

Implementing and Evaluating Security Controls

for an Object-Based Storage System

Zhongying Niu† Ke Zhou† * Dan Feng† Hong Jiang‡
niel@smail.hust.edu.cn k.zhou@hust.edu.cn dfeng@hust.edu.cn jiang@cse.unl.edu

Frank Wang§ Hua Chai† Wei Xiao† Chunhua Li†
f.wang@cranfield.ac.uk chsal@163.com showin@163.com li.chunhua@163.com

† Computer College, Huazhong University of Science & Technology, Wuhan, China
Wuhan National Laboratory for Optoelectronics, China

‡ Department of Computer Science and Engineering, University of Nebraska-Lincoln
§Center for Grid Computing, Cambridge-Cranfield High Performance Computing Facility, U.K.

Abstract

This paper presents the implementation and
performance evaluation of a real, secure object-based
storage system compliant to the T10 OSD standard. In
contrast to previous work, our system implements the
entire three security methods of the OSD security
protocol defined in the standard, namely CAPKEY,
CMDRSP and ALLDATA, and an Oakley-based
authentication protocol by which the Metadata Server
(MDS) and client can be sure of each other’s identities.
Moreover, our system supports concurrent operations
from multiple clients to multiple OSDs. The MDS, a
combination of security manager and storage/policy
manager, performs access control, global namespace
management, and concurrency control.

We also evaluate the performance and scalability of
our implementation and compare it with iSCSI, NFS and
Lustre storage configurations. The overhead of access
control is small: compared with the same system without
any security mechanism, bandwidth for reads and writes
with the CAPKEY and CMDRSP methods decreases by
less than 5%, while latency for metadata operations with
any of the security methods increases by less than 0.3 ms
(5%). The system with the ALLDATA method suffers a
higher performance penalty: large sequential accesses
run at 46% and 52% of the maximum bandwidth of
unsecured storage for reads and writes respectively. The
aggregate throughput scales with the number of OSDs
(up to 8 in our experiments). The overhead of the SET
KEY commands for partition and working keys refreshed
frequently is less than 2 ms.

∗ Corresponding author.

1. Introduction

It is desirable for storage systems to have the following
five features: security, cross-platform data sharing, high
performance, scalability and easy management. Because
of the various limitations of DAS (Direct Attached
Storage), NAS (Network Attached Storage) and SAN
(Storage Area Network), it is difficult, if not impossible,
for a storage system to have these five features
simultaneously. The file-based NAS utilizes the file
interface to provide secure capabilities and cross-platform
data sharing, while the block-based SAN provides high
performance through high-speed data access. By
combining the advantages of high-speed and direct-access
of SANs and the data sharing and security capabilities of
NAS, and moving low-level storage functions of the file
system into the storage device itself and accessing the
device through a standard object interface, Object-Based
Storage (OBS) enables a scalable, high-performance,
cross-platform and secure data sharing architecture.

Owing to the fact that objects have their own attributes,
OBS can set up flexible security mechanisms on the basis
of objects that constitute the primary storage units. OBS
can assign different security attributes to the whole device,
a group of objects, individual object, or even extensive
data in an object, and implement authentication separately.
Moreover, OBS can also divide the whole system into
several partitions whose security attributes and rules of
accessing are decided based on applications, and
authorize every I/O operation. Thus OBS can offer a
higher level of security than the NAS and SAN systems.

In the past few years, object stores have received more
and more attention, and most of the work has focused on
the problem of security for object stores. Meanwhile the
T10 Technical Committee of INCITS has made continued

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

efforts for the standardization of the object interface and
the first version of the object based storage interface
standard (also referred to as T10 OSD standard) [12] was
ratified by ANSI in January 2005. The T10 OSD standard
presents the OSD security protocol and its three security
methods, namely CAPKEY, CMDRSP and ALLDATA,
but very few OSD implementations are compliant to the
OSD standard. In a recent paper [2], Du, et al. presented
their experiences with the implementation of the T10
OSD standard. However, their implementation was
preliminary and further work needs to be undertaken to
demonstrate the advantages of the object based
technology. They implemented a preliminary security
manager that can hand-out capabilities to users and
perform some preliminary key management tasks while
the security manager did not authenticate users; it
assumed that users are already authenticated using any of
the standard mechanisms such as Kerberos. The metadata
server, that is essential in separating the data and control
path, was not implemented in their system. They
presented performance analysis of their implementation
and compared it with iSCSI and NFS, while their
experiments were based on one client and one OSD and
the evaluation results failed to fully demonstrate the
advantages of the object based technology.

