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Abstract* 

The world’s largest scientific machine – the Large 
Hadron Collider (LHC), situated outside Geneva, 
Switzerland – will generate some 15PB of data at rates up 
to 1.5GB/s (in the case of the heavy-ion experiment, 
ALICE) to tape per year of operation. The processing of 
this data will be performed using a world-wide Grid, the 
(worldwide) LHC Computing Grid built on top of the 
Enabled Grid for E-sciencE and Open Science Grid 
infrastructures. The LHC Computing Grid, which has 
offered a service for over two years now, is based upon a 
tier model comprising some 150 sites in tens of countries.  

In this paper, we describe the data management 
middleware stack - one of the key services provided by 
data grids.  

 We give an overview of the different services 
implemented, a disk-based storage system which can 
support encryption, tools to manage the storage system 
and access files, the LCG File Catalogue, and the File 
Transfer Service. We also review the relationship between 
these services. 

1. Introduction 

1.1. The Large Hadron collider 

The LHC [1] is located at CERN [2]. There are 4 main 
experiments, ALICE [3], ATLAS [4], CMS [5] and LHCb 
[6]. The four detectors are built 100 meters below the 
ground. Two beams of protons will be accelerated to the 
highest energy (14 TeV) ever achieved in a laboratory to 
allow the creation of new particles. The event rate from 
the different detectors will be very high, around 1PB/sec 
before a multi-level trigger system1 and will be reduced to 

                                                        
 

1 A multi-level trigger system filters the most interesting physics 
events. The design and the number of levels of the trigger system 
depend on the physics goals of the experiment. For instance, there are 
two trigger levels at LHCb. 

around 100MB/s (for proton-proton experiments). In total, 
some 15PB of data will have to be stored for subsequent 
physics analysis and to be accessible by users from 
hundreds of institutes. The LHC Computing Grid (LCG) 
[7] is responsible for developing, building and 
maintaining a distributed computing infrastructure for the 
storage and analysis of data from the four LHC 
experiments. 

 

1.2. The LHC Computing Grid Model 

The LCG is built on a model that consists of a number 
of main tiers [8], each having a specific role as follows: 

• Tier-0 (CERN): all the raw data coming from the 
data acquisition system of the LHC experiments 
will be safely stored (first copy). Data from the 
first pass reconstruction will take place at Tier-0. 
A copy of the reconstructed data will be also 
stored. 

• Tier-1: their roles depend on the experiment. 
They are responsible for managing the 
permanent data storage (raw, simulated and 
processed data), providing computational 
resources for reprocessing and for analysis 
processes that require access to large amounts of 
data. There are roughly 11 Tier-1 sites. They will 
also store a backup of the raw data and additional 
copies of the reconstructed data. 

• Tier-2: they provide computational capacity and 
appropriate storage services for Monte Carlo 
event simulation and for end-user analysis. The 
Tier-2 sites will obtain data from the Tier-1 site 
they depend on and the data generated at Tier-2 
centres will be sent to Tier-1 centres for 
permanent storage. There are more than 100 
Tier-2 sites.  

Tier-0, Tier-1 and Tier-2 sites have markedly different 
requirements in terms of data transfer, storage capacity 
and computing resources.  A grid solution was adopted 
since it fits well the overall processing model and allows 
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efficient resource sharing and usage, enabling complex 
physics data analysis.  

To fulfill these requirements, the LCG grid uses 
primarily the Open Science Grid (OSG) [9] and the EGEE 
[10] infrastructures. In this paper we will focus on the 
EGEE services. 

 

1.3. Middleware Services 

The Enabled Grid for E-sciencE (EGEE) project has 
implemented a set of grid middleware services [11] 
known collectively as gLite. gLite is based on a Service 
Oriented Architecture that allows: 

• interoperability between different grids; 
• flexible exploitation of the middleware services 

according to specific needs; 
• support of de-facto grid standards. 

 

Figure 1.  The gLite middleware services. 

