
Grid-Enabled Standards-based Data Management

Lana Abadie1 Paolo Badino1 Jean-Philippe Baud1 James Casey1 Akos Frohner1
Gilbert Grosdidier2 Sophie Lemaitre1 Gavin Mccance1 Rémi Mollon1

Krzysztof Nienartowicz1 David Smith1 Paolo Tedesco1

1CERN, European Organization for the
Nuclear Research, Geneva, Switzerland,

Inc.

2LAL/IN2P3/CNRS,
Faculté des sciences,

Orsay, France

Abstract*

The world’s largest scientific machine – the Large
Hadron Collider (LHC), situated outside Geneva,
Switzerland – will generate some 15PB of data at rates up
to 1.5GB/s (in the case of the heavy-ion experiment,
ALICE) to tape per year of operation. The processing of
this data will be performed using a world-wide Grid, the
(worldwide) LHC Computing Grid built on top of the
Enabled Grid for E-sciencE and Open Science Grid
infrastructures. The LHC Computing Grid, which has
offered a service for over two years now, is based upon a
tier model comprising some 150 sites in tens of countries.

In this paper, we describe the data management
middleware stack - one of the key services provided by
data grids.

 We give an overview of the different services
implemented, a disk-based storage system which can
support encryption, tools to manage the storage system
and access files, the LCG File Catalogue, and the File
Transfer Service. We also review the relationship between
these services.

1. Introduction

1.1. The Large Hadron collider

The LHC [1] is located at CERN [2]. There are 4 main
experiments, ALICE [3], ATLAS [4], CMS [5] and LHCb
[6]. The four detectors are built 100 meters below the
ground. Two beams of protons will be accelerated to the
highest energy (14 TeV) ever achieved in a laboratory to
allow the creation of new particles. The event rate from
the different detectors will be very high, around 1PB/sec
before a multi-level trigger system1 and will be reduced to

1 A multi-level trigger system filters the most interesting physics
events. The design and the number of levels of the trigger system
depend on the physics goals of the experiment. For instance, there are
two trigger levels at LHCb.

around 100MB/s (for proton-proton experiments). In total,
some 15PB of data will have to be stored for subsequent
physics analysis and to be accessible by users from
hundreds of institutes. The LHC Computing Grid (LCG)
[7] is responsible for developing, building and
maintaining a distributed computing infrastructure for the
storage and analysis of data from the four LHC
experiments.

1.2. The LHC Computing Grid Model

The LCG is built on a model that consists of a number
of main tiers [8], each having a specific role as follows:

• Tier-0 (CERN): all the raw data coming from the
data acquisition system of the LHC experiments
will be safely stored (first copy). Data from the
first pass reconstruction will take place at Tier-0.
A copy of the reconstructed data will be also
stored.

• Tier-1: their roles depend on the experiment.
They are responsible for managing the
permanent data storage (raw, simulated and
processed data), providing computational
resources for reprocessing and for analysis
processes that require access to large amounts of
data. There are roughly 11 Tier-1 sites. They will
also store a backup of the raw data and additional
copies of the reconstructed data.

• Tier-2: they provide computational capacity and
appropriate storage services for Monte Carlo
event simulation and for end-user analysis. The
Tier-2 sites will obtain data from the Tier-1 site
they depend on and the data generated at Tier-2
centres will be sent to Tier-1 centres for
permanent storage. There are more than 100
Tier-2 sites.

Tier-0, Tier-1 and Tier-2 sites have markedly different
requirements in terms of data transfer, storage capacity
and computing resources. A grid solution was adopted
since it fits well the overall processing model and allows

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 18:22:23 UTC from IEEE Xplore. Restrictions apply.

efficient resource sharing and usage, enabling complex
physics data analysis.

To fulfill these requirements, the LCG grid uses
primarily the Open Science Grid (OSG) [9] and the EGEE
[10] infrastructures. In this paper we will focus on the
EGEE services.

1.3. Middleware Services

The Enabled Grid for E-sciencE (EGEE) project has
implemented a set of grid middleware services [11]
known collectively as gLite. gLite is based on a Service
Oriented Architecture that allows:

• interoperability between different grids;
• flexible exploitation of the middleware services

according to specific needs;
• support of de-facto grid standards.

Figure 1. The gLite middleware services.