In this paper, we present an implementation of a real,
secure object-based storage system compliant to the T10
OSD standard. In contrast to the work done by Du et al.,
our system implements the entire three security methods
of the OSD security protocol, and an Oakley-based
authentication protocol by which the Metadata Server
(MDS) and client can be sure of each other’s identities.
Moreover, our system supports concurrent operations
from multiple clients to multiple OSDs. The MDS, a
combination of security manager and storage/policy
manager, performs access control, global namespace
management, and concurrency control. We also evaluate
the performance and scalability of our implementation
and compare it with iSCSI, NFS and Lustre storage
configurations. We believe that our work involved in the
implementation and performance evaluation of the
standard will be valuable to the OSD research and
development community at large.

The rest of the paper is organized as follows. Section 2
presents an overview of the OSD security protocol.
Section 3 introduces the authentication protocol. Section
4 describes the system design and implementation.
Section 5 presents the performance methodology and
discusses the evaluation results. Section 6 covers related
work. And, finally, Section 7 concludes the paper and
points out directions for future work.

2. Overview of the OSD security protocol

2.1. Security model

The OSD security model consists of four components:
(a) application client, (b) security manager, (c)
policy/storage Manager, and (d) Object-Based Storage
Device (OBSD).

An application client wishing to access a file must
request a capability from the security manager. After
receiving the capability request, the security manager
contacts the policy/storage manager to get a capability
including permission. If the operation is permitted, the
security manager generates a credential including the
requested capability and a capability key, which is
returned to the application client. The capability key has
been created with a key shared between the security
manager and OBSD. When the application client gets the
credential, it sends the capability as part of its request and
a request integrity check value generated with the
received capability key to the OBSD. The OBSD
validates the request, ensuring that the capability has not
been tampered with, was rightfully obtained by the client,
and that the requested operation is permissible by the
capability.

The shared secret key between the security manager
and OBSD for the authentication of the OSD commands
is refreshed periodically. The key exchange protocol is
accomplished via two commands, SET KEY and SET
MASTER KEY.

2.2. Security method

To improve storage system performance over different
network environments, the OSD security protocol defines
four different security methods: NOSEC 1 , CAPKEY,
CMDRSP, and ALLDATA. The decision of which
security methods to employ is left to the network
environments over which the storage system runs. The
CAPKEY method is used in a secure network
environment (e.g., IPsec) to provide access control
security, while the CMDRSP and ALLDATA methods
are used in an insecure network environment to provide
network security as well as access control.

In the three security methods of the OSD security
protocol, the high security method includes the
functionality of the low security method, e.g., the
ALLDATA security method includes the functionality of
CAPKEY and CMDRSP, and the CMDRSP security
method includes the functionality of CAPKEY.

2.3. Credential revocation

The OSD security protocol enables two mechanisms
for invalidating a credential: key exchange and policy
access tag [4].

1 We do not consider NOSEC a security method, since by definition it

does not provide security.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

The first mechanism, key exchange, is a coarse-
grained approach that exchanges the key between the
security manager and the OBSD. The security manager
may invalidate credentials for an entire partition by using
the SET KEY command to update the working keys used
to compute the credential integrity check value in those
credentials.

The second mechanism is fine-grained and invalidates
all outstanding credentials for a given object by utilizing
the object policy access tag. The object policy access tag
is maintained both at the security manager and OBSD,
and it is a settable object attribute. The policy access tag
allows the coordinated actions of both the security
manager and OBSD to prevent unsafe or temporarily
undesirable utilization of OBSD. By modifying the value
of an object policy access tag, the security manager or
OBSD can invalidate all outstanding credentials for the
object.

2.4. Key management

The OSD standard defines a hierarchy of four types of
keys: master key, root key, partition key, and working key.
Except the working key, each master, root, and partition
key represents two secret key values: an authentication
key and a generation key. The authentication key is used
to compute the credential integrity check values; and the
generation key is used by future SET KEY commands
and SET MASTER KEY commands to compute the
updated generation key and new authentication key values.

The key exchange protocol is accomplished via two
commands, SET KEY and SET MASTER KEY, which
are carried under the OSD security mechanism. For the
SET MASTER KEY command, the Diffie-Helman key
exchange protocol [13] is implemented, thus achieving
Perfect Forward Secrecy (PFS). PFS ensures that a given
Master Key is not derived from any other secret. In other
words, if someone breaks a key, PFS ensures that the
attacker is not able to derive any other key.

