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Abstract 

This paper presents the implementation and 
performance evaluation of a real, secure object-based 
storage system compliant to the T10 OSD standard. In 
contrast to previous work, our system implements the 
entire three security methods of the OSD security 
protocol defined in the standard, namely CAPKEY, 
CMDRSP and ALLDATA, and an Oakley-based  
authentication protocol by which the Metadata Server 
(MDS) and client can be sure of each other’s identities. 
Moreover, our system supports concurrent operations 
from multiple clients to multiple OSDs. The MDS, a 
combination of security manager and storage/policy 
manager, performs access control, global namespace 
management, and concurrency control. 

We also evaluate the performance and scalability of 
our implementation and compare it with iSCSI, NFS and 
Lustre storage configurations. The overhead of access 
control is small: compared with the same system without 
any security mechanism, bandwidth for reads and writes 
with the CAPKEY and CMDRSP methods decreases by 
less than 5%, while latency for metadata operations with 
any of the security methods increases by less than 0.3 ms 
(5%). The system with the ALLDATA method suffers a 
higher performance penalty: large sequential accesses 
run at 46% and 52% of the maximum bandwidth of 
unsecured storage for reads and writes respectively. The 
aggregate throughput scales with the number of OSDs 
(up to 8 in our experiments). The overhead of the SET 
KEY commands for partition and working keys refreshed 
frequently is less than 2 ms. 

                                                                 
∗ Corresponding author. 

1. Introduction 

It is desirable for storage systems to have the following 
five features: security, cross-platform data sharing, high 
performance, scalability and easy management. Because 
of the various limitations of DAS (Direct Attached 
Storage), NAS (Network Attached Storage) and SAN 
(Storage Area Network), it is difficult, if not impossible, 
for a storage system to have these five features 
simultaneously. The file-based NAS utilizes the file 
interface to provide secure capabilities and cross-platform 
data sharing, while the block-based SAN provides high 
performance through high-speed data access. By 
combining the advantages of high-speed and direct-access 
of SANs and the data sharing and security capabilities of 
NAS, and moving low-level storage functions of the file 
system into the storage device itself and accessing the 
device through a standard object interface, Object-Based 
Storage (OBS) enables a scalable, high-performance, 
cross-platform and secure data sharing architecture. 

Owing to the fact that objects have their own attributes, 
OBS can set up flexible security mechanisms on the basis 
of objects that constitute the primary storage units. OBS 
can assign different security attributes to the whole device, 
a group of objects, individual object, or even extensive 
data in an object, and implement authentication separately. 
Moreover, OBS can also divide the whole system into 
several partitions whose security attributes and rules of 
accessing are decided based on applications, and 
authorize every I/O operation. Thus OBS can offer a 
higher level of security than the NAS and SAN systems. 

In the past few years, object stores have received more 
and more attention, and most of the work has focused on 
the problem of security for object stores. Meanwhile the 
T10 Technical Committee of INCITS has made continued 
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efforts for the standardization of the object interface and 
the first version of the object based storage interface 
standard (also referred to as T10 OSD standard) [12] was 
ratified by ANSI in January 2005. The T10 OSD standard 
presents the OSD security protocol and its three security 
methods, namely CAPKEY, CMDRSP and ALLDATA, 
but very few OSD implementations are compliant to the 
OSD standard. In a recent paper [2], Du, et al. presented 
their experiences with the implementation of the T10 
OSD standard. However, their implementation was 
preliminary and further work needs to be undertaken to 
demonstrate the advantages of the object based 
technology. They implemented a preliminary security 
manager that can hand-out capabilities to users and 
perform some preliminary key management tasks while 
the security manager did not authenticate users; it 
assumed that users are already authenticated using any of 
the standard mechanisms such as Kerberos. The metadata 
server, that is essential in separating the data and control 
path, was not implemented in their system. They 
presented performance analysis of their implementation 
and compared it with iSCSI and NFS, while their 
experiments were based on one client and one OSD and 
the evaluation results failed to fully demonstrate the 
advantages of the object based technology. 

In this paper, we present an implementation of a real, 
secure object-based storage system compliant to the T10 
OSD standard. In contrast to the work done by Du et al., 
our system implements the entire three security methods 
of the OSD security protocol, and an Oakley-based 
authentication protocol by which the Metadata Server 
(MDS) and client can be sure of each other’s identities. 
Moreover, our system supports concurrent operations 
from multiple clients to multiple OSDs. The MDS, a 
combination of security manager and storage/policy 
manager, performs access control, global namespace 
management, and concurrency control. We also evaluate 
the performance and scalability of our implementation 
and compare it with iSCSI, NFS and Lustre storage 
configurations. We believe that our work involved in the 
implementation and performance evaluation of the 
standard will be valuable to the OSD research and 
development community at large. 

The rest of the paper is organized as follows. Section 2 
presents an overview of the OSD security protocol. 
Section 3 introduces the authentication protocol. Section 
4 describes the system design and implementation. 
Section 5 presents the performance methodology and 
discusses the evaluation results. Section 6 covers related 
work. And, finally, Section 7 concludes the paper and 
points out directions for future work. 

2. Overview of the OSD security protocol 

2.1. Security model 

The OSD security model consists of four components: 
(a) application client, (b) security manager, (c) 
policy/storage Manager, and (d) Object-Based Storage 
Device (OBSD). 

An application client wishing to access a file must 
request a capability from the security manager. After 
receiving the capability request, the security manager 
contacts the policy/storage manager to get a capability 
including permission. If the operation is permitted, the 
security manager generates a credential including the 
requested capability and a capability key, which is 
returned to the application client. The capability key has 
been created with a key shared between the security 
manager and OBSD. When the application client gets the 
credential, it sends the capability as part of its request and 
a request integrity check value generated with the 
received capability key to the OBSD. The OBSD 
validates the request, ensuring that the capability has not 
been tampered with, was rightfully obtained by the client, 
and that the requested operation is permissible by the 
capability. 