Figure 1 illustrates the gLite service architecture showing 
the four service categories. The security service is 
responsible for authentication, authorization and data 
encryption. The information and monitoring service 
collects information about the status of the different grid 
resources. The Workload management service distributes 
and manages jobs across the grid. The data management 
services provide reliable tools to store, replicate and 
retrieve files. 

1.4. gLite components 

Figure 2 shows the different components implemented 
and used by the gLite services. 

In this paper, we focus on the data management 
components.  

 

 

Figure 2.  gLite components. 

2. The LCG File Catalog 

The number of files stored in the grid is typically of 
the order of 109. These should be accessible from any grid 
site, without requiring the user to know their physical 
location. A file can have as many replicas as needed and 
can be stored in any types of storage systems. 

To provide a full flexibility to the users, a file catalog 
has been designed to allow a user from any EGEE grid 
site to locate and retrieve files using a Logical File Name 
(LFN). The LCG File Catalog (LFC) has been developed 
by the Data Management team at CERN. 

2.1. Logical path concept 

In UNIX, each file and each directory have a name 
defined by the user. A file or a directory can have one or 
several soft links also called aliases.  A file or a directory 
can be identified by its inode (defined by the operating 
system) or by its full path. The full path is commonly 
used as it is human-readable. 

The LFC uses similar concepts. The full path (resp. 
inode) is called an LFN (resp. a Grid Unique Identifier - 
GUID). Likewise UNIX, the LFN is often used to 
interrogate the LFC and identify a file. The soft link is 
called an alias. 

Thus an LFN is associated with a GUID. An LFN can 
have aliases. Each path to a replica of a file is identified 
with a “storage URL” or SURL. The syntax of the SURLs 
depends on the type of the storage system. The concept of 
SURLs also allows hiding the physical path of a file 
within a storage system. In other words, there are two 
levels of logical path, the first one on the grid level (LFN) 
and the second one on the storage system itself (SURLs). 

The LFC provides mapping between an LFN or a 
GUID and SURLs, as shown in Figure 3. 
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Figure 3. Relationship between LFNs, 
GUIDs, SURLs and aliases. 

The introduction of the logical path concept permits 
independence of the hardware setup of the storage 
element. Thus, there is no need to know the name of the 
storage element that hosts the file. This allows the 
architecture of the storage system to be transparent 
against changes to the physical path (such as the name of 
the host machine or the file system). 

2.2. Path representation using tables 

Path and associated permissions are stored in a 
relational database. The LFN is represented hierarchically, 
as in the UNIX system and as shown in Figure 4.  

2.3. Implementation outline 

The LFC is built on a proven architecture, using a 
multi-threaded C-based application middle tier that may 
be scaled out horizontally for both availability and 
performance.  

It uses a database backend to store the LFNs, GUIDs, 
SURLs, aliases and file permissions (both Oracle and 
MySQL are supported). It implements a secure catalog 
that uses grid certificates for authentication and Virtual 
Organization Membership Service (VOMS)2 [12] for 
authorization in order to be compliant with the security 
service. The gLite security service provides all the 

                                                        
2 VOMS allows classifying users that are part of a Virtual 

Organization (VO), i.e. they share a set of attributes that will be granted 
to them upon request and to include that information inside Globus-
compatible proxy certificates. A user can be part of one or several VOs. 

necessary libraries to allow other services (Data 
Management, Workload Management) to be compliant 
with the EGEE security policy.  

 

 

Figure 4. Representing an LFN with a table. 

To satisfy administrators’ and the users’ requirements, 
the LFC can be accessed via a transactional C-library with 
two bindings (Python and Perl) or the LFC Command 
Line Interface (CLI), similar to the UNIX CLI. A web 
service Data Location Interface (DLI) [13] has also been 
implemented. Unlike the other bindings, this latter 
interface is unsecure (no authentication) and only allows 
information retrieval. It is mainly used by the Resource 
Broker component of the Workload Management service. 

Volatile files3 are not declared in the LFC. 

