in cache is to use a

hash table. In this scheme, each mapping record would be
of the format shown in Figure 2.

Collisions in a hash table could be solved using chain-
ing, which adds the additional space overhead, resulting
in mapping records of about 12 bytes each. The size
of the overall metadata lookup structure would be about
1.56hillion x 12bytes, or close to 18.75GB of metadata for
a cache size of 50TB. Note here that a record is stored for
each block that is currently in cache, just like in the case of
inverted tables. Though this amount is not that significant
compared to the size of the overall dataset, this metadata
structure needs to be kept in main memory that is gener-
ally reserved for holding cache/prefetch data blocks, and
managing/mapping this record information becomes very
cumbersome as the system scales to larger sizes. Also, this
new metadata is to be maintained in addition to the meta-
data already maintained by the file system (using inodes).
This new metadata is therefore an added overhead which is
used for the sole purpose of caching or redirection. From an
initiator or server’s point of view, the metadata maintained
as part of inodes is inevitable, but this new metadata main-
tained in the storage subsystem is not easily justifiable.

One solution to this problem of the cache mapping struc-
ture being too big is to use a different granularity for move-
ment of blocks from/to cache/prefetch space. [8] uses
this approach with a relocation block size on the order of
megabytes. Instead of moving one logical block at a time,
in this approach, a set of contiguous logical blocks is clas-
sified as a relocation group and all data movement is at
the level of these larger groups. This certainly reduces the
size of the overall metadata structure, but the utilization of
cache/prefetch space drops drastically. The problem here
is that normal access patterns usually dictate the choice of
the file system logical block size, and this is typically set
at the creation of the file system. The values for this file
system block size range from 512 bytes to 256KB. Hence,
when data is moved into cache at higher granularity, there
is high likelihood that only partial hits will be seen, lead-
ing to wasted cache space. For instance, if we were to use
1MB as our relocation group size, and if the file system
uses a block size of 64KB, in the worst case (i.e., every
16™ block needs to be prefetched) we could end up with a
cache utilization of 1/16. On the other hand, if the data ac-
cess pattern is semi-sequential or concentrated around cer-
tain regions of the address space, this idea of moving larger
chunks of data at a time works really well.

The examples used in the above discussion of the limi-

tations of current techniques for metadata management as-
sume that the average file system block size is 32KB or
64KB. However, this assumption might not always be the
case. In systems with smaller block sizes, this problem of
metadata management becomes an even bigger challenge
as the volume of data grows. The following subsections
describe how our extent-based mapping scheme is designed
to overcome the limitations of current techniques.

4.1. Monitoring Access Patterns

At the heart of our design is the idea of using extents,
or contiguous chunks of sequential blocks, to reduce the
total metadata overhead. This idea has been used in file
systems with a great degree of success. In our design the
purpose and use is quite different, however. The main dif-
ference is that the selection of extent size at allocation time
is not arbitrary, as is the case in file systems. We propose
to use a heuristic called Contiguity Quotient to guide the
selection of extent size. Contiguity Quotient (CQ) tries to
quantify the contiguity, or sequentiality, of a cache group.
Note that a cache group is nothing but a set of contiguous
logical blocks of a predefined size. The number of cache
groups is equal to the number of blocks in the entire virtual
address space divided by the number of blocks in a cache
group. We try to estimate the CQ heuristic for each cache
group by observing the data access patterns. Specifically,
we maintain one Access Bit per logical block in the cache
group, amounting to a 2-byte record per cache group, as-
suming that each cache group contains 16 logical blocks.
In addition, each record has a Mod Bit to indicate if any
modification occurred or not (1 or 0, respectively). Algo-
rithm 1 shows the process for updating the records in the
monitoring structure. Monitor Reset Events could be trig-

Algorithm 1 Access Monitoring Algorithm

Initialize monitoring record: Set Mod Bit of all records to 0
while (1) do
if (Monitor Reset Event) then
Set Mod Bit of all cache groups to 0
end if
if (Data Access Event) then
if (Mod Bit of cache group is 1) then
Set corresponding Access Bitto 1
end if
if (Mod Bit of cache group is 0) then
Set corresponding Access Bitto 1
Reset Access Bits of all other blocks of this cache group to 0
Set cache group Mod Bit to 1
end if
end if
end while

gered with a predefined periodicity. This algorithm tries to
capture access patterns for a window of time equal to the
period of the monitoring events. A count of the number of
Access Bits set in each cache group’s record gives the value
of the Contiguity Quotient for that group. A higher value of
CQ indicates that if a block is accessed in that cache group,
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Figure 3. Global Mapping Structure

there is a very high probability that more blocks in the same
cache group will be accessed.