The shared secret key between the security manager 
and OBSD for the authentication of the OSD commands 
is refreshed periodically. The key exchange protocol is 
accomplished via two commands, SET KEY and SET 
MASTER KEY. 

2.2. Security method 

To improve storage system performance over different 
network environments, the OSD security protocol defines 
four different security methods: NOSEC 1 , CAPKEY, 
CMDRSP, and ALLDATA. The decision of which 
security methods to employ is left to the network 
environments over which the storage system runs. The 
CAPKEY method is used in a secure network 
environment (e.g., IPsec) to provide access control 
security, while the CMDRSP and ALLDATA methods 
are used in an insecure network environment to provide 
network security as well as access control. 

In the three security methods of the OSD security 
protocol, the high security method includes the 
functionality of the low security method, e.g., the 
ALLDATA security method includes the functionality of 
CAPKEY and CMDRSP, and the CMDRSP security 
method includes the functionality of CAPKEY. 

2.3. Credential revocation 

The OSD security protocol enables two mechanisms 
for invalidating a credential: key exchange and policy 
access tag [4]. 

                                                                 
1 We do not consider NOSEC a security method, since by definition it 

does not provide security. 
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The first mechanism, key exchange, is a coarse-
grained approach that exchanges the key between the 
security manager and the OBSD. The security manager 
may invalidate credentials for an entire partition by using 
the SET KEY command to update the working keys used 
to compute the credential integrity check value in those 
credentials. 

The second mechanism is fine-grained and invalidates 
all outstanding credentials for a given object by utilizing 
the object policy access tag. The object policy access tag 
is maintained both at the security manager and OBSD, 
and it is a settable object attribute. The policy access tag 
allows the coordinated actions of both the security 
manager and OBSD to prevent unsafe or temporarily 
undesirable utilization of OBSD. By modifying the value 
of an object policy access tag, the security manager or 
OBSD can invalidate all outstanding credentials for the 
object. 

2.4. Key management 

The OSD standard defines a hierarchy of four types of 
keys: master key, root key, partition key, and working key. 
Except the working key, each master, root, and partition 
key represents two secret key values: an authentication 
key and a generation key. The authentication key is used 
to compute the credential integrity check values; and the 
generation key is used by future SET KEY commands 
and SET MASTER KEY commands to compute the 
updated generation key and new authentication key values. 

The key exchange protocol is accomplished via two 
commands, SET KEY and SET MASTER KEY, which 
are carried under the OSD security mechanism. For the 
SET MASTER KEY command, the Diffie-Helman key 
exchange protocol [13] is implemented, thus achieving 
Perfect Forward Secrecy (PFS). PFS ensures that a given 
Master Key is not derived from any other secret. In other 
words, if someone breaks a key, PFS ensures that the 
attacker is not able to derive any other key. 

3. Authentication protocol 

The standard defines the security protocol between: 1) 
the OBSD and the client and 2) the OBSD and the 
security manager (primarily for key management). 
Communications between the client and the security 
manager is outside of the scope of the standard. Based on 
the Oakley key determination protocol [10], we 
implement an authentication protocol by which the 
security manager and the client can be sure of each 
other’s identities without exchanging the share key and 
agree on a secret key that is immediately available for use 
in encrypting subsequent conversations. What’s more, by 
the enhanced cookie algorithm the authentication protocol 
can reduce the winning probability of cookie attacks 

effectively and by the clock synchronization information 
exchanged in the protocol the authentication protocol can 
implement the clock synchronization between a client and 
the security manager. 

3.1. Cookie algorithm 

The basic mechanism of the Oakley key determination 
protocol is the Diffie-Hellman key exchange algorithm [3] 
which allows two parties to agree on a shared value 
without requiring encryption. But some deficiencies exist 
in the Diffie-Hellman key exchange algorithm, e.g., 
having offered no information about identities of both 
sides, it is easy to be attacked by the go-between; the 
complexity of the algorithm makes it vulnerable to be 
attacked by inundation. The Oakley protocol retains the 
advantage of Diffie-Hellman algorithm while overcoming 
its shortcoming, preventing clogging through the Cookie 
exchange mechanism and preventing the go-between 
from attacking by authenticating the Diffie-Hellman 
exchange. The Oakley key determination protocol 
includes the following three steps: 1) Cookie exchange, 2) 
Diffie-Hellman half-key exchange, and 3) Authentication. 

Because the Oakley protocol does not define the 
method by which cookies are produced, identical cookies 
can easily be forged by attackers. When the go-between 
captures the first cookie from the initiator, it can forge the 
response cookie. The attacker is closer to the initiator than 
the responder, so the initiator will receive the forged 
cookie first and refuse the legal cookie that arrives later. 
As a result, the Oakley protocol cannot establish 
connection between the initiator and the responder. The 
enhanced cookie algorithm is given below [18]: 

1) The initiator gets local host IP and the shared 
key2. 

2) The initiator uses the first 64 bits of a hash which 
is generated over the local host IP and the shared key 
as the initiator cookie. 

3) The initiator sends the cookie generated in step 2 
to the responder. 

4) The responder gets the shared key. 
5) The responder computes the hash over the 

initiator IP and the share key, and then compares the 
first 64 bits with the initiator cookie. If the result is 
identical, the next step will be executed, otherwise a 
condition of being attacked will be notified. 

6) The responder computes the hash over the local 
host IP and the shared key, and then sends the first 64 
bits of the hash, i.e., responder cookie, to the initiator. 

7) The initiator computes the responder cookie and 
compares the result with the responder cookie that has 
been received from the responder. If the result is 

                                                                 
2 The shared key is also used for the following authentication; it is 

dependent on the passphrases of the users. 
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identical, the next step will be executed, otherwise a 
condition of being attacked will be notified. 