3. The Disk Pool Manager 

As described above, the different tiers of the LCG have 
markedly different storage capacity and service 
requirements. The Tier-0 site uses the CERN Advanced 
STORage manager (CASTOR) [14] storage system. It is a 
Hierarchical Storage Management (HSM) system 
developed at CERN used to store physics production files 
and user files. CASTOR manages disk caches and the 
data on tertiary storage or tapes.  

dCache [15] is installed at most Tier-1 sites (CASTOR 
is installed on a few Tier-1 sites). dCache provides a 

                                                        
3 Files which have a lifetime less than one month are considered as 

volatile files. 
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system for storing and retrieving huge amounts of data, 
distributed among a large number of heterogeneous server 
nodes, under a single virtual file system tree with a variety 
of standard access methods. dCache is a joined effort 
between the Deutsches Elektronen-Synchrotron (DESY) 
[16] in Hamburg and the Fermi National Accelerator 
Laboratory (FERMILAB) [17].  

DPM is installed at most Tier-2 sites (there are some 
Tier-2 sites which use dCACHE). In this section, we focus 
on the DPM, implemented by the Data Management team 
at CERN. 

3.1. Motivation 

The DPM primarily addresses the storage needs of the 
Tier-2 sites. They usually require at most a few hundreds 
of TB of storage capacity. The data will be stored for a 
few months and permanent data will be sent to the Tier-1 
site they depend on.  

However configuring and managing a tape-based 
storage system is expensive in terms of money and 
manpower and is typically not required at such sites and 
hence not currently provided by the DPM.  

Based on the requirements that have been collected, 
the main objective of the DPM is to provide a secure, 
reliable and scalable storage system that offers simple 
configuration and management. 

3.2. Architecture 

 

Figure 5. Overview of the DPM design. 

Figure 5 shows the outline of the DPM design 
architecture. 

To allow interoperability between different storage 
system types, a Storage Resource Manager (SRM) server 
and client have been designed. SRM is a common 
standard based on web services to manage storage 
systems and is further described in another paper 
submitted to this conference. The DPM supports both 
versions 1.1 and 2.2 of the SRM standard [18]. The 

requests are serviced by the respective SRM daemon. If 
an asynchronous request, such as a get or a put, is 
submitted to an SRM server, it is inserted into the DPM 
database and the SRM client polls for its status. Then, the 
DPM daemon picks up the request from the DPM 
database and processes it.  The DPM daemon contacts the 
DPNS (Disk Pool Naming Service) daemon regarding 
authorization and mapping between Site File Name 
(SFNs) and Physical File Names (PFNs) (see next sub 
section for details). 

If the request is synchronous, such as obtaining the 
current DPM configuration, reserving space, it is 
immediately processed by the DPM daemon. 

Physical files are then accessed and stored via any of 
the supported protocols, such as Remote File Input/Output 
(RFIO), GSIFTP [19], http, xrootd [20]. 

3.3. The Database Backend 

As shown in Figure 5, the DPM uses a database that is 
split in two parts: 

• The DPM part contains information related to 
the DPM configuration and status.  Figure 6 shows an 
extract of the DPM table schema. The current setup of 
the DPM is retrieved using the dpm_fs and dpm_pool 
tables. All the coming asynchronous requests (get and 
put) are stored in the dpm_pending_req table. A 
request is identified by the r_token column in the 
dpm_pending_req table. The user or an application 
can request to put or get several files at once. Each file 
involved in a given put/get request is associated with 
the pair (r_token, f_ordinal) which are two columns of 
the dpm_put_filereq and dpm_get_filereq tables. The 
DPM daemon selects one of the pending requests (i.e. 
one given r_token) and processes it. Distinct tables for 
each type of request enable to gain in performance 
especially in case of concurrent accesses. 
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Figure 6. Extract of the DPM table schema. 