Figure 1 illustrates the gLite service architecture showing
the four service categories. The security service is
responsible for authentication, authorization and data
encryption. The information and monitoring service
collects information about the status of the different grid
resources. The Workload management service distributes
and manages jobs across the grid. The data management
services provide reliable tools to store, replicate and
retrieve files.

1.4. gLite components

Figure 2 shows the different components implemented
and used by the gLite services.

In this paper, we focus on the data management
components.

Figure 2. gLite components.

2. The LCG File Catalog

The number of files stored in the grid is typically of
the order of 109. These should be accessible from any grid
site, without requiring the user to know their physical
location. A file can have as many replicas as needed and
can be stored in any types of storage systems.

To provide a full flexibility to the users, a file catalog
has been designed to allow a user from any EGEE grid
site to locate and retrieve files using a Logical File Name
(LFN). The LCG File Catalog (LFC) has been developed
by the Data Management team at CERN.

2.1. Logical path concept

In UNIX, each file and each directory have a name
defined by the user. A file or a directory can have one or
several soft links also called aliases. A file or a directory
can be identified by its inode (defined by the operating
system) or by its full path. The full path is commonly
used as it is human-readable.

The LFC uses similar concepts. The full path (resp.
inode) is called an LFN (resp. a Grid Unique Identifier -
GUID). Likewise UNIX, the LFN is often used to
interrogate the LFC and identify a file. The soft link is
called an alias.

Thus an LFN is associated with a GUID. An LFN can
have aliases. Each path to a replica of a file is identified
with a “storage URL” or SURL. The syntax of the SURLs
depends on the type of the storage system. The concept of
SURLs also allows hiding the physical path of a file
within a storage system. In other words, there are two
levels of logical path, the first one on the grid level (LFN)
and the second one on the storage system itself (SURLs).

The LFC provides mapping between an LFN or a
GUID and SURLs, as shown in Figure 3.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 18:22:23 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Relationship between LFNs,
GUIDs, SURLs and aliases.

The introduction of the logical path concept permits
independence of the hardware setup of the storage
element. Thus, there is no need to know the name of the
storage element that hosts the file. This allows the
architecture of the storage system to be transparent
against changes to the physical path (such as the name of
the host machine or the file system).

2.2. Path representation using tables

Path and associated permissions are stored in a
relational database. The LFN is represented hierarchically,
as in the UNIX system and as shown in Figure 4.

2.3. Implementation outline

The LFC is built on a proven architecture, using a
multi-threaded C-based application middle tier that may
be scaled out horizontally for both availability and
performance.

It uses a database backend to store the LFNs, GUIDs,
SURLs, aliases and file permissions (both Oracle and
MySQL are supported). It implements a secure catalog
that uses grid certificates for authentication and Virtual
Organization Membership Service (VOMS)2 [12] for
authorization in order to be compliant with the security
service. The gLite security service provides all the

2 VOMS allows classifying users that are part of a Virtual

Organization (VO), i.e. they share a set of attributes that will be granted
to them upon request and to include that information inside Globus-
compatible proxy certificates. A user can be part of one or several VOs.

necessary libraries to allow other services (Data
Management, Workload Management) to be compliant
with the EGEE security policy.

Figure 4. Representing an LFN with a table.

To satisfy administrators’ and the users’ requirements,
the LFC can be accessed via a transactional C-library with
two bindings (Python and Perl) or the LFC Command
Line Interface (CLI), similar to the UNIX CLI. A web
service Data Location Interface (DLI) [13] has also been
implemented. Unlike the other bindings, this latter
interface is unsecure (no authentication) and only allows
information retrieval. It is mainly used by the Resource
Broker component of the Workload Management service.

Volatile files3 are not declared in the LFC.

3. The Disk Pool Manager

As described above, the different tiers of the LCG have
markedly different storage capacity and service
requirements. The Tier-0 site uses the CERN Advanced
STORage manager (CASTOR) [14] storage system. It is a
Hierarchical Storage Management (HSM) system
developed at CERN used to store physics production files
and user files. CASTOR manages disk caches and the
data on tertiary storage or tapes.

dCache [15] is installed at most Tier-1 sites (CASTOR
is installed on a few Tier-1 sites). dCache provides a

3 Files which have a lifetime less than one month are considered as

volatile files.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 18:22:23 UTC from IEEE Xplore. Restrictions apply.

system for storing and retrieving huge amounts of data,
distributed among a large number of heterogeneous server
nodes, under a single virtual file system tree with a variety
of standard access methods. dCache is a joined effort
between the Deutsches Elektronen-Synchrotron (DESY)
[16] in Hamburg and the Fermi National Accelerator
Laboratory (FERMILAB) [17].