8) Enter the Diffie-hellman exchange stage. 

Because the hash function is one-way function and the 
enhanced cookie algorithm relies on the shared key and 
the IP addresses of the initiator and responder, the go-
between cannot forge the cookie. The most a malicious 
host could accomplish would be to mount a denial-of-
service attack against a valid host, as opposed to 
successfully authenticating as a valid host. Also, the CPU 
cost of the hash function is small relative to the network 
speed, so the hosts would not be clogged even they have 
been attacked by inundation. 

3.2. Authentication flow 

Notations used for the protocol description are as 
follows: 

1) Cookie-C and Cookie-M (or CKY-C and CKY-M) 
are 64-bit pseudo-random numbers. The generation 
method is defined by the cookie algorithm. 

2) UID is the user identity to be used in authenticating 
the user. 

3) ID(C) and ID(M) are the identities to be used in 
authenticating the client and MDS respectively. 

4) GRP that can be pre-defined or user-defined is a 
name (32-bit value) for the Diffie-Hellman group used for 
the exchange. 

5)  and are encodings of the Diffie-Hellman 
group elements, where 

xg yg
g  is a special group element 

indicated in the group description and  indicates that 

element raised to the x'th power.  is the eventually 
obtained Diffie-Hellman key. 

xg
xyg

6) and  are nonces selected by the client and 
MDS. 

cN mN

7）KEYID is the concatenation of the client and MDS 
cookies; it is the name of keying material. 

8) sKEYID is used to denote the keying material 
named by KEYID. It is the final secret key generated in 
the OAKLEY determination protocol and depends on , 
KEYID,  and  obtained from the Diffie-Hellman 
algorithm. 

xyg
cN mN

9) EHAO is a list of encryption/hash/authentication 
options.  Each item is a pair of values: a class name (i.e., 
encryption, hash and authentication) and an algorithm 
name.  

10) EHAS is a set of three items selected from the 
EHAO list, one from each of the classes for encryption, 
hash and authentication. 

11)  indicates the signature over { } ikxS x  using . 
Signing  is  done  using  the algorithm associated with an 

ik

Client
( ) ( )

c

x
NMIDCIDEHAOgGRPUIDCCKY ,,,,,,,−

( ) ( )
i

x

c kEHAOgGRPNUIDMIDCIDS }|0|||0||||{

MDS

( ) ( ) TSNNCIDMIDEHASgGRPUIDCCKYMCKY cm
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Figure 1. Authentication flow. 
authentication method; usually this will be RSA or DSS. 
The signature key  is the result of applying a one-way 

function to data | . Where k  is the shared key 
between the client and MDS. 

ik

cN k

12) TS  is the clock synchronization information sent 
back to the client by MDS. 

13) ( )baprf ,  denotes the result of applying pseudo-
random function with key " a " to data "b ". 

Authentication Flow. Figure 1 shows the authentication 
flow. The client generates a unique cookie and associates 
it with the expected IP address of MDS, and its chosen 
state information: the group identifier GRP, a pseudo-
randomly selected exponent x , EHAO list, nonce, 
identities. The first authentication choice in the EHAO list 
is an algorithm that supports digital signatures, and this is 
used to sign the message with the signature key . The 
client further sets a timer for possible retransmission 
and/or termination of the request. 

ik

When MDS receives the message, it may choose to 
ignore all the information and treat it as merely a request 
for a cookie, and continue to exchange the key using the 
conservative mode of the Oakley protocol. In this paper 
we assume that MDS is more aggressive and accepts all 
the information offered by the client, i.e., group with 
identifier GRP, first authentication choice which must be 
the digital signature method used to sign the initiator 
message. Then MDS validates the signature with  
generated by MDS with the shared secret k , and 
associates the pair (CKY-C, CKY-M) with the following 
state information:  

ik

1) User identity from the message. 
2) The source and destination network addresses of the 

message. 
3) The key state of "unauthenticated". 
4) The first algorithm from the authentication offer. 
5) Group GRP, a " " exponent value in group GRP, 

and  from the message. 

y
xg

6) The nonce  and a pseudo-randomly selected 

value . 
cN

mN
7) A timer for possible destruction of the state. 
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Figure 2. System model. 

MDS computes , forms with the concurrent 
system clock, forms the reply message, and then signs the 

yg TS

ID , TS  and nonce information with  and sends it to 
the client. 

ik

When the client receives the MDS message, and if the 
signature is valid, it will synchronize with MDS and send 
the confirmation message signed with the signature key 

. In this step, the client and MDS compute 
 and associate it with the 

. The final result of this 
exchange is a key with 

ik
( ) ( ) xyyxxy ggg ===Ζ

MCKYCCKYKEYID −−= |
MCKYCCKYKEYID −−= |  

and value ( )MCKYCCKYgNNprfsKEYID xy
mc −−= ||,| . 

4. System design and implementation 

Our object-based storage system consists of three 
components: OSD (Object-based Store Device), MDS 
(Meta Data Server) and clients. The three components are 
interconnected by IP network. As shown in figure 2, the 
grayed blocks are our reference implementation. 

The client implements two kernel modules: the Object 
Filesystem Interface (OFI) and the iSCSI initiator driver. 
The OFI is implemented compliant with VFS like any 
other file systems on Linux. It receives the file operation 
commands from VFS and translates the file operations to 
object operations. The iSCSI initiator driver provides 
iSCSI transport to access remote iSCSI targets over IP 
networks. 

OSD implements the SCSI OSD command sets 
compliant to the T10-OSD standard specification. It 
includes two kernel modules: the Object Storage 
Controller (OSC) and the iSCSI target driver. The iSCSI 
target driver accepts and decapsulates iSCSI PDUs from 
the iSCSI initiator driver and presents the decapsulated 
SCSI OSD commands to OSC. OSC processes the SCSI 
OSD commands and manages the physical storage media. 