4.2. Extent Allocation

If a block request is selected for scheduling, and if this
request does not belong to a cache group which already has
an allocated extent, the scheduler makes use of the Conti-
guity Quotient of its corresponding cache group to allocate
an appropriate-sized extent for the purpose. Extents are al-
located as a best effort service. If an extent big enough for
a particular CQ is not available at the time of request, the
Mapping Manager, which is a component of the SV, tries
to find the best possible alternative for the request. The
extent allocation mechanism is very similar to the mecha-
nisms used by most extent-based file systems (ext4, XFS,
VXFS, etc.). Free extents are maintained in a B+tree con-
figuration to aid in fast lookup or search. Over time, the
cache space could become fragmented, leading to a large
number of small extents. In order to overcome this prob-
lem, one would have to defragment the space by moving
data around in a way that increases the number of free con-
tiguous blocks, or extents. This process of defragmenta-
tion could also involve combining multiple occupied ex-
tents with the goal of reducing metadata overhead. Specifi-
cally, if a cache group has more than one extent allocated to
it (i.e., it is using a secondary record in the Global Mapping
Structure), during the process of defragmentation, these oc-
cupied extents could be combined to form a smaller number
of larger extents, thereby reducing metadata overhead.

4.3. Global Mapping

In our design we use hash tables for performing the
lookups, but the structure of the record is unique. Figure
3 shows the hash table for a single Virtual LUN. Every re-
quest made by any server has a Virtual Logical Unit Num-
ber (VLUN) and a Virtual Logical Block Address (VLBA).
The VLUN is used to select the corresponding hash table,
and then the VLBA is hashed to get the index into this hash
table. The hash function we use in our design is,

hash_key = | (VLBA/MAX CacheGroup_Size)|%b (1)

where MAX_CacheGroup_Size is the number of logical
blocks per cache group, and b is a variable that controls
the length of hash chains or the length of the hash table.
Each record contains information about a certain set of
contiguous logical blocks. Figure 3 shows two types of
records; i.e., primary records and secondary records. The
primary record holds the address of the virtual logical block
(VLBA, used for resolving hash collisions), the address in
cache of the start of the extent group (extent offset), an ar-
ray of offsets representing VLBAS stored within the extent
(extent offset array), a pointer to a secondary record, and
a pointer to the next primary record with same hash value.
The number of elements in the extent offset array is deter-
mined by the number of blocks that can be accommodated
in the extent (which, in turn, is determined by the CQ). In
essence, an array element gives the logical address of the
block that is present in cache at that extent offset. To better
illustrate, consider the first primary record in Figure 3. The
Virtual Logical Block Address is 2310. The extent offset is
1020. The first element (offset of zero) in the array holds
the value 0101, or 5. Adding the VLBA of the record to
this number would give us the actual VLBA at cache loca-
tion 1020, so the block of data with VLBA 2315 is stored
in cache location 1020. Similarly, the third array element
is null and hence the cache location 1022 is free or unoc-
cupied. Considering that we would like to use variable-
sized extents, the problem of assigning the correct-sized
extent is challenging. Because the extent size is determined
by heuristics (i.e., CQ), the result is sometimes imperfect.
This leads to cases where two or more extents might need
to be allocated for the same block of contiguous logical ad-
dress space. To handle such cases, we propose using the
secondary record structures. The design and function of
these structures is very similar to that of primary records
with the exception that they do not need to store VLBAS
or chain pointers (since collisions would have already been
resolved before coming to this stage).

Once a VLBA is checked against the Global Mapping
Structure and it is determined if it is cached or not, the
following transformations are applied to the VLBA to
determine the DA# (Disk Array Number) and the LBA
within that disk array:

DA# = |VLBA/ConstituentLUNSize | (2)

LBA =VLBA — (DA#xConstituentLUNSize)  (3)

where ConstituentLUNSize is the size of the portion of the
Virtual LUN that resides in each disk array. Note that the
Constituent LUN Size is different for data LUNs and the
cache LUNs. This translated information is returned to the
requesting server by the metadata component.
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5. Deadline-based Prefetch Scheduler

Our design heavily relies on the performance of the
prefetch or cache space. The size of this cache space is
proportional to the size of the entire data set and is ac-
commodated on disk. However, the use or purpose of this
cache space is manifold. First, this space is used to store
data prefetched from dormant disks using hints from appli-
cations. Second, once prefetched into this space from the
dormant disks, the data is eventually read from the space
by a higher-level server. Third, this space is used for stag-
ing write requests destined for dormant disks. Fourth, this
data is eventually destaged to the dormant disks. Obvi-
ously, these are competing/coordinating factors using the
same resource. The optimal use of this resource, or space,
is dependent on intelligent arbitration between these com-
peting factors. Here, we model this problem as a classical
producer-consumer problem and try to solve the problem
with the goal of deep prefetching.