DPM is installed at most Tier-2 sites (there are some
Tier-2 sites which use dCACHE). In this section, we focus
on the DPM, implemented by the Data Management team
at CERN.

3.1. Motivation

The DPM primarily addresses the storage needs of the
Tier-2 sites. They usually require at most a few hundreds
of TB of storage capacity. The data will be stored for a
few months and permanent data will be sent to the Tier-1
site they depend on.

However configuring and managing a tape-based
storage system is expensive in terms of money and
manpower and is typically not required at such sites and
hence not currently provided by the DPM.

Based on the requirements that have been collected,
the main objective of the DPM is to provide a secure,
reliable and scalable storage system that offers simple
configuration and management.

3.2. Architecture

Figure 5. Overview of the DPM design.

Figure 5 shows the outline of the DPM design
architecture.

To allow interoperability between different storage
system types, a Storage Resource Manager (SRM) server
and client have been designed. SRM is a common
standard based on web services to manage storage
systems and is further described in another paper
submitted to this conference. The DPM supports both
versions 1.1 and 2.2 of the SRM standard [18]. The

requests are serviced by the respective SRM daemon. If
an asynchronous request, such as a get or a put, is
submitted to an SRM server, it is inserted into the DPM
database and the SRM client polls for its status. Then, the
DPM daemon picks up the request from the DPM
database and processes it. The DPM daemon contacts the
DPNS (Disk Pool Naming Service) daemon regarding
authorization and mapping between Site File Name
(SFNs) and Physical File Names (PFNs) (see next sub
section for details).

If the request is synchronous, such as obtaining the
current DPM configuration, reserving space, it is
immediately processed by the DPM daemon.

Physical files are then accessed and stored via any of
the supported protocols, such as Remote File Input/Output
(RFIO), GSIFTP [19], http, xrootd [20].

3.3. The Database Backend

As shown in Figure 5, the DPM uses a database that is
split in two parts:

• The DPM part contains information related to
the DPM configuration and status. Figure 6 shows an
extract of the DPM table schema. The current setup of
the DPM is retrieved using the dpm_fs and dpm_pool
tables. All the coming asynchronous requests (get and
put) are stored in the dpm_pending_req table. A
request is identified by the r_token column in the
dpm_pending_req table. The user or an application
can request to put or get several files at once. Each file
involved in a given put/get request is associated with
the pair (r_token, f_ordinal) which are two columns of
the dpm_put_filereq and dpm_get_filereq tables. The
DPM daemon selects one of the pending requests (i.e.
one given r_token) and processes it. Distinct tables for
each type of request enable to gain in performance
especially in case of concurrent accesses.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 18:22:23 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Extract of the DPM table schema.

• The DPNS part allows mapping between the
SFN (Site File Name) and the PFN (Physical File
Name) and retrieving the permission associated to a
SFN. An extract of the table schema is presented in
Figure 7. The Cns_userinfo and Cns_groupinfo tables
contain information respectively about the user
Distinguished Name (DN) and VOMS attributes. The
physical location of files is stored in the
Cns_file_replica table. The sfn, host and fs columns
represent respectively the full physical path (PFN),
the name of the machine and the file system where the
the file is stored. The Cns_file_metadata table
contains information about the SFN and file
permission. The SFN corresponds to the SURL of the
LFC as illustrated in Figure 8. The TURL is the
association of a PFN and an access protocol such as
RFIO, GSIFTP.
The acl column fixes the permission of a file or a
directory. It follows the same scheme as the UNIX file
system.

Figure 7. Extract of the DPNS table schema
which is the same as for the LFC.

Figure 8. Relationships between the SURLs,
SFNs and PFNs.

All persistent states are maintained in the database and are
required in case of system recovery.

3.4. Key aspects in authentication and
authorization

Figure 9 illustrates the authentication and authorization
mechanisms that allow a client to access a given DPM
site. This mechanism follows the rules of the gLite
Security service. The authentication is based on grid
certificates. This step is performed by the first daemon
contacted by the client request. For example, if it is a
SRM request, the SRM daemon will authenticate the user.
Both the DPM host and the client must have valid grid
certificates; otherwise the user request is cancelled.
The next step is to check that the user is entitled to access
the DPM site. There are two scenarios:

1) A user comes with a valid voms-proxy, i.e. the
user is already associated with a VOMS. Then
s/he has the right to access the DPM.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 18:22:23 UTC from IEEE Xplore. Restrictions apply.