MDS  executes  as a user level process that implements 

OSD Client

Object Command Mapping

Metadata and 
Credential Cache

MDS Client

VFS

iSCSI initiator Socket  
Figure 3. Object filesystem interface. 

the functionalities of the Security Manager and 
Policy/Storage Manager. It includes the metadata/security 
manager and iSCSI initiator driver. The metadata/security 
manager is responsible for authenticating users, 
authorization, metadata maintenance, global namespace 
management, key management and workload balance; it 
presents the SET KEY and SET MASTER KEY 
commands to OSD through the iSCSI initiator driver. 

4.1. Object filesystem interface 

As depicted in Figure 3, OFI consists of four modules, 
namely, the Object Command Mapping (OCM), the OSD 
Client (OC), the MDS Client (MC) and the Metadata and 
Credential Cache (MCC). OCM translates file operations 
to object operations, gets metadata and credentials via 
MC and accesses OSD by OC. OC presents object 
commands to OSD through the iSCSI channel. MC 
accesses MDS through the TCP/IP protocol and 
implements an MDS command collection that we have 
defined in our system. MCC caches credentials and 
metadata in the client to improve the system performance, 
as evidenced in our experiments. 

User processes access OFI through the Virtual 
Filesystem Switch (VFS), which offers user processes a 
unified, abstract and virtual file interface. After receiving 
the file operation commands from VFS, OCM searches 
the metadata and credentials related to the requested file 
in MCC. If MCC has cached the metadata and credentials, 
then OCM translates file operations to object operations 
and sends object commands to OC, or else MCC first 
requests the metadata and credentials through MC. Except 
for sending object commands, OC is responsible for 
transfering data to and from OSD. A data buffer in OC 
enables multiple small object writes to be “batched” into a 
single large network write. 

4.2. Object storage controller 

The OSD object abstraction is designed to repartition 
the responsibility for managing the access to data on a 
storage device by assigning the storage device additional 
responsibilities in the area of space management [12]. The 

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore.  Restrictions apply. 



Command Verification Module

Object Command Handler

Storage DeviceSpace Manager

Object Commands

OSD CDBs OSD response

iSCSI target

 

Authentication 
Module

Credential Generator

File Command Handler

Key Manager Buffer Manager

LDAP Database

SocketiSCSI initiator

 Figure 4. Object storage controller. 
Figure 5. Metadata/Security manager. task of the traditional file system was divided into two 

parts: the file system user component and the file system 
storage component. The user component contains the 
functions of hierarchy management, naming and user 
access control. The storage component is focused on 
mapping file system logical view to the physical storage 
media. 

use in encrypting subsequent conversations. After login 
success, the client sends the request to MDS, including 
the requested filename, operation code. FCH is 
responsible for mapping the file requests onto 
corresponding objects, and returns the object metadata, 
including the object identifier, operation rights, security 
policy etc. to CG. CG acquires the appropriate key from 
KM to generate a cryptographically secure credential for 
that object. BM calls the LDAP (Lightweight Directory 
Access Protocol) API to get the metadata from the LDAP 
Database and caches the recent metadata that is used 
frequently. A hash algorithm is implemented for fast 
retrieving the cached information. 

In our case, the user component is assigned to MDS, 
and OSD takes the task of the storage management. MDS  
decides how files are mapped to objects and which OSDs 
serve to store the objects. There is one root object for 
each OSD logical unit and it is the starting point for the 
navigation of the structure on the OSD logical unit. There 
are any number of partition objects and user objects for an 
OSD logical unit, while collection objects are not 
supported in our current implementation. All partition 
objects and user objects are managed by the local 
filesystem; the partition objects are mapped onto 
directories and the user objects are mapped to files. As the 
functions of hierarchy management, naming, and user 
access control are managed by MDS, all user objects that 
belong to the same partition are on an equal footing with 
each others, and there is no hierarchical relationship (like 
traditional file systems) for objects. So OSD can only 
maintain a platform namespace for every partition, all 
user objects belonging to the same partition are stored in 
one directory.  

KM is responsible for key management and refresh. 
When an OSD is added to the system the key hierarchy 
between OSD and MDS is built via the SET MASTER 
KEY and SET KEY commands committed by KM. 
During the use of OSD, the master key does not change 
unless the system administrator is changed. The root key 
refresh command is a privilege assigned to the 
administrator that manually refreshes the root key in case 
it is comprised. The partition key and working key are 
refreshed periodically according to the key refreshing 
policy. All the SET MASTER KEY and SET KEY 
commands are performed under the protection of the 
CMDRSP method. As depicted in Figure 4, the Object Storage Controller 

(OSC) consists of two modules: the Command 
Verification Module (CVM) and the Object Command 
Handler (OCH). The CVM first checks the validity of the 
OSD CDBs from the iSCSI target and then presents the 
legal object commands to OCH. OCH translates object 
operations (e.g., read objects) to filesystem calls to finish 
object operations.  

The Hybrid Scheme for Object Allocation. In an 
object-based storage system, files are mapped into one or 
more data objects stored on OSDs. The policy for object 
allocation is a critical aspect affecting the overall systems 
performance. At present, most object allocation schemes 
employ one of two techniques [14]. The first one allocates 
a file to one device by using hashing functions that map 
file IDs to OSD IDs. This approach converts a file to one 
object and sends it to only one device. The second object 
allocation technique, called fragment-stripping or 
fragment-mapping, uses equal-sized fragments of each 
file to widely distribute the file among the OSDs. Both 
techniques have their advantages and disadvantages: the 
hashing approach achieves good load balance and 
provides rather high effectiveness in data allocation, but it 
can not provide readily available parallelism for large 
files;   the   fragment-stripping  approach takes full advan- 