• The DPNS part allows mapping between the 
SFN (Site File Name) and the PFN (Physical File 
Name) and retrieving the permission associated to a 
SFN. An extract of the table schema is presented in 
Figure 7. The Cns_userinfo and Cns_groupinfo tables 
contain information respectively about the user 
Distinguished Name (DN) and VOMS attributes. The 
physical location of files is stored in the 
Cns_file_replica table. The sfn, host and fs columns 
represent respectively the full physical path (PFN),   
the name of the machine and the file system where the 
the file is stored. The Cns_file_metadata table 
contains information about the SFN and file 
permission. The SFN corresponds to the SURL of the 
LFC as illustrated in Figure 8. The TURL is the 
association of a PFN and an access protocol such as 
RFIO, GSIFTP.  
The acl column fixes the permission of a file or a 
directory. It follows the same scheme as the UNIX file 
system.  

 

Figure 7. Extract of the DPNS table schema 
which is the same as for the LFC. 

 

Figure 8. Relationships between the SURLs, 
SFNs and PFNs. 

All persistent states are maintained in the database and are 
required in case of system recovery. 

3.4. Key aspects in authentication and 
authorization 

Figure 9 illustrates the authentication and authorization 
mechanisms that allow a client to access a given DPM 
site. This mechanism follows the rules of the gLite 
Security service. The authentication is based on grid 
certificates. This step is performed by the first daemon 
contacted by the client request. For example, if it is a 
SRM request, the SRM daemon will authenticate the user. 
Both the DPM host and the client must have valid grid 
certificates; otherwise the user request is cancelled. 
The next step is to check that the user is entitled to access 
the DPM site. There are two scenarios: 

1) A user comes with a valid voms-proxy, i.e. the 
user is already associated with a VOMS. Then 
s/he has the right to access the DPM. 
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2) A user comes with a valid grid-proxy. Its user 
DN has to be declared in the lcgdm-mapfile and 
the grid-mapfile. If the user DN is not in one of 
the mapfiles, the request fails. Otherwise the 
Virtual Organization (VO) associated with the 
user DN is retrieved4. This information user DN 
and VO are mapped to virtual IDs. 
 

 

Figure 9. Overview of the authentication and 
authorization mechanisms. 

They are inserted respectively in the Cns_userinfo and 
Cns_groupinfo tables if they do not exist. Virtual IDs are 
very useful as they permit to remove the concept of pool 
account and to support Access Control Lists (ACLs). Thus 
the site administrator does not have to create accounts or 
to modify the password file. They also allow a fast check 
of the ACLs and ownership of a file. 

3.5. Pool concept 

A pool is an ensemble of (disk server, file system). 
Referring to Figure 6, the dpm_pool table describes the 
characteristics of a pool.   

The quality of a pool is defined in the ret_policy 
column. It can be custodial (very good quality), replica (to 
be used for replicas) or output (medium quality). This 
characteristic depends on the hardware and is defined 
during the setup of the DPM by the DPM administrator. 
However it can be updated if a hardware change occurs. 

A file is associated with a quality type ( ret_policy 
column of dpm_put_request and dpm_get_request 
tables). It is set by the user and it determines the selection 
of the pool in which this file will be stored. The f_type 
column of dpm_put_request and dpm_get_request 
tables corresponds to the type of file. The f_lifetime 
column of dpm_put_request table corresponds to the 
lifetime of a file in the storage system. The f_type column 
can be set to permanent for files which are never to be 

                                                        
4 If a user issues a voms-proxy command and s/he belongs to several 

VOs, then there is a virtual ID for each pair (user DN, VO he is part of). 

deleted (and f_lifetime is equal to infinite), volatile for 
files to be deleted (when f_lifetime is expired) or durable 
(warn the owner of the file by mail that f_lifetime has 
been expired). However the durable space type is not 
implemented yet. 

A pool can be associated to one or several VOs (groups 
column). In other words, it is like attributing ACLs on 
pools. Thus only the users which are in the specified VOs 
will be authorized to store files in this pool. It allows 
preventing greedy VOs from storing their files in any pool 
and saturating the DPM quickly. 

A pool has a default reserved space (defsize column). It 
is used to reserve space for a given file by default if no 
size is specified in the client request.  