2) A user comes with a valid grid-proxy. Its user
DN has to be declared in the lcgdm-mapfile and
the grid-mapfile. If the user DN is not in one of
the mapfiles, the request fails. Otherwise the
Virtual Organization (VO) associated with the
user DN is retrieved4. This information user DN
and VO are mapped to virtual IDs.

Figure 9. Overview of the authentication and
authorization mechanisms.

They are inserted respectively in the Cns_userinfo and
Cns_groupinfo tables if they do not exist. Virtual IDs are
very useful as they permit to remove the concept of pool
account and to support Access Control Lists (ACLs). Thus
the site administrator does not have to create accounts or
to modify the password file. They also allow a fast check
of the ACLs and ownership of a file.

3.5. Pool concept

A pool is an ensemble of (disk server, file system).
Referring to Figure 6, the dpm_pool table describes the
characteristics of a pool.

The quality of a pool is defined in the ret_policy
column. It can be custodial (very good quality), replica (to
be used for replicas) or output (medium quality). This
characteristic depends on the hardware and is defined
during the setup of the DPM by the DPM administrator.
However it can be updated if a hardware change occurs.

A file is associated with a quality type (ret_policy
column of dpm_put_request and dpm_get_request
tables). It is set by the user and it determines the selection
of the pool in which this file will be stored. The f_type
column of dpm_put_request and dpm_get_request
tables corresponds to the type of file. The f_lifetime
column of dpm_put_request table corresponds to the
lifetime of a file in the storage system. The f_type column
can be set to permanent for files which are never to be

4 If a user issues a voms-proxy command and s/he belongs to several

VOs, then there is a virtual ID for each pair (user DN, VO he is part of).

deleted (and f_lifetime is equal to infinite), volatile for
files to be deleted (when f_lifetime is expired) or durable
(warn the owner of the file by mail that f_lifetime has
been expired). However the durable space type is not
implemented yet.

A pool can be associated to one or several VOs (groups
column). In other words, it is like attributing ACLs on
pools. Thus only the users which are in the specified VOs
will be authorized to store files in this pool. It allows
preventing greedy VOs from storing their files in any pool
and saturating the DPM quickly.

A pool has a default reserved space (defsize column). It
is used to reserve space for a given file by default if no
size is specified in the client request.

3.6. Replica and file system selection

A file can be stored in different locations. The selection
of a file system is based on the round robin mechanism.
The main reasons are the following ones:

• It is fast to compute;
• It reduces the number of concurrent accesses for a

given file system.
A file can have several replicas. The question is which

one to select. The algorithm is quite intuitive and fast to
compute:

1. Get the list of replicas with the physical location;
2. Select the ones which are in the same domain as

the client;
3. Select randomly one of them if still several or if

no host is in the same domain.

3.7. Outline of the DPM server implementation

The core of the DPM architecture is the distinct
daemons and the database. The communication between
daemons and the database is based on sockets. As with the
LFC, the main application layer is via multi-threaded
daemons implemented in C and the database backend can
use either Oracle or MySQL databases. ProC [21] (resp. C
MySQLclient library) is used as a DB interface if it is an
Oracle DB (resp. MySQL).

An automated garbage collection is implemented to
remove expired volatile files.

A clean-up mechanism has been implemented to delete
incomplete files based on the timeout which corresponds
to the lifetime column referring to Figure 6. It prevents
from having internal consistency in the DPM.

Each daemon produces a daily log file used for offline
debugging and analysis. The different log files are also
used for auditing purposes. Each user is tracked by its DN
and the different operations s/he performs.

To improve the robustness of the system, the different
DPM sites can report their problems and comments to the
support staff via different grid services [22].

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 18:22:23 UTC from IEEE Xplore. Restrictions apply.

3.8. Tools to manage the DPM

Figure 10. Software architecture of the client
tools specific to DPM.

Figure 10 shows the different tools specific to the
management of the DPM. There are two utilities:

• The RFIO CLI and C-library permit to manipulate
files and get information about files via the RFIO
protocol. The RFIO API is POSIX compliant.

• The DPM C-library and CLI are the lowest level.
It consists of functions which can contact both the
DPNS and DPM daemons. It allows the expert
user to define its own parameters instead of using
the default ones.