3. Authentication protocol

The standard defines the security protocol between: 1)
the OBSD and the client and 2) the OBSD and the
security manager (primarily for key management).
Communications between the client and the security
manager is outside of the scope of the standard. Based on
the Oakley key determination protocol [10], we
implement an authentication protocol by which the
security manager and the client can be sure of each
other’s identities without exchanging the share key and
agree on a secret key that is immediately available for use
in encrypting subsequent conversations. What’s more, by
the enhanced cookie algorithm the authentication protocol
can reduce the winning probability of cookie attacks

effectively and by the clock synchronization information
exchanged in the protocol the authentication protocol can
implement the clock synchronization between a client and
the security manager.

3.1. Cookie algorithm

The basic mechanism of the Oakley key determination
protocol is the Diffie-Hellman key exchange algorithm [3]
which allows two parties to agree on a shared value
without requiring encryption. But some deficiencies exist
in the Diffie-Hellman key exchange algorithm, e.g.,
having offered no information about identities of both
sides, it is easy to be attacked by the go-between; the
complexity of the algorithm makes it vulnerable to be
attacked by inundation. The Oakley protocol retains the
advantage of Diffie-Hellman algorithm while overcoming
its shortcoming, preventing clogging through the Cookie
exchange mechanism and preventing the go-between
from attacking by authenticating the Diffie-Hellman
exchange. The Oakley key determination protocol
includes the following three steps: 1) Cookie exchange, 2)
Diffie-Hellman half-key exchange, and 3) Authentication.

Because the Oakley protocol does not define the
method by which cookies are produced, identical cookies
can easily be forged by attackers. When the go-between
captures the first cookie from the initiator, it can forge the
response cookie. The attacker is closer to the initiator than
the responder, so the initiator will receive the forged
cookie first and refuse the legal cookie that arrives later.
As a result, the Oakley protocol cannot establish
connection between the initiator and the responder. The
enhanced cookie algorithm is given below [18]:

1) The initiator gets local host IP and the shared
key2.

2) The initiator uses the first 64 bits of a hash which
is generated over the local host IP and the shared key
as the initiator cookie.

3) The initiator sends the cookie generated in step 2
to the responder.

4) The responder gets the shared key.
5) The responder computes the hash over the

initiator IP and the share key, and then compares the
first 64 bits with the initiator cookie. If the result is
identical, the next step will be executed, otherwise a
condition of being attacked will be notified.

6) The responder computes the hash over the local
host IP and the shared key, and then sends the first 64
bits of the hash, i.e., responder cookie, to the initiator.

7) The initiator computes the responder cookie and
compares the result with the responder cookie that has
been received from the responder. If the result is

2 The shared key is also used for the following authentication; it is

dependent on the passphrases of the users.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

identical, the next step will be executed, otherwise a
condition of being attacked will be notified.

8) Enter the Diffie-hellman exchange stage.

Because the hash function is one-way function and the
enhanced cookie algorithm relies on the shared key and
the IP addresses of the initiator and responder, the go-
between cannot forge the cookie. The most a malicious
host could accomplish would be to mount a denial-of-
service attack against a valid host, as opposed to
successfully authenticating as a valid host. Also, the CPU
cost of the hash function is small relative to the network
speed, so the hosts would not be clogged even they have
been attacked by inundation.

3.2. Authentication flow

Notations used for the protocol description are as
follows:

1) Cookie-C and Cookie-M (or CKY-C and CKY-M)
are 64-bit pseudo-random numbers. The generation
method is defined by the cookie algorithm.

2) UID is the user identity to be used in authenticating
the user.

3) ID(C) and ID(M) are the identities to be used in
authenticating the client and MDS respectively.

4) GRP that can be pre-defined or user-defined is a
name (32-bit value) for the Diffie-Hellman group used for
the exchange.

5) and are encodings of the Diffie-Hellman
group elements, where

xg yg
g is a special group element

indicated in the group description and indicates that

element raised to the x'th power. is the eventually
obtained Diffie-Hellman key.

xg
xyg

6) and are nonces selected by the client and
MDS.

cN mN

7）KEYID is the concatenation of the client and MDS
cookies; it is the name of keying material.

8) sKEYID is used to denote the keying material
named by KEYID. It is the final secret key generated in
the OAKLEY determination protocol and depends on ,
KEYID, and obtained from the Diffie-Hellman
algorithm.

xyg
cN mN

9) EHAO is a list of encryption/hash/authentication
options. Each item is a pair of values: a class name (i.e.,
encryption, hash and authentication) and an algorithm
name.

10) EHAS is a set of three items selected from the
EHAO list, one from each of the classes for encryption,
hash and authentication.

11) indicates the signature over { } ikxS x using .
Signing is done using the algorithm associated with an

ik