In this model of the system, the prefetch requests and
the write requests coming into the system from the servers
form the consumer classes. The write destage requests or
dirty flushing requests/operations and the read requests are
classified as producers because these operations free cache
space and generate (produce) a free slot. Here, we make
an assumption that once a read operation/request reads a
previously prefetched data block from the prefetch space,
the corresponding prefetch slot can be freed. This assump-
tion is based on the fact that, in general, almost all initi-
ating servers, or, specifically, the file system components
on the servers, implement some form of caching. Hence,
if a block is read over the network or SAN, it is usually
cached locally by the file system, and any further request
for the same block is served using this local copy that is
stored in the local cache. Therefore, the assumption that a
read request qualifies as a producer of a cache/buffer slot
is a reasonable one to make. Further, this assumption can
be easily adapted to other situations to implement an ap-
proximation of second chance, or even least recently used,
behavior by just changing the weight given to this class of
producer.

Out of these four types of requests, the prefetch request
scheduling is the only one that is under our control. The
other three types help in estimating the state of the sys-
tem only. Specifically, the write requests and the scheduled
prefetch requests, which are consumers of buffer space,
along with the read requests for prefetched data and write
destage requests, which produce buffer space, help us es-
timate the load on the system, or the state of the system.
By strictly controlling the scheduling of the prefetch re-
quests, one can control the load on the system. Schedul-
ing of these prefetch requests can be performed in multiple
ways, namely:

First Come First Served (FCFS): All prefetches that come

into the system are executed in a FCFS fashion without any
consideration of their corresponding deadlines. This kind
of scheduling continues as long as resources, in this case
the empty buffer slots, are available. Clearly, this is not
an optimal or fair approach because prefetch requests that
have more stringent deadlines can be denied service due to
their arrival order.

Earliest Deadline First: At any given point in time, all
prefetch requests are ordered in increasing order based
on their deadlines, and based on the number of empty
slots in the system, a corresponding number of prefetch
requests are executed in the order of earliest to farthest
deadline. This approach is not optimal either. A problem
arises because prefetches arrive at random times and there
is not temporal ordering between prefetches. This is be-
cause multiple servers use the same consolidated storage
systems and hence multiple applications generate prefetch
hints asynchronously. For instance, consider a case where
five buffer slots are available at time t = i; using this ap-
proach we could end up deciding to schedule the next five
requests in the sorted deadline order, say d; = 20,d, =
23,d3 = 35,d4 = 49,ds = 54. Now, at time t =i+ 1, if
a new prefetch request arrives with d = 22, and if no new
cache slots are free, we would end up holding back this
prefetch request to a later point in time when a buffer slot
becomes free. This is clearly not optimal or fair, and in a
consolidated storage system, where multiple sources of ap-
plication hints exist, the problem is quite severe.

Prefetch Horizon: The principle here is that there is no
benefit in executing a prefetch request earlier than it is ac-
tually required. If the cost or execution time of a regu-
lar buffer/cache hit is Ty, and the cost or execution time
for servicing a prefetch is Tyisk, then pn = % is called
the Prefetch Horizon. Specifically, there is no benefit of
executing any request that is more than p, accesses away
from the current request. This principle can also be ex-
pressed as follows: If a block retrieval time from disk is
taisk, and the prefetch deadline of request p is dp, then
there is no benefit of scheduling p until the requesting ap-
plication progresses to the point py = dp — tgisk, Which is
called the Prefetch Horizon. Prefetching a block after its
prefetch horizon does not give any benefit. This kind of
delayed scheduling helps achieve a more optimal schedul-
ing and overcomes the shortcomings of the previous two
approaches. The objective here is fairness based on dead-
line. Multiple schedulers like TIP2 [5], TIPTOE [13], and
FORESTALL [14] have been designed based on this core
idea. These techniques cannot be directly applied to our
scenario for a few reasons. First, all the above schemes
assume that data accesses can be segregated based on dif-
ferent initiators or application processes. In our scenario,
from a storage controller’s perspective, all block accesses
are the same. It cannot differentiate between applications
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that are using the storage. Hence, all data accesses need
to be seen as a single stream of requests. Any inference of
application speed made based on arrival rates of their cor-
responding 1/O requests (as is the case in TIPTOE, FORE-
STALL, etc.) is not applicable in our setting. Second, in
the previously mentioned schemes, application hints are as-
sumed to be an ordered sequence of requests without any
explicit deadline. Their deadline is inferred by estimating
the application speed. In our scenario, we do not have any
explicit knowledge of the speed of the applications that
are supplying the hints because our decision making, or
scheduling, is happening remotely (in the SAN or storage
controller) and away from the servers hosting these appli-
cations. Hence, supplying hints without deadlines would
not work in our scenario. Consequently, the corresponding
scheduling mechanisms are not directly applicable, either.
Third, the above schemes consider LRU cache in addition
to prefetch cache. In our scheme, since we are at the re-
mote storage system level, we do not have to consider LRU
for caching recent accesses by assuming that such caches
will be part of the local server cache or file system cache.
Fourth, of all these schemes, a couple of them, TIPTOE and
Aggressive/LRU, do perform deep prefetching. However,
their objective is to minimize stalls caused due to hotspots
by making use of idle disks. In our scenario, the objective
is different.