4.3. Metadata/Security manager 

As shown in Figure 5, the metadata/security manager 
consists of five modules: the Authentication Module 
(AM), the File Command Handler (FCH), the Buffer 
Manager (BM), the Credential Generator (CG) and the 
Key Manager (KM). AM is responsible for authenticating 
users and implements the authentication protocol. An 
application client wishing to access the storage system 
must  login  first and  negotiate a secret key with MDS for  
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/user1

/

/user2 /userm…  …  …  …

b …  …  …  …

small file
A big file is divided into n objects 
according to the mapping policy

directory created by users

/user2/dir

cn=root, dc=example,dc=com

cn=user1,cn=root, dc=example,dc=com

cn=user2,cn=root, dc=example,dc=com

cn=userm,cn=root, dc=example,dc=com

cn=a,cn=user2,cn=root, dc=example,dc=com

cn=b,cn=user2,cn=root, dc=example,dc=com

cn=1,cn=b,cn=user2,cn=root, dc=example,dc=com

cn=2,cn=b,cn=user2,cn=root, dc=example,dc=com

cn=n-1,cn=b,cn=user2,cn=root, dc=example,dc=com

…  …  …  …

cn=dir,cn=user2,cn=root, dc=example,dc=com
…  …  …  …

(a) M apping of files to objects (b) M apping of metadata to LDAP records  
Figure 6. Mapping of files to objects and metadata to LDAP records.

tage of device parallelism, simplifies the clients’ operations, 
but this policy is not fit for small files. 

In our case, we employ a hybrid scheme of hashing and 
fragment-stripping for object allocation [14], which 
combines the best aspects of these two techniques while 
avoiding their disadvantages. The scheme converts a small 
file to a single object and a large file to multiple objects and 
each object will be distributed to an OSD (see Figure 6(a)). 
According to OBFS [15], the boundary of small and large 
files should be around 512KB. How many objects a file is 
divided into and which OSDs serve to store the objects are 
based on the size of the file, the total number of OSDs, the 
speed and free-capability of devices, as well as other 
parameters. The algorithm makes sure that an optimal 
number of objects is mapped from a file and the best-
conditioned devices are used first. Figure 6 depicts the 
mapping of files to objects and metadata to the LDAP 
records. The /useri is the work directory of the user(i) (see 
Figure 6(a)). The directory created by users and the object 
metadata are stored as records in the LDAP database (see 
Figure 6(b)). 

4.4. Timing 

In order to detect replays and expiration on capabilities, 
the clocks of OSD, MDS and client must keep some degree 
of synchronization. But the OSD protocol does not define 
the clock synchronization protocol. 

By the Simple Network Time Protocol [9], we achieve 
clock synchronization between MDS and OSD. We run a 
SNTP sever at MDS and keep clock synchronization with 
the SNTP host located in the Internet. On each OSD a 
SNTP client synchronizes the OSD with the MDS. 

When a client communicates with an OSD or MDS, the 
client must know the proper (secure) time value for 
generating request nonces. But not every remote client 
prefers to run the SNTP client in its own host. The client 
only needs to know the current value of the OSD clock but 
needs not to adjust the system clock to the network time. 
We maintain a secure clock value in the client by the 
authentication protocol. At the Diffie-Hellman half-key 
exchange stage MDS sends the current value of the MDS 

clock, then at the client login period the time difference 
between the client system clock and the MDS system clock 
is used to adjust the request nonce timestamps. When OSD 
verifies the request nonce timestamps invalidation, a new 
time difference will be obtained according to the value of 
the OSD clock returned by OSD. 

5. Performance evaluation 

We ran experiments to evaluate the following: (1) the 
performance of our OBS system with the three security 
methods against an unsecured storage system; (2) system 
throughput and scalability under a bandwidth-intensive 
workload; and (3) the overhand of key refreshes. 

Our experiments were conducted on 3 to 17 Super Micro 
SUPER X6DH8-XB nodes, each with one Intel 604-pin 
EM64T (NoconaTM) Xeon 3.0 GHz processor, 2MB L2 
cache, PCI-E x8 slot (Physical x4), PCI-X-133 MHz slots, 
800MHz Front Bus (FSB) and a total of 512MB PC2700 
DDR-SDRAM physical memory. The machines are 
connected by a 1000 Mbit/s Ethernet switched through a 
Cisco Catalyst 3750-24PS switch. In addition, each node is 
connected to a Highpoint Rocket 2240 Raid controller 
attached to 15 SATA disks (300GB each). All machines 
run RedHat AS3 Linux kernel 2.4.21.  

The configuration for our OBS system includes one 
MDS, several OSDs and clients, each using separate 
machines. Also, we compare the performance of our OBS 
system with those of iSCSI, NFS and Lustre. For all the 
above storage configurations, the same client-server 
machine combination was used, same disk partitions were 
used at the target or OSD to ensure the disk performance 
remains constant across all configurations. For iSCSI, we 
use the open-source Source Forge Linux iSCSI 
implementation (version unh-iscsi-1.6.00) and SCSI Target 
Mid-level for Linux (version scst-0.9.3) to set up the iSCSI 
configuration. Loading the initator driver creates a SCSI 
device on the client. iSCSI performance is measured on a 
ext2 filesystem constructed on this SCSI device. For NFS, 
we use the default Linux implementation of NFS version 3 
for our experiments and ext2 as the default filesytem. The 
NFS  daemon  was set up on the target and exported a share 
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Figure 7. Performance of three methods and the baseline. 

directory in the common test partition on the target. For 
Lustre, we employ the stable version 1.4.5 for our 
experiments and run the MDS, an OST and a client on the 
three nodes respectively. 

5.1. Performance evaluation for the different 
security methods 

This section compares the performance of our OBS 
implementation with the three security methods against its 
unsecured counterpart. The motive of this experiment is to 
see how much performance degradation is incurred when 
security protocol overhead is added to an object-based 
storage system.  