The RFIO and DPM libraries are thread-safe.
The RFIO and DPNS commands are very similar to

UNIX commands, thus users can use them intuitively. In
addition, no database knowledge is required.

There is no checksum to verify whether a file is
corrupted or not. The main reason is that this operation is
time-consuming and there is no standard method provided
by the file access protocol (RFIO, GSIFTP, etc.). However
the user can implement its own checksum and inserts it in
the LFC. There are two columns (csumtype and
csumvalue) in Cns_file_metadata referring to Figure 7.

It is up to the user or site administrator to guarantee
data consistency when writing applications based directly
on the DPM library. The DPM and RFIO libraries (or
CLI) do not communicate with the LFC.

The choice of this implementation is justified by the
following user’s requirements:

• it should be possible to have different
permissions according to the location of a
storage resource. We have a use case, where
ACLs should be more restrictive on storage
resources which are not local.

• it should be possible to store files in a storage
system locally. In other words, these files
should not be visible in the EGEE grid. This

is achieved if these files are not declared in
the LFC.

4. Generic client utilities

Regardless of whether a grid user is a physicist,
physician or an engineer, they should all be able to use the
client utilities to access the gLite services and in
particular the storage system. Moreover there are different
types of storage systems. Generic client utilities must be
implemented to make the interoperability between
different storage types possible.

The gLite Data Management team has contributed in
the implementation of several types of tools to allow the
user to interact with different types of storage system.

4.1. Software architecture

Figure 11. Software architecture to interact
with the different types of storage systems.

Figure 11 shows the software architecture. The aim of
this architecture is to provide access to any type of EGEE
storage systems. There are different tools:

• The LCG-utils tools (Python and Perl module,
CLI and C-library) [23] are top-level tools. In
other words, they require little knowledge of the
storage system implementation. They allow a
transparent access to different types of grid
catalogues and storage elements. The user can
store, replicate, delete and copy a file using LCG-
utils tools.

• The Grid File Access Library (GFAL) [24] is a C
library which provides a POSIX interface to local
and remote Storage Elements on the Grid.

• The File Transfer Service (FTS) allows file
transfer between different storage systems. See
section 6 for more details.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 18:22:23 UTC from IEEE Xplore. Restrictions apply.

• The SRM interface is used by GFAL. This
interface allows interoperability between the
different types of storage system. It is a web
service based on SOAP [25]. The API has been
defined and agreed by the SRM consortium [18].

4.2. Data consistency

All these tools allow modular and flexible file
management in the storage system. For the moment,
there is no mechanism to check the authenticity, i.e. the
data provenance is correctly tracked.
LCG-utils has been implemented to reduce human
interventions and try to automate the different
operations. For instance, if a replica is inserted or
deleted, both the LFC and the storage system databases
are up-to-date.
However if a disk server at a given storage system
crashes, there is no notification to the LFC to delete
the files. It is foreseen to provide such a script by the
end of the year.

4.3. Integration with the grid middleware

The typical use case is a user who submits a job which
needs to open a specific file stored in the EGEE grid.
Where is the file stored? Which storage site is up and can
handle the request? What protocol can be used to access
the file?

A complete integration in the grid middleware stack
and interoperability between the existent storage systems
are means to ensure a long lifetime.

The Information & Monitoring service via the
Berkeley Database Information Index (BDII) [26]
provides two types of information:

• Static information such as the different end-
points (storage elements for instance)

• Dynamic information such as the free space of a
given storage element.

Figure 12 illustrates the interaction between the four
gLite services. Authentication and authorization are
performed for each grid component (LFC, DPM server
and DPM disk servers). For the BDII, there is no
authentication as anybody can have a read-only access.

Figure 12. Example of a data flow of a call to
gfal_open.

Referring to Figure 12, the worker node needs to open
a file to execute the job. It issues a gfal_open. The LFC is
called to return the list of replicas (SURLs) given a
GUID. Then there is a call to the BDII to get the version
of the SRM interface to use. The next step is to get a
TURL from the DPM using the SRM interface. The file
can be opened using an access protocol such as RFIO.
The protocol is specified in the TURL. The selection of
the protocol is the result of a negotiation between the
SRM client and the SRM server.

5. Encrypted Data Storage

5.1. Objectives

The EGEE grid is used mainly by High Energy Physics
(HEP) applications. However, main other areas are also
actively represented in the project. In the specific case of
medical institutes, additional requirements are involved,
such as data encryption during the file transfer and in the
storage system. To fulfill these requirements, the gLite
Data Management Service has designed the Encrypted
Data Storage (EDS) as shown Figure 13.