Our first objective is to achieve fairness based on dead-
lines, and the second objective is to give the underlying disk
subsystem as much time as possible to execute a prefetch
request. The first goal is obvious based on the previous
discussion, but the second goal is mainly due to concerns
of energy conservation. Since MAID disks are used as
underlying permanent storage, in order to maximize en-
ergy efficiency, the disks should be OFF as much as pos-
sible. If all prefetch requests are issued to a disk well
ahead of time, the disk could potentially make an intelli-
gent grouping of these requests such that it works in batch
mode. For instance, if prefetch requests with deadlines,
dy = 40,d, = 43,d3 = 60,d, = 110 are queued at a dor-
mant, or OFF, disk, the disk can decide when to turn on
based on the nearest deadline, and when it is ON, it can
finish servicing the other requests which have less strin-
gent deadlines. By doing so, the disk does not have to stay
ON or come back from the OFF state again to service the
remaining requests. Conversely, if one uses the prefetch
horizon technique, the disk will receive the request with
d = 40 just before its deadline and will not receive the other
requests until their deadlines approach current time. There-
fore, this would lead to multiple ON/OFF transitions of the
disk, which, in turn, leads to excess power consumption
and increases the chances of failure. This goal of energy
conservation by batch execution is not easily quantifiable
as a benefit model.

With these goals in mind we design a scheduler to
achieve optimal scheduling. We try to perform deep
prefetching [13]; i.e., prefetching as far into the future as
the system permits. In [13] deep prefetching was based on
a cost-benefit tradeoff, but here we base it on the resource
constraint (i.e., buffer free space availability). We pro-
pose a slight modification to the current application hinting
paradigms in order to facilitate more optimal performance.
Instead of supplying application hints in a sorted order, we
propose that the applications also consider their 1/0 request
rate, precalculate the deadlines of prefetch requests explic-
itly, and supply them to the storage system. By doing so,
the storage system can make intelligent scheduling deci-
sions based on deadlines without knowing much about the
applications supplying the hints.

5.1. Opportunistic Deep Prefetcher

In our approach, when a new prefetch request arrives
at the scheduler, it is checked against the Global Mapping
Structure to determine if it has already been prefetched or
write cached. If not, a check is made to see if any cache
extent has already been allocated for the cache group to
which the prefetch request belongs. If such an extent is
found, and if free space is available within the extent, this
request is dispatched to the corresponding disk array along
with the address of the free block to be filled. Note that dis-
patching a request to the disk array or disk does not neces-
sarily mean that the request will be immediately executed
by the target. It just means that the target disk is free to
service this request any time before its specified deadline.
If the corresponding cache group, and hence the prefetch
request block, does not have any mapping in the global
structure, the deadline of this request is examined further
in order to make a scheduling decision. The scheduling de-
cision for this request is now determined by several factors
like the state of the cache and the remaining time between
the current time and the request deadline. The objective
here is to ensure fairness in scheduling. If this request were
to be dispatched, resulting in the use of a buffer slot, and
a new request with an earlier deadline arrives soon after,
then the earlier scheduling decision should not have any
adverse impact on this new request. In essence, if this new
request with an earlier deadline cannot be scheduled due to
lack of buffer space, then the previous scheduling decision
is considered unfair. In order to avoid such scenarios, our
approach uses the current state, and estimates of system pa-
rameters, to predict the future state. Ideally, we would like
to avoid all scheduling decisions that lead to unfair schedul-
ing. This ideal case can only happen if we have perfect
knowledge of the system and the system is not dynamic;
i.e., properties do not vary with time. In such ideal cases,
we could directly use the concept of maximum allocation,
like in the Banker’s Algorithm, to avoid deadlocks.
Safe & Unsafe States: A state is said to be safe if, and
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only if, enough buffer slots are available to service all in-
coming prefetch requests that have a deadline earlier than
the current request being serviced. A state is said to be
unsafe if the number of buffer slots available is not suf-
ficient to service all incoming prefetch requests that have
a deadline earlier than the current request. Here, we as-
sume that the prefetch requests are coming into the sys-
tem at the rate PRR (Prefetch Request Rate). In the worst
case, all the requests that can come between the current
time and the deadline of the current request under consid-
eration could have a deadline earlier than the deadline of
the current request. In such a scenario, we check to see if
we have enough free buffer slots in the system to service
PRR x (d — current_time) requests, where d is the deadline
of the current request. If the available free space is suffi-
cient to service these requests, then the resultant state is a
safe state; hence, the current request can be scheduled for
servicing. If servicing of a given request results in an un-
safe state, we do not schedule this request. It is held back
until the state of the system changes or the deadline be-
comes closer, thereby increasing the possibility of entering
a safe state.