We ran the Iozone benchmark on the client. File size 
was set to 1Gbytes, using record sizes from 4Kbytes up to 
64Kbytes. For both files and records, each size increases 
will simply be a doubling of the previous value. The metric 
for evaluating the Iozone performance is the average 
number of megabytes read and written per second with two 
access patterns: random and sequential.  

Figure 7 shows the performance of a one client and one 
OSD system. As expected, the random accesses are slower 
than sequential accesses. For the sequential accesses there 
is only a marginal difference among different block sizes; 
for the random reads as the block size is increased, the 
performance is enhanced. But for the random writes as the 
block size is increased, the performance is few enhanced. 
We attribute the primary reason to the data buffer in the 
clients of our system, which enables multiple small objects 
writes to be “batched” into a single large network write. 

In the next paragraphs, we used the performance 
measurements of the NOSEC method as a baseline for our 
other performance measurements, showing the effect of the 
OSD security protocol on object-based storage system 
performance for each security method. 

Figure 8  shows  the  performance  of  all  three  security 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Th
ro

ug
hp

ut
 (K

B
/S

ec
)

Sequential
Read

Sequential
Write

Random
Read

Random
Write

NOSEC 44198 26960 2184 10127

CAPKEY 42342 26364 2115 10019

CMDRSP 41601 25946 2110 9893

ALLDATA 20346 14042 1978 7962

Sequential Read
Sequential

Write
Random Read Random Write

 

Figure 8. Performance of three security 
methods and the baseline for 8KB blocks. 

methods and the baseline (unsecured storage system)  in a 
system using 8KB blocks. We chose 8KB blocks because, 
although many current UNIX systems use 4 KB blocks, we 
believe that 8KB (or even larger) is an appropriate size in 
future storage systems. As shown, the protocol suffers 
primarily because it was designed to confirm all data 
transmitted between the client and the OSD. 

In a system dominated by small random reads, any of 
the security methods would be acceptable, and would not 
reduce performance significantly. In systems with many 
sequential operations or even a moderate number of writes, 
however, only the CAPKEY and CMDRSP methods 
maintain performance within 95% of unsecured storage. To 
achieve data integrity 3 , the system with the ALLDATA 
method suffers a higher performance penalty: large 
sequential  accesses  run  at 46% and 52% of  the maximum  
                                                                 
3 With openssl, it takes 743 μsec to perform a HMAC-SHA1 operation for 

a block size of 64 kbytes. 
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Table 1. Completion times for sub-operations. 
Sub-operation Completion time (μsec) 

Generating a capability key 37 

Generating a credential 45 

Read a LDAP record 640 
Read 10 LDAP records each time 880 

Write a LDAP record 815 
Delete a LDAP record 2750 

bandwidth of the baseline for reads and writes 
respectively,while random writes run at 79% of the 
maximum bandwidth. 

5.2. Latency of metadata operations 

We ran a set of micro benchmarks on our OBS system 
and measured the latency of each metadata operation in 
order to evaluate the performance of MDS. All the latency 
benchmarks were run on a 7-level directory tree and there 
were 10 files in every directory, each of size 4KB. For 
directory operations, each operation (e.g., mkdir or readdir) 
was performed 10 times on every level directory. The file 
system was mounted before each operation started and 
unmounted before each operation completed. For file 
operations, each operation (e.g., create or rm) was 
performed on each of the files in one directory. We 
instrumented the MDS Client to gather the latency results. 
All numbers reported are the average of the 10 runs. We 
also instrumented the metadata server to report the time 
spent in fine-grained sub-operations. While we gathered the 
raw performance of metadata operations, the completion 
times of sub-operations were not recorded (To prevent the 
monitoring overhead from influencing performance results). 

Table 1 reports the completion times for some sub-
operations. The overhead is only 45 μsec for generating a 
credential and 37 μsec for generating a capability key. The 
low latencies generally translate to cache hits at the MDS. 
In case of cache misses, MDS must get capabilities from 
the LDAP database, which usually incurs greater latencies. 
The LDAP access latency for delete operations is 2750 
μsec, which is larger than that for read and write operations. 
The overhead is 640 μsec and 815 μsec for reading and 
writing a record respectively. The results indicate that the 
batch reads can decrease the total overhead for accessing 
LDAP database, which cost only an extra 240 μsec for 
reading 10 records each time in contrast with reading one 
record from the LDAP database. 

Table 2 depicts the measured latencies for the NOSEC, 
CAPKEY, CMDRSP and ALLDATA methods. The 
messages between MDS and clients are cryptographically 
hardened using the secret keys generated by the 
authentication protocol. The login operation involves both 
authentication and key negotiation, so it requires a 
significantly latency, roughly 20.5 ms. In contrast, the 
logout operation costs only 267 μsec. 

Impact of Security Methods. First of all, we observe that 
the latencies for the directory operations (e.g., mkdir, 
readdir and rmdir) while using the CAPKEY, CMDRSP 
and ALLDATA methods are similar to the ones reported 
for the NOSEC method. This is because for the directory 
operations the similar access control is performed for any 
of the security methods. But the latencies for the file 
operations (e.g., create, rm, write and read) while using the 
CAPKET, CMDRSP and ALLDATA methods increase by 
less than 0.3 ms (5%). This is because for the file 
operations the additional cryptographic overhead for 
generating capability keys incurred in the CAPKEY, 
CMDRSP and ALLDATA does not occur in the NOSEC. 
We also observe that the write and read commands have 
significantly lower latencies than other commands. This is 
because the write and read requests, after the first, will be 
serviced by the MDS cache. The rm and rmdir commands 
respectively incur a much larger latency than other file and 
directory operations due to the high overhead in deleting a 
LDAP record. 