3.6. Replica and file system selection  

A file can be stored in different locations. The selection 
of a file system is based on the round robin mechanism. 
The main reasons are the following ones: 

• It is fast to compute; 
• It reduces the number of concurrent accesses for a 

given file system. 
A file can have several replicas. The question is which 

one to select.  The algorithm is quite intuitive and fast to 
compute: 

1. Get the list of replicas with the physical location; 
2. Select the ones which are in the same domain as 

the client; 
3. Select randomly one of them if still several or if 

no host is in the same domain. 

3.7. Outline of the DPM server implementation 

The core of the DPM architecture is the distinct 
daemons and the database. The communication between 
daemons and the database is based on sockets. As with the 
LFC, the main application layer is via multi-threaded 
daemons implemented in C and the database backend can 
use either Oracle or MySQL databases. ProC [21] (resp. C 
MySQLclient library) is used as a DB interface if it is an 
Oracle DB (resp. MySQL).  

An automated garbage collection is implemented to 
remove expired volatile files. 

A clean-up mechanism has been implemented to delete 
incomplete files based on the timeout which corresponds 
to the lifetime column referring to Figure 6. It prevents 
from having internal consistency in the DPM. 

Each daemon produces a daily log file used for offline 
debugging and analysis. The different log files are also 
used for auditing purposes. Each user is tracked by its DN 
and the different operations s/he performs. 

To improve the robustness of the system, the different 
DPM sites can report their problems and comments to the 
support staff via different grid services [22].  
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3.8. Tools to manage the DPM 

 

Figure 10. Software architecture of the client 
tools specific to DPM. 

Figure 10 shows the different tools specific to the 
management of the DPM. There are two utilities: 

• The RFIO CLI and C-library permit to manipulate 
files and get information about files via the RFIO 
protocol. The RFIO API is POSIX compliant. 

• The DPM C-library and CLI are the lowest level. 
It consists of functions which can contact both the 
DPNS and DPM daemons. It allows the expert 
user to define its own parameters instead of using 
the default ones.  

The RFIO and DPM libraries are thread-safe. 
The RFIO and DPNS commands are very similar to 

UNIX commands, thus users can use them intuitively. In 
addition, no database knowledge is required.  

There is no checksum to verify whether a file is 
corrupted or not. The main reason is that this operation is 
time-consuming and there is no standard method provided 
by the file access protocol (RFIO, GSIFTP, etc.). However 
the user can implement its own checksum and inserts it in 
the LFC. There are two columns (csumtype and 
csumvalue) in Cns_file_metadata referring to Figure 7. 

It is up to the user or site administrator to guarantee 
data consistency when writing applications based directly 
on the DPM library. The DPM and RFIO libraries (or 
CLI) do not communicate with the LFC.    

The choice of this implementation is justified by the 
following user’s requirements: 

•      it should be possible to have different 
permissions according to the location of a 
storage resource. We have a use case, where 
ACLs should be more restrictive on storage 
resources which are not local. 

•      it should be possible to store files in a storage 
system locally. In other words, these files 
should not be visible in the EGEE grid. This 

is achieved if these files are not declared in 
the LFC.   

 
 

4. Generic client utilities 

Regardless of whether a grid user is a physicist, 
physician or an engineer, they should all be able to use the 
client utilities to access the gLite services and in 
particular the storage system. Moreover there are different 
types of storage systems. Generic client utilities must be 
implemented to make the interoperability between 
different storage types possible. 

The gLite Data Management team has contributed in 
the implementation of several types of tools to allow the 
user to interact with different types of storage system. 

4.1. Software architecture 

 

Figure 11. Software architecture to interact 
with the different types of storage systems. 

Figure 11 shows the software architecture.  The aim of 
this architecture is to provide access to any type of EGEE 
storage systems. There are different tools: 

• The LCG-utils tools (Python and Perl module, 
CLI and C-library) [23] are top-level tools. In 
other words, they require little knowledge of the 
storage system implementation. They allow a 
transparent access to different types of grid 
catalogues and storage elements. The user can 
store, replicate, delete and copy a file using LCG-
utils tools.  