In practice, the deadlines of requests between the cur-
rent time and the deadline under consideration may not all
lie before the deadline under consideration. Hence, we con-
sider the average-case scenario by using an estimate of the
deadline distribution. We obtain a distribution by maintain-
ing a histogram of the deadlines of all incoming prefetch re-
quests. This histogram of the number of requests per dead-
line can be translated to a probability value per deadline.
The deadlines, and hence their probabilities, can fluctuate
drastically over time due to variations in application behav-
ior. Using a general averaging or cumulative summation
scheme will not reflect the more recent behavior. Hence,
for estimation purposes, we use a windowing estimation
scheme by successively considering groups of m samples.
By using this grouping, we try to ensure that the most re-
cent m samples are considered for estimation of deadline
probabilities. Equation 4 gives the deadline probability es-
timation equation,

m-—n

P(d=%) =P 1(d = %) * """ 4 Peyrrent(d = x) # % @)
where t — 1 is the previous estimation window, m is the
window size, and n is the number of samples collected in
the current window. Now, if a request with deadline d ar-
rives at time t, we estimate the expected state of the system
based on the result of Equation 6,

E(U)=  (U+1)+dx«(PRRxP(deadline<d)) (5)
= (Ut+1)+d*(PRR«SY ,P(deadline = i)) (6)

where Uy is the used cache size at time t. Note that we con-
sider a probability that the deadlines of incoming requests
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will be less than the current deadline. Using this proba-

bilistic estimate gives us the average-case scenario. Now,
if E(U;) is greater than the cache size, then the system is
expected to transition into an unsafe state upon servicing
of the current request; hence, this request is not scheduled
and is held back for consideration at a future time instant.
On the other hand, if E(Ut) is less than the cache size, the
system is expected to remain in a safe state and hence the
current request is scheduled immediately (i.e., dispatched
to disk for servicing).

5.2. Delayed/Lazy Execution

From an energy conservation point of view, a disk

should be in its Standby or OFF state as much as possi-
ble, and the number of transitions between ON and OFF or
Standby states should be minimized. If the disks were to
service each and every prefetch request immediately, with-
out considering the deadline, or service write destage re-
quests when they arrive, our objectives of energy conser-
vation would be violated. However, disks need to immedi-
ately service real-time read requests or requests which have
not been hinted or prefetched. For the two non-immediate
classes of requests, we try to develop a delayed, or lazy,
scheduling mechanism based on intelligent queuing.
Disk Queuing: Standard disk queuing schemes use certain
physical characteristics of the disks to arrive at an optimal
access schedule. For our design the focus is not these disk
scheduling schemes. We focus on adding more intelligence
to the storage controllers for the purpose of energy manage-
ment. Specifically, the storage controller maintains a set of
logical queues for each disk drive. The properties, or dy-
namics, of these queues influence the power management
decisions. Figure 4 shows the queuing model for a single,
non-cache, MAID disk in our system.

The Write Destage Queue (WDQ) holds all destage re-
quests sent by the Mapping Manager to the disk. These
requests do not have any specific deadline or scheduling or-
der. The Prefetch Request Queue (PRQ) holds all prefetch
requests dispatched by the Mapping Manager to the disk.
This queue is sorted based on the deadline of prefetch re-
quests. The Read Request Queue (RRQ) holds all real-time
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read requests for blocks on the disk. These requests do not
have any specific order, but are to be considered the highest
priority.