Figure 13. The EDS architecture.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 18:22:23 UTC from IEEE Xplore. Restrictions apply.

5.2. Design

Digital Image and Communication in Medicine
(DICOM) [27] is a medical image standard developed to
satisfy clinical practice. A DICOM image integrates the
image itself and metadata information (related to the
patient for instance). DICOM servers allow storing and
retrieving DICOM images both on disk and tape based
back-ends. However the DICOM security model is rather
weak. DICOM images are accessed only internally within
the hospitals. By using the different EGEE services,
DICOM images can be accessed from outside. An
extended version of SRM (SRM DICOM) has been
implemented to be both compatible with the grid and the
DICOM protocol. A DICOM image is identified with a
device triplet (3 UIDs) [27].

Each DICOM image has an entry in the LFC and is
identified with a GUID so that the physical location of the
image can be found.

ARDA Metadata Catalogue Project (AMGA) [28] is
used to store relational information on medical images
stored on the grid, plus information on patients and
doctors.

The HYDRA [29] library allows medical images to be
encrypted and decrypted using the file specific keys stored
in the Hydra keystore.

GFAL is used to retrieve the medical images. The
medical image stored in the DICOM storage is encrypted
on the fly. The client decrypts it locally using the specific
key (HYDRA). A replicated medical image is always
stored encrypted in grid storage elements such as DPM.

There is an access control based on the ACL to check
that a given user has the permissions to get a given replica
when contacting the LFC.

6. File Transfer Service

6.1. Motivation

Given the data volumes and rates involved, a robust
and reliable file transfer service, automatically
implementing retry to cater with all common errors, is
required. The LHC uses in average a file size of 1GB.
Based on expected data rates, there will be 105-106 files
transferred per day. Manual intervention, i.e. due to file
transfers failures should not occur more than 1 per day at
a given site as this problem is time-consuming. The
service has to be reliable to 1 in 10 5/6.To meet these
requirements, the gLite File Transfer Service (FTS) has
been implemented [30].

6.2. Architecture

Figure 14. Outline of the architecture.

Figure 14 describes the architecture of this service.
The client securely connects to the service to submit a

transfer request. The transfer service refreshes
periodically the status of the transfer (polling
mechanism). The client can reconnect to the service to
check the transfer status or to abort its request. It is an
asynchronous file transfer. The transfer service is
centralized so it has a global view of the different
requests. It allows load balancing and transfer scheduling.

6.3. The Channel concept

The FTS uses the concept of channels. A channel is an
abstract unidirectional link between the source and
destination storage elements. Each channel is independent
which can be managed and configured distinctly. This
concept has been introduced to optimize the bandwidth
and to allow the VOs to manage their own channels.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 18:22:23 UTC from IEEE Xplore. Restrictions apply.

6.4. Overview of the implementation

Figure 15. The architecture of the FTS.

The FTS architecture as represented in Figure 15
consists of the following components:

• A VO agent is the first element to be contacted
when a request from a given VO is submitted. It
authorizes the request and assigns a channel to the
request. If the request is accepted, then its status
moves to PENDING. It also handles the
scheduling.

• A channel agent is responsible for monitoring of
the transfer. It also balances requests on the
channel between different VOs.

• A FTS database (Oracle database) contains all the
information about the requests and the channels. It
also allows collecting statistics and monitoring
information.

• A FTS web service receives the requests and
inserts the information in the database.

7. Test & Performance

Performance is a real issue for the FTS and for the
LFC. Data rates from Tier-0 to Tier-1 vary from 50 to
400MB/s. These transfers occur 24 hours a day over a
period of around 100 days. Data transfers from the Tier-2
sites to Tier1 are at lower rate, roughly tens of MB/s.

Independent test suites have been conducted to
enhance the performance and the robustness of the data
management components.

7.1. LFC tests

Queries against the LFC have been speed up with the
use of bulk queries as it reduces the number of round trips
between the client and server.

Several other tests [31] are being conducted to measure
things like the impact of the size of the communication
buffer between the client and a local/remote LFC server
on the response time.

A test suite has been developed for stress tests.

7.2. DPM tests

Many sites have volunteered to carry out stressing
tests. Their output was very fruitful as the hardware and
network setups were different.

One example is the reading of files using the RFIO
protocol by many simultaneous clients.