Impact of Directory Depth. The numbers shown in Table 
2 gave a preliminary indication of the sensitivity of the 
latencies to the depth of the directory where the metadata 
operation was performed. For each operation except readdir, 
the latencies are comparable for directory depths of zero 
and three. By systematically varying the directory depth, 
we examine this sensitivity in detail. Figure 9 plots the 
directory operation latencies for varying directory depth. A 
directory depth of i implies that the operation is executed in 
mnt_point:/dir1/…/diri. For readdir commands, the 
latencies significantly increase as we increase the directory 
depth. This is due to the need to access the directory inode 
as well as the directory contents to construct the local 
directory tree. In contrast, it slightly increases with 
directory depth for mkdir and rmdir commands, since the 
directory content access and inode lookup is done by MDS. 

5.3. Performance comparison of OBS, iSCSI, NFS 
and Lustre 

In this section, we study the performance of our OBS 
system and compare it with those of iSCSI, NFS and Lustre. 
We ran the same benchmark that we had used in the first 
experiment to measure the performance of iSCSI, NFS and 
Lustre, while for our OBS system the performance 
measurements of the NOSEC method are employed. Figure 
10 shows the throughput for sequential and random access. 
For sequential reads, our OBS system and NFS yield 
comparable performance and outperform Lustre and iSCSI, 
while for sequential writes, our system is outperformed by 
Lustre and NFS and the performance is better than that of 
iSCSI. For random accesses, our OBS system achieves a 
better performance for both reads and writes: the system 
outperforms Lustre for reads and yields comparable 
performance with iSCSI and NFS, while in  
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Table 2. Latency of metadata operations (μsec). 
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Figure 9. Effect of the directory depth on the 
operation latency. 

write case, our system outperforms iSCSI and NFS and 
with the transfer size 16 KB or less, such performance is 
also better than Lustre. 

5.4. Aggregate throughput and scalability 

In this section, we ran the Iozone benchmark to measure 
the throughput for various numbers of OSDs and clients, 
each running on a separate machine. The size of the test file 
was set to 1Gbytes and record size to 8Kbytes. 

First, we varied the number of OSDs from 2 to 8 and 
measured the bandwidth of reads and writes by one client. 
The fragment-strip policy for object allocation was used in 
this experiment, i.e., the file was striped among all the 
OSDs. Figure 11 shows the system throughput as a function 
of the number of OSDs for the NOSEC, CAPKEY, 
CMDRSP, and ALLDATA methods. As expected, the 
throughput grows with the number of OSDs. The number of 
4 delivers nearly the maximum performance permitted by a 
client for reads and the number of 8 for writes. We 
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Figure 10. Performance comparison of OBS, 
iSCSI, NFS and Lustre. 

also observe that the throughput for the ALLDATA method 
grows slower than that for the NOSEC, CAPKEY and 
CMDRSP methods and the throughput surface is almost flat. 
This is because the overhead introduced by the ALLDATA 
method,  which  is dominated by MAC computation on data, 

Directory Depth 0 Directory Depth 3 
 

NOSEC CAPKEY CMDRSP ALLDATA NOSEC CAPKEY CMDRSP ALLDATA

mkdir 2952 3112 3031 3032 3052 3225 3235 3239 

readdir 550 533 539 531 2182 2207 2160 2136 

rmdir 4048 4291 4235 4236 4208 4327 4277 4270 

create 4566 4651 4640 4611 4639 4693 4718 4756 

rm 5303 5351 5459 5523 5346 5467 5470 5598 

write 317 340 338 342 317 349 356 353 

read 320 361 363 370 317 366 365 371 

login 20512 

logout 267 
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and multiple-OSD system. 
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Figure 12. Aggregate bandwidth with 1 OSD. 
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Figure 13. Aggregate bandwidth with 8 OSDs. 

is high enough to limit the throughput of the client. 
We also ran the Iozone benchmark in the throughput 

mode to measure the aggregate bandwidth by multiple 
clients for various numbers of OSDs. On each client, one 
Iozone process was active during the measurement and 
opened one file at a time for reads or writes. Figure 12 
shows the aggregate bandwidth with 1 OSD. The aggregate 
write bandwidth increases with the number of clients, while 
the aggregate read bandwidth decreases with the number of 
clients. The decrease trend in the aggregate read bandwidth 
can be attributed to the overhead of concurrency control in 
OSD. Improving OSD is one of the main subjects that we 
identify as future work. 

Table 3. Completion times for SET MASTER 
KEY and SET KEY commands. 

Command Completion time (μsec) 

SET MASTER KEY 28725 

Root 2962 

Partition 1922 SET KEY

Working 1398 
 

Figure 13 shows the aggregate bandwidth with 8 OSDs. 
According to the hybrid scheme for object allocation, each 
file was mapped to three objects and each object was 
distributed to an OSD. As shown in Figure 13, the 
aggregate write bandwidth increases with the number of 
clients, while the earlier tread that we observed in Figure 12, 
where the aggregate read bandwidth decreases with the 
number of clients, is weakened. One reason is that the 
system with a larger amount of OSDs can yield a higher 
aggregate bandwidth. Another primary reason is that the 
hybrid scheme ensures that one file is distributed to only 
several OSDs but not all, that is, one client is served by 
only several OSDs at a time. The hybrid scheme effectively 
balances the overhead among all of OSDs. We also observe 
that there is a bottom in the aggregate read bandwidth curve 
around the number of 3. This is because that multiple read 
requests to an OSD are emerging when the number of client 
is more than 2. As the number of clients scales up the 
aggregate bandwidth reaches the upper limit permitted by 
the OSDs and remains relatively constant. Although, the 
theoretical results in [14] show that for 1GB files the 
number of 40 is the optimal number of objects mapped 
from one file, Figure 11 shows that for reads the client 
yields the maximum performance when a file is distributed 
across 4 OSDs and above and for writes the number of 
OSDs for the maximum performance is 8 and above. 
Distributing a file across more OSDs can not improve the 
aggregate bandwidth; on the contrary, it brings extra 
overhead of concurrency operations to OSDs. 