• The Grid File Access Library (GFAL) [24] is a C 
library which provides a POSIX interface to local 
and remote Storage Elements on the Grid.   

• The File Transfer Service (FTS) allows file 
transfer between different storage systems. See 
section 6 for more details. 
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• The SRM interface is used by GFAL. This 
interface allows interoperability between the 
different types of storage system. It is a web 
service based on SOAP [25]. The API has been 
defined and agreed by the SRM consortium [18]. 

4.2. Data consistency  

All these tools allow modular and flexible file 
management in the storage system. For the moment, 
there is no mechanism to check the authenticity, i.e. the 
data provenance is correctly tracked. 
LCG-utils has been implemented to reduce human 
interventions and try to automate the different 
operations. For instance, if a replica is inserted or 
deleted, both the LFC and the storage system databases 
are up-to-date.  
However if a disk server at a given storage system 
crashes, there is no notification to the LFC to delete 
the files. It is foreseen to provide such a script by the 
end of the year. 

4.3. Integration with the grid middleware 

The typical use case is a user who submits a job which 
needs to open a specific file stored in the EGEE grid. 
Where is the file stored? Which storage site is up and can 
handle the request?  What protocol can be used to access 
the file?  

A complete integration in the grid middleware stack 
and interoperability between the existent storage systems 
are means to ensure a long lifetime.  

The Information & Monitoring service via the 
Berkeley Database Information Index (BDII) [26] 
provides two types of information: 

• Static information such as the different end-
points (storage elements for instance) 

• Dynamic information such as the free space of a 
given storage element. 

Figure 12 illustrates the interaction between the four 
gLite services. Authentication and authorization are 
performed for each grid component (LFC, DPM server 
and DPM disk servers). For the BDII, there is no 
authentication as anybody can have a read-only access. 

 

Figure 12. Example of a data flow of a call to 
gfal_open. 

Referring to Figure 12, the worker node needs to open 
a file to execute the job. It issues a gfal_open.  The LFC is 
called to return the list of replicas (SURLs) given a 
GUID. Then there is a call to the BDII to get the version 
of the SRM interface to use. The next step is to get a 
TURL from the DPM using the SRM interface. The file 
can be opened using an access protocol such as RFIO. 
The protocol is specified in the TURL. The selection of 
the protocol is the result of a negotiation between the 
SRM client and the SRM server.  

5. Encrypted Data Storage  

5.1. Objectives 

The EGEE grid is used mainly by High Energy Physics 
(HEP) applications. However, main other areas are also 
actively represented in the project. In the specific case of 
medical institutes, additional requirements are involved, 
such as data encryption during the file transfer and in the 
storage system. To fulfill these requirements, the gLite 
Data Management Service has designed the Encrypted 
Data Storage (EDS) as shown Figure 13. 

 

Figure 13. The EDS architecture. 
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5.2. Design 

Digital Image and Communication in Medicine 
(DICOM) [27] is a medical image standard developed to 
satisfy clinical practice. A DICOM image integrates the 
image itself and metadata information (related to the 
patient for instance). DICOM servers allow storing and 
retrieving DICOM images both on disk and tape based 
back-ends. However the DICOM security model is rather 
weak. DICOM images are accessed only internally within 
the hospitals. By using the different EGEE services, 
DICOM images can be accessed from outside. An 
extended version of SRM (SRM DICOM) has been 
implemented to be both compatible with the grid and the 
DICOM protocol. A DICOM image is identified with a 
device triplet (3 UIDs) [27]. 

Each DICOM image has an entry in the LFC and is 
identified with a GUID so that the physical location of the 
image can be found.  

ARDA Metadata Catalogue Project (AMGA) [28] is 
used to store relational information on medical images 
stored on the grid, plus information on patients and 
doctors. 

The HYDRA [29] library allows medical images to be 
encrypted and decrypted using the file specific keys stored 
in the Hydra keystore. 