Figure 16. Read rate using the RFIO protocol
in function of the number of clients.

Figure 16 shows the read rate in function of the
number of clients. Each client tries to read a distinct file
of 1 GB. The performance has been improved with the
new version of DPM by limiting the number of round
trips between the client and the server. For instance, with
DPM version 1.5.10 the open time increased from ~2s
with 1 client to ~12s with 80 clients. With 1.6.3 the open
time increases from ~1.8s to ~2.7s with 80 clients. The
authentication operation takes around 0.7sec. The one
second left is due to the poll mechanism (the first poll to
check the status of the request occurs after one second).
However no users have complained about the DPM
performance.

7.3. Client utilities

The SRM interface is tested by a dedicated group (the
SRM testers) as there are different types of storage
elements to be verified. They have developed test suites
and all the results are presented in web pages.

This group has also started to set up stress tests. It
allows verifying the robustness of the end-points – DPM
in our case- and their behavior when heavily loaded.

All the results are collected on a web page [32].

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 18:22:23 UTC from IEEE Xplore. Restrictions apply.

The different functionalities of LCG-utils, GFAL,
RFIO and DPM utilities have also been tested. It allows
verifying the behavior of these functions in case of human
errors and also the robustness of the components (LFC,
DPM, etc.)

7.4. FTS tests

Concurrent request submission has been tested. It
turned out that the FTS could accept up to 50
simultaneous connections without any failures. The
robustness and reliability of the FTS have been evaluated
via the LCG challenges. During these periods, the FTS is
heavily loaded as hundreds of TB was transferred between
CERN and Tier-1 sites such as (CNAF in Italy, DESY in
Germany).

8. Conclusions

In this paper, we have reviewed the different
components of the LCG Data Management service. The
LFC is a secure file catalog that allows a user to retrieve
replicas without knowing their physical locations. The
DPM provides a lightweight, manageable and scalable
storage system. The RFIO and DPM libraries allow file
management and DPM configuration at low level. These
tools are specific to the DPM.

The DPM as a storage system can be accessed by
generic, user-friendly and reliable tools (LCG-utils,
GFAL) allowing integration in the EGEE grid
environment. The SRM interface provides interoperability
between different types and implementations of storage
systems.

The FTS offers a reliable transfer service for the LHC
physics data between sites. Further studies on the
scalability of the DPM and robustness of the FTS will be
performed.

Medical institutes have also benefitted from this grid
middleware, thanks to the EDS. The integration of the
EDS with GFAL and DPM is under implementation and
will have to be tested.

9. Acknowledgements

We would like to thank Greig Alan Cowan and Graeme
Stewart for their fruitful cooperation with stressing tests
and performance.

Also we would like to thank Jamie Shiers for his
careful reading of the paper. His numerous comments,
suggestions and corrections have substantially improved
the quality of this text.
This work makes use of results produced by the Enabling
Grids for E-sciencE project, a project co-funded by the
European Commission (under contract number INFSO-
RI-031688) through the Sixth Framework Programme.

EGEE brings together 91 partners in 32 countries to
provide a seamless Grid infrastructure available to the
European research community 24 hours a day. Full
information is available at http://www.eu-egee.org

10. Glossary

ACL: Access Control List
AMGA: ARDA Metadata Catalogue Project
BDII: Berkeley Database Information Index
CASTOR: CERN Advanced STORage manager
CLI: Command Line Interface
DESY: Deutsches Elektronen-Synchrotron
DICOM: Digital Image and Communication in
Medicine
DLI : Data Location Interface
DN: Distinguished Name
DPM: Disk Pool Manager
DPNS: Disk Pool Naming Service
EDS: Encrypted Data Storage
EGEE: Enabled Grid for E-sciencE
FERMILAB: Fermi National Accelerator Laboratory
FTS: File Transfer Service
GFAL: Grid File Access Library
GUID: Grid Unique Identifier
HEP: High Energy Physics
HSM: Hierarchical Storage Management
LCG: LHC Computing Grid
LFC: LCG File Catalogue
LFN: Logical File Name
LHC: Large Hadron Collider
OSG: Open Science Grid
PFN: Physical File Name
RFIO: Remote File Input/Output
SFN: Site File Name
SRM: Storage Resource Manager
SURL: Storage URL
VO: Virtual Organizations
VOMS: Virtual Organization Membership
Service

References

[1] LHC website [online].
Available: http://lhc.Ib.cern.ch/lhc/
[2] CERN website [online].
Available: http://public.Ib.cern.ch/public.
[3] ALICE website [online].
Available: http://aliceinfo.cern.ch/
[4] ATLAS website [online].
Available: http://atlas.web.cern.ch/Atlas/index.html
[5] CMS website [online].
Available: http://cms.cern.ch/
[6] LHCb website [online].
Available: http://lhcb.web.cern.ch/lhcb/

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 18:22:23 UTC from IEEE Xplore. Restrictions apply.