5.5. Overhead of key refreshes 

In this section, we instrumented the metadata server to 
report the time spent for key refresh commands. There is 
one root object for each OSD logical unit, each with one 
master key and one root key. There is one partition object 
for an OSD logical unit, each with one partition key and 16 
working keys.  

Table 3 shows the completion times for SET MASTER 
KEY and SET KEY commands. All the commands are 
performed under the protection of the CMDRSP method. 
The SET MASTER KEY command involves the two steps, 
namely, SEED EXCHANGE and CHANGE MASTER 
KEY, as well as invalidating all the root, partition and 
working key, so it requires a significantly latency, roughly 
28.7 ms. In contrast, the SET KEY command costs only 
2962 μsec for a root key, 1922 μsec for a partition key and 

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore.  Restrictions apply. 



1398 for a working key. The SET KEY command costs an 
extra 1564 μsec for a root key than that for a working key 
due to an additional overhead for invalidating the partition 
key and the working key, which is dominated by accessing 
the LDAP database in our implementation. Similar 
observation is true for the SEY KEY command for a 
partition key. An additional overhead of 524 μsec is 
introduced. 

6. Related work 

Object storage was first proposed in the Network-
Attached Storage Devices project [5] at CMU and the two 
commercial products, Panasas [11] and Lustre [8], have 
been released in the commercial market. Also, the security 
of object stores has received significant attention in the past 
few years. Gobioff, et al. [6] presented a cryptographic 
capability system for network-attached storage systems, 
built an NASD prototype implementation of a drive and 
adapted NFS and AFS to run with NASD drives. 

The protocol presented by Azagury, et al. [1] defined a 
proprietary protocol for authorization on top of the secure 
communication layer while utilized a standard industry 
protocol for authentication, integrity and privacy on the 
communication channel (IPSec for IP networks).  

Leung and Miller [7] proposed a coarse-grained 
capability security protocol for object-based storage 
systems. They have implemented the security mechanism 
for Ceph, UCSC’s implementation of an OBS [16], and 
evaluated the performance and scalability of the protocol. 
Their numbers demonstrated that coarse-grained 
capabilities can effectively reduce the protocol overhead 
and client request latencies.  

But these security solutions use proprietary protocols 
and hence limit interoperability. The OSD security protocol 
defined in the ANSI T10 OSD standard proposed three 
security methods for different application’s requirements. 
Michael Factor et al. [4] further described the three methods 
of the OSD security protocol and analyzed their 
performance theoretically but they did so without 
performance testing. Du et al. [2] presented their 
experiences with the implementation of the T10 OSD 
standard; however, their implementation was preliminary 
and further work needs to be undertaken to demonstrate the 
advantages of the object based technology. 

7. Conclusions and future work 

In this paper we have presented the implementation and 
performance evaluation of a real, secure object-based 
storage system compliant to the T10 OSD standard. In 
contrast to previous work, our system implements the entire 
three security methods of the OSD security protocol defined 
in the standard and an Oakley-based authentication protocol 
by which the Metadata Server (MDS) and client can be sure 

of each other’s identities. Moreover, our system supports 
concurrent operations from multiple clients to multiple 
OSDs. The MDS, a combination of security manager and 
storage/policy manager, performs access control, global 
namespace management, and concurrency control.  

We also evaluated the performance and scalability of our 
implementation and compared it with iSCSI, NFS and 
Lustre storage configurations. The overhead of access 
control is small: compared with the same system without 
any security mechanism, bandwidth for reads and writes 
with the CAPKEY and CMDRSP methods decreases by 
less than 5%, while latency for metadata operations with 
any of the security methods increases by less than 0.3 ms 
(5%). The system with the ALLDATA method suffers a 
higher performance penalty: large sequential accesses run at 
46% and 52% of the maximum bandwidth of unsecured 
storage for reads and writes respectively. The aggregate 
throughput scales with the number of OSDs (up to 8 in our 
experiments). The overhead of the SET KEY commands for 
partition and working keys refreshed frequently is less than 
2 ms. 

We have focused our minds on enabling our system to 
seamlessly work with most of the applications in the real 
world. HUSt [19], a massive storage system that was built 
at the Wuhan National Laboratory for Optoelectronics in 
China, integrates the object-based storage technology to 
provide support for GIS Grid and its applications. Based on 
HUSt, we are investigating the access mode of the metadata 
as well as the characteristics of the data for optimizing our 
design. Also, we would like to implement the remaining 
OSD commands and make the upper-level applications 
benefit from the intelligent interface of object stores. 

In OBS, files are mapped into one or more data objects. 
The policy for object allocation is a critical aspect affecting 
the overall systems performance. We employ the hybrid 
scheme for object allocation, while making an efficient 
approach is quite complex and the result of experimentation 
is quite different from the theoretical. We would like to 
revise the parameters in our algorithm and improve the 
scheme. CRUSH [17], a pseudo-random data distribution 
function used in Ceph, maps data objects to storage devices 
without relying on a central directory. We would also like 
to compare the overhead of our approach with that of 
CRUSH. 

At present, object-based storage devices are designed to 
passively provide services and the predominance of the 
object store with intelligent interface and extended 
attributes is far from being displayed. We would like to 
push more intelligence into the OSD and make it more 
active. An active OSD can utilize the extended attributes of 
the object and redundant computing resource to provide 
active storage and to achieve self-managing, self-
diagnosing and self-healing, so as to achieve higher 
availability. 

Privacy must be considered in a long term extension of 
the OSD security system. There is no encryption in the 
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current version of the OSD standard. As a result, users must 
instead rely on encryption at different layers of the protocol 
stack (e.g., IPSec, application). However, we strongly 
believe that privacy is a core requirement for future storage 
systems. Therefore we are working on leveraging the 
associated infrastructure for encryptions and privacy 
mechanisms, defined by other standards to provide 
encryption for data in transit and store. 
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