GFAL is used to retrieve the medical images. The 
medical image stored in the DICOM storage is encrypted 
on the fly. The client decrypts it locally using the specific 
key (HYDRA). A replicated medical image is always 
stored encrypted in grid storage elements such as DPM. 

There is an access control based on the ACL to check 
that a given user has the permissions to get a given replica 
when contacting the LFC. 

6. File Transfer Service  

6.1. Motivation 

Given the data volumes and rates involved, a robust 
and reliable file transfer service, automatically 
implementing retry to cater with all common errors, is 
required. The LHC uses in average a file size of 1GB. 
Based on expected data rates, there will be 105-106 files 
transferred per day.  Manual intervention, i.e. due to file 
transfers failures should not occur more than 1 per day at 
a given site as this problem is time-consuming. The 
service has to be reliable to 1 in 10 5/6.To meet these 
requirements, the gLite File Transfer Service (FTS) has 
been implemented [30].  

6.2. Architecture 

 

Figure 14.  Outline of the architecture. 

 
Figure 14 describes the architecture of this service. 
The client securely connects to the service to submit a 

transfer request.  The transfer service refreshes 
periodically the status of the transfer (polling 
mechanism). The client can reconnect to the service to 
check the transfer status or to abort its request. It is an 
asynchronous file transfer. The transfer service is 
centralized so it has a global view of the different 
requests. It allows load balancing and transfer scheduling. 

6.3. The Channel concept 

The FTS uses the concept of channels. A channel is an 
abstract unidirectional link between the source and 
destination storage elements. Each channel is independent 
which can be managed and configured distinctly. This 
concept has been introduced to optimize the bandwidth 
and to allow the VOs to manage their own channels.  
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6.4. Overview of the implementation 

 

Figure 15. The architecture of the FTS. 

The FTS architecture as represented in Figure 15 
consists of the following components: 

• A VO agent is the first element to be contacted 
when a request from a given VO is submitted. It 
authorizes the request and assigns a channel to the 
request. If the request is accepted, then its status 
moves to PENDING. It also handles the 
scheduling. 

• A channel agent is responsible for monitoring of 
the transfer. It also balances requests on the 
channel between different VOs. 

• A FTS database (Oracle database) contains all the 
information about the requests and the channels. It 
also allows collecting statistics and monitoring 
information. 

• A FTS web service receives the requests and 
inserts the information in the database.  

7. Test & Performance 

Performance is a real issue for the FTS and for the 
LFC. Data rates from Tier-0 to Tier-1 vary from 50 to 
400MB/s. These transfers occur 24 hours a day over a 
period of around 100 days. Data transfers from the Tier-2 
sites to Tier1 are at lower rate, roughly tens of MB/s. 

Independent test suites have been conducted to 
enhance the performance and the robustness of the data 
management components. 

7.1. LFC tests 

Queries against the LFC have been speed up with the 
use of bulk queries as it reduces the number of round trips 
between the client and server. 

Several other tests [31] are being conducted to measure 
things like the impact of the size of the communication 
buffer between the client and a local/remote LFC server 
on the response time.  

A test suite has been developed for stress tests. 

7.2. DPM tests 

Many sites have volunteered to carry out stressing 
tests. Their output was very fruitful as the hardware and 
network setups were different.  

One example is the reading of files using the RFIO 
protocol by many simultaneous clients.  

 

Figure 16. Read rate using the RFIO protocol 
in function of the number of clients. 

Figure 16 shows the read rate in function of the 
number of clients. Each client tries to read a distinct file 
of 1 GB. The performance has been improved with the 
new version of DPM by limiting the number of round 
trips between the client and the server. For instance, with 
DPM version 1.5.10 the open time increased from ~2s 
with 1 client to ~12s with 80 clients. With 1.6.3 the open 
time increases from ~1.8s to ~2.7s with 80 clients. The 
authentication operation takes around 0.7sec.  The one 
second left is due to the poll mechanism (the first poll to 
check the status of the request occurs after one second). 
However no users have complained about the DPM 
performance. 