The final goal of this queuing system is to ensure that en-
ergy consumption of the disk drives is minimized without
sacrificing real-time performance and that the deadlines of
prefetch requests are met. Specifically, we develop a power
management scheme which works according to the status
of these queues. We develop a set of rules which govern
the power management, or transitioning, of disks. A disk
can make a transition to its Standby state (or OFF state)
from its Idle (i.e., ON but not Busy) state if, and only if, all
of the following conditions are met:

e RRQ is empty,

e Deadline of the prefetch request at the front of the
PRQ is well beyond the disk transition time (ON to
OFF plus OFF to ON again),

e Depth of WDQ is below a specified threshold, and

e Disk Idle Time, or time since the last real-time read
access, is above a specified threshold.

A transition from the Standby or OFF state to an Active
(Busy) or Idle state can be made if, and only if, one or
more of the following conditions are met:

e A new Read Request arrives (RRQ is no longer

e Deadline of the prefetch request at the front of the
PRQ is close to the disk transition time,

e Depth of WDQ is above a specified threshold, or

e Time since the last transition into Standby or OFF
state is greater than a specified threshold.

The last condition for a transition from a Standby or OFF
state to an ON state is purely from the standpoint of mini-
mizing the risk of disk failure. Studies have shown that if a
disk drive is in an OFF or Standby state for too long, mois-
ture from humidity can set in and increase the probability
of disk failure on the next transition. [3] overcomes this
issue by using a similar technique called Disk Jogging.

6. Simulation Evaluation
In order to quantify the performance of our algorithms

and compare them against standard techniques, we have
built a detailed simulation of the GreenStor storage subsys-
tem. Various Storage System components were modeled
using a discrete event simulation package called OPNET
[15]. Since we are mainly focused on large-scale storage
systems with possibly hundreds of disks, for practical con-
siderations, we decided to use event-driven simulation in-
stead of actual prototyping.

Table 1. Disk Parameters
MAID Disk Cache Disk

Avg. Access Time 8 ms 4ms
Number of Platters 4 1
Disk Capacity 146 GB 36 GB
1/0 Block Size 64 KB 64 KB
Avg. Disk Spin-up Time 10s 10s
Rotational Speed 10000 RPM 15000 RPM
Idle State Power 6w 7w
Busy State Power 10w 12w
Standby State Power 1w 1w
Spin-up Peak Power 15w 15w

The storage subsystem used for these experiments con-
sists of 12 servers, an interconnection network, a virtu-
alization device, and two disk arrays. Each server is, in
turn, composed of multiple asynchronous applications that
generate read, write, and prefetch requests. All energy
measurements mentioned henceforth include energy con-
sumption of disk drives and cache drives only. This study
does not include the power consumption of the storage con-
trollers or servers. At this point, we do not have a way of
quantifying the increase in server energy consumption due
to the additional task of prefetch/hint generation.

Disk Drive Modeling: Table 1 shows the disk drive and
cache drive parameters that we model. The disks mod-
eled here are single-speed disks with support for Active
(Busy), ldle, Standby, and Shutdown (Sleep) states. All
transitions between different states are modeled very accu-
rately both with respect to timing and power parameters.
A simple First Come First Served scheduling algorithm is
implemented for these disks.

Disk Array Modeling: For our simulation setup we model
a storage subsystem with two disk arrays, each with 60 reg-
ular disks and 6 cache disks (per array). The disk array
controller simulates multiple logical volumes across these
disks. This disk array controller also actively monitors disk
access in order to determine idle periods. All the intel-
ligence about disk transitioning is embedded in this con-
troller. 1f any disk is not scheduled to be accessed beyond
its break-even point (i.e., the point at which the transition
costs are surpassed by the power savings), the controller
makes the disk transition into Standby mode.

6.1. Comparison of Scheduling Schemes

For the purpose of comparison and quantification, we
compare our Opportunistic Scheduling scheme with a
pseudo Prefetch Horizon scheme. We call it a pseudo
prefetch horizon scheme because the simulation is con-
ceptually similar, but not identical, to the original scheme.
We do not consider a First Come First Served scheme be-
cause, as expected given the delayed/lazy disk scheduler,
the power consumption of this scheme was found to be the
same as that of our scheduling scheme. FCFS fails when it
comes to fairness, however, as it does not arbitrate based on
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deadlines while scheduling a request. We do not consider
traditional MAID systems (like Copan MAID) for the com-
parison as prefetching in response to application hints is
not a part of these original MAID designs and hence would
not be a fair comparison. Hereafter we consider only the
prefetch horizon scheme for comparison. For all of the fol-
lowing experiments, we keep the simulation workload con-
stant as performance numbers are gathered. All the results
reported here are averaged over five runs. The standard de-
viations are very low; hence, the graphs do not include this
measure.