[7] LHC Computing Grid. Technical report. Editor Jurgen
Knobloch. LCG-TDR-001. CERN-LHCC-2005-024.
[online].
Available: http://lcg.web.cern.ch/LCG/tdr
[8]Gordon Bell, Jim Gray, Alex Szalay, “Petascale
Computational Systems: Balanced Cyberinfrastructure in
a Data-Centric World”.[online]
Available:
http://research.microsoft.com/~gray/papers/Petascale%20
computational%20systems.pdf
[9] OSG website [online].
Available: http://www.opensciencegrid.org/
[10] EGEE website [online]. Available:
http://www.eu-egee.org/
[11] Antonio Delgado Peris, Patricia Méndez Lorenzo,
Flavia Donno, Andrea Sciabà, Simone Campana, Roberto
Santinelli, gLite-3 User Guide. CERN-LCG-GDEIS-
722398, 17 January 2007. Available:
https://edms.cern.ch/file/722398//gLite-3-UserGuide.pdf
[12] The Virtual Organization Membership Service
website [online]. Available: http://hep-project-grid-
scg.web.cern.ch/hep-project-grid-scg/voms.html
[13] Heinz Stockinger, Flavia Donno, “Data Location
Interface for the Workload Management System”,
November, 12 2004 [online]. Available:
http://cmsdoc.cern.ch/cms/grid/docs/DataLocationInterfac
e.pdf
 [14] Castor website [online]. Available:
http://castor.web.cern.ch/castor/
[15] dCache website [online]. Available:
http://www.dcache.org/
[16] DESY website [online]. Available:
http://www.desy.de/html/home/index.html
[17] FERMILAB website [online]. Available:
http://www.fnal.gov/
[18] SRM website [online]. Available:
http://sdm.lbl.gov/srm-wg/
[19] Globus Project, GridFTP Universal Data Transfer for
the Grid, white paper September 5, 2000 [online].
Available:
http://www.globus.org/toolkit/docs/2.4/datagrid/deliverabl
es/C2WPdraft3.pdf
[20] Xrootd website [online]. Available:
http://xrootd.slac.stanford.edu/

[21] ProC documentation [online]. Available:
http://www.dbasupport.com/oracle/ora10g/proC101.shtml
[22] OSG Consortium presentation, the gLite Middleware
distribution, 21-23 August 2006. Slide 13.
[23] LCG-util API [online]. Available: http://grid-
deployment.web.cern.ch/grid-
deployment/documentation/LFC_DPM/lcg_util/html/
[24] GFAL API [online]. Available:
http://grid-deployment.web.cern.ch/grid-
deployment/documentation/LFC_DPM/gfal/html/
[25] SOAP webiste [online]. Available :
http://www.w3.org/TR/soap/
[26] The information system [online]. Available:

Antonio Delgado Peris, Patricia Méndez Lorenzo, Flavia
Donno, Andrea Sciabà, Simone Campana, Roberto
Santinelli, gLite-3 User Guide. CERN-LCG-GDEIS-
722398, 17 January 2007 Page(s): 51-73
Available: https://edms.cern.ch/file/722398//gLite-3-
UserGuide.pdf
[27] DICOM website [online]. Available:
http://medical.nema.org/
[28] AMGA website [online]. Available:
http://amga.web.cern.ch/amga/
[29] HYDRA website [online]. Available:
https://twiki.cern.ch/twiki/bin/view/EGEE/DMEDS
[30] FTS website [online]. Available:
https://twiki.cern.ch/twiki/bin/view/EGEE/FTS
[31] J-P, Baud, J. Casey, S. Lemaitre; C. Nicholson,
“Performance analysis of a file catalog for the LHC
computing”. 14th IEEE International Symposium on
Volume, Issue, 24-27 July 2005 Page(s): 91 – 99
[32] SRM tests website [online]. Available:
http://datagrid.lbl.gov/

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 18:22:23 UTC from IEEE Xplore. Restrictions apply.