7.3. Client utilities 

The SRM interface is tested by a dedicated group (the 
SRM testers) as there are different types of storage 
elements to be verified. They have developed test suites 
and all the results are presented in web pages.  

This group has also started to set up stress tests. It 
allows verifying the robustness of the end-points – DPM 
in our case- and their behavior when heavily loaded.  

All the results are collected on a web page [32]. 
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The different functionalities of LCG-utils, GFAL, 
RFIO and DPM utilities have also been tested. It allows 
verifying the behavior of these functions in case of human 
errors and also the robustness of the components (LFC, 
DPM, etc.)  

7.4. FTS tests 

Concurrent request submission has been tested. It 
turned out that the FTS could accept up to 50 
simultaneous connections without any failures. The 
robustness and reliability of the FTS have been evaluated 
via the LCG challenges. During these periods, the FTS is 
heavily loaded as hundreds of TB was transferred between 
CERN and Tier-1 sites such as (CNAF in Italy, DESY in 
Germany). 

 

8. Conclusions 

In this paper, we have reviewed the different 
components of the LCG Data Management service. The 
LFC is a secure file catalog that allows a user to retrieve 
replicas without knowing their physical locations. The 
DPM provides a lightweight, manageable and scalable 
storage system. The RFIO and DPM libraries allow file 
management and DPM configuration at low level. These 
tools are specific to the DPM. 

The DPM as a storage system can be accessed by 
generic, user-friendly and reliable tools (LCG-utils, 
GFAL) allowing integration in the EGEE grid 
environment. The SRM interface provides interoperability 
between different types and implementations of storage 
systems.  

The FTS offers a reliable transfer service for the LHC 
physics data between sites. Further studies on the 
scalability of the DPM and robustness of the FTS will be 
performed. 

Medical institutes have also benefitted from this grid 
middleware, thanks to the EDS. The integration of the 
EDS with GFAL and DPM is under implementation and 
will have to be tested. 

9. Acknowledgements 

We would like to thank Greig Alan Cowan and Graeme 
Stewart for their fruitful cooperation with stressing tests 
and performance. 

Also we would like to thank Jamie Shiers for his 
careful reading of the paper. His numerous comments, 
suggestions and corrections have substantially improved 
the quality of this text. 
This work makes use of results produced by the Enabling 
Grids for E-sciencE project, a project co-funded by the 
European Commission (under contract number INFSO-
RI-031688) through the Sixth Framework Programme. 

EGEE brings together 91 partners in 32 countries to 
provide a seamless Grid infrastructure available to the 
European research community 24 hours a day. Full 
information is available at http://www.eu-egee.org 

10. Glossary 

ACL: Access Control List 
AMGA: ARDA Metadata Catalogue Project 
BDII: Berkeley Database Information Index 
CASTOR: CERN Advanced STORage manager 
CLI: Command Line Interface 
DESY: Deutsches Elektronen-Synchrotron  
DICOM: Digital Image and Communication in 
Medicine  
DLI : Data Location Interface 
DN: Distinguished Name  
DPM: Disk Pool Manager 
DPNS: Disk Pool Naming Service 
EDS: Encrypted Data Storage 
EGEE: Enabled Grid for E-sciencE 
FERMILAB: Fermi National Accelerator Laboratory 
FTS: File Transfer Service 
GFAL: Grid File Access Library 
GUID: Grid Unique Identifier 
HEP: High Energy Physics 
HSM: Hierarchical Storage Management 
LCG: LHC Computing Grid  
LFC: LCG File Catalogue 
LFN: Logical File Name  
LHC: Large Hadron Collider 
OSG: Open Science Grid 
PFN: Physical File Name 
RFIO: Remote File Input/Output 
SFN: Site File Name 
SRM: Storage Resource Manager 
SURL: Storage URL  
VO: Virtual Organizations  
VOMS: Virtual Organization Membership 
Service 
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