% Energy Saving compared to Traditional Storage Systems

20—
m ll I [I
100% as% 909 as5% 80%

Prefetch/Hint Accuracy
W Opportunistic Scheduling M Prefetch Horizon Scheduling

Figure 5. Percent Energy Savings

% Energy Saving

Figure 5 shows the plot of percent energy savings for the
two schedulers with varying prefetch/hint accuracy. In this
experiment, we measure the energy consumption of a tra-
ditional storage subsystem when executing the fixed work-
load and then perform the same measurements with the two
scheduling schemes. As expected, for our scheme, the case
with 100% accurate predictions yields the maximum en-
ergy savings. Our opportunistic scheduling scheme cou-
pled with delayed scheduling yields close to 40% energy
savings. The prefetch horizon scheme results in an energy
savings of about 23%. As the prefetch/hint accuracy re-
duces, the energy savings also drop slightly for our schedul-
ing scheme. This is exactly as expected, because with a re-
duction in prefetch/hint accuracy, more read requests need
to be serviced by the dormant disks instead of the cache
disks. This reduces the time these dormant disks spend
in their Standby/Sleep state and thereby increases power
consumption. However, in the case of the prefetch horizon
scheduling scheme, the energy savings actually increase as
the prefetch/hint accuracy reduces. This is slightly counter-
intuitive. Upon further investigation, we find that the main
reason for this increasing energy savings is that the number
of disk restarts in this case decreases with the reduction in
prefetch/hint accuracy.

Deeper examination of the disk states and time spent
in each state reveals several interesting facts. We clas-
sify the time spent by the disks into Idle state, Busy state,
and Sleep/Standby state. The time spent transitioning from
Sleep/Standby to Idle/Busy and vice versa is counted as
part of the time spent in Sleep/Standby state. We find that

our scheduling scheme minimizes the time spent in the Idle
state (i.e., the state where disks are spinning but inactive) at
the cost of making more disk transitions, or restarts, to and
from Sleep/Standby. This is mainly attributed to the op-
portunistic behavior of the scheduler, which gives the disks
more time to service a request. Another interesting result
is the fact that our scheduling scheme minimizes the time
spent in the Idle state to less than 20%. Ideally, one would
expect to see much higher energy savings in Figure 5 than
what is shown. The reason for this behavior is the large
number of disk transitions that occur with our approach,
as shown in Figure 6. Disk restarts have a very high en-
ergy penalty. Typically, the Idle state power consumption
is about 6-8 watts, while the peak spinup power consump-
tion is about 15-20 watts. In addition, the cost of keeping
the set of cache disks always powered on further reduces
the energy savings. In the prefetch horizon case, the per-
cent of time spent in the Idle state is still very significant,
about 50%. The main reason for this is that the prefetch
horizon scheme tends to dispatch a constant stream of re-
quests to the disk and does not allow the disk much flex-
ibility in serving these requests. One interesting behav-
ior to note is that, in prefetch horizon, with a decrease in
prefetch/hint accuracy, the percent of time spent in the Idle
state increases. The main reason for this behavior is that the
disk gets fewer chances to transition into its Sleep/Standby
state because both unhinted and hinted prefetch requests
arrive at the disk at a steady rate that needs to be serviced
immediately.

Average Number of Disk Restarts per disk

Average Disk Restarts per disk
w

100% 950 0% 85% 80%
Prefetch/Hint Accuracy

Figure 6. Average # of Disk Restarts

Figure 6 shows the average number of restarts, or tran-
sitions, per disk for each of the scheduling schemes. With
100% accurate predictions, the number of disk restarts is
about 50 for the prefetch horizon scheme. This is slightly
higher than that of our scheduling scheme, where the av-
erage number of disk restarts is about 40. This is to be
expected as our scheme tries to dispatch requests well
in advance in order to maximize the time spent in the
Sleep/Standby state. When moving away from perfect
prefetch/hint accuracy, the number of disk restarts in the
prefetch horizon case drops drastically, whereas it is rela-
tively constant in the case of our scheduling scheme. This,
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in turn, leads to less time spent in the Standby/Sleep state
when using the prefetch horizon scheme. Because the en-
ergy saved by avoiding disk restarts is considerably larger
than the energy lost in this reduction of sleep time, we
see this interesting behavior where the prefetch horizon
scheme’s energy savings increases as the hints become less
accurate.

Figure 7 shows the read performance of the system
with varying prefetch/hint accuracy. For the purpose of
this study, our main interest with respect to performance
is determining if a request was served from a cache disk,
a dormant disk that was on, or a dormant disk that was
off. Hence, we classify the read responses into two cate-
gories; namely, requests with response time in the millisec-
onds range and requests with response time in the seconds
range. With 100% accurate predictions, all the read re-
sponses seem to be completed in the millisecond range for
both approaches. As prefetch/hint accuracy decreases, the
percentage of requests completed in the millisecond range
is smaller in the case of our scheduling scheme compared
to the prefetch horizon method. Again, as shown in Figure
6, the disks spend less time in a Sleep/Standby state with
the prefetch horizon scheme as a consequence of a smaller
number of restarts. Hence, when an unhinted request ar-
rives, the probability that the corresponding disk is not in
the Sleep/Standby state is higher for the prefetch horizon
scheme, and indirectly results in better read performance
than our approach.

Read Response(% of Reads completed in Millisecond range)

% of Read Requests completed in
milliseconds range
8

100% 95% s0% a5 B0%

Prefetch/Hint Accuracy
W Opportunistic Schedling M Prefetch Horizon

Figure 7. Read Response Times

6.2. Comparison of Metadata Management

Figure 8 shows a comparison of different cache/prefetch
block allocation schemes. \We compare our extent-based
allocation scheme, which uses CQ to dynamically deter-
mine the size of the extents, with a traditional one-to-one
mapping scheme and with a scheme that uses a larger fixed
granularity; i.e., it stores fixed-size groups of 4, 8, or 16
blocks (labeled FG(4), etc., in the figure). For this simula-
tion, we generate a synthetic workload consisting of logical
block requests with an average cluster size of eight con-
tiguous logical blocks. Out of this synthetic workload we
randomly pick a logical block cluster and try to allocate ap-

propriate space in cache using different allocation schemes.
This random sampling process is continued until the cache
is full, at which point we calculate the performance results.

Since our approach makes use of a heuristic estimate
of contiguity within any cache group, we also inject dif-
ferent percentages of error into our contiguity estimates to
simulate real system behavior where access patterns can
change over time. The size of the mapping structure is cal-
culated based on the number of extents, or groups, that fit
in the cache. The one-to-one method uses an inverted map-
ping, so its mapping structure size is directly proportional
to the number of blocks that fit in the cache. The FG(4)
method creates one fourth as many mapping entries, so its
normalized size is 0.25, as is seen in Figure 8. However,
because unneeded blocks are sometimes brought into the
cache when a fixed-size group is used, the cache utilization
is worse. This pattern continues for FG(8) and FG(16). Our
CQ-based extent mapping method stores more information
in the Global Mapping Structure, so each cache mapping
entry is assumed to be about twice as large as the one-to-
one mapping entry (16 bytes vs. 8 bytes). The figure shows
that our mapping structure uses a little more space than a
fixed-size group of four blocks. However, our cache uti-
lization, which is above 90% even with slightly erroneous
CQ estimates, is higher than any of the fixed-size meth-
ods. This shows that we are able to substantially reduce the
size of the mapping structure without losing very much in
terms of cache utilization. For a more detailed version of
this work the reader should refer [16].
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Figure 8. Metadata Management Schemes

7. Conclusion & Future Work

In this work we have clearly shown that energy savings
can be substantial when application hinting is used on top
of MAID storage systems. On average, the results show
that the energy savings achieved by using even the exist-
ing scheduling techniques is greater than 25%. Schedul-
ing technique used drastically impacts the amount of en-
ergy consumed by the system. On average, our GreenStor
storage system using its opportunistic deep prefetcher pro-
vides energy savings of an extra 10% or more compared
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to other scheduling techniques. When prediction accuracy
is very high, a system with our scheduling technique con-
sumes about 40% less power than traditional storage sys-
tems without any prefetching.

This is an ongoing project and we are currently inves-
tigating a variety of other issues in the domain. One im-
portant point to note is that the energy consumption re-
sults that we have presented do not include the extra en-
ergy consumed by the servers due to the additional task of
hint generation. We plan to work on estimating this ad-
ditional server-side energy cost. In this work we do not
consider any constraints on disk transitions. It has recently
come to our attention that, in MAID systems, disks are
packed every closely to minimize the impact of humid-
ity on disk lifetime. Specifically, if disks are not turned
on for a long period, the probability of failure on the next
spinup increases due to the collection of moisture from hu-
midity. Hence, MAID manufactures pack disks closely to
minimize the effects of humidity. In our proposed design,
this close packing of disks could lead to overheating in cer-
tain regions of the disk array if not properly arbitrated. We
are currently investigating approaches by which intelligent
arbitration of disk spinups could be used to minimize the
problem of overheating.
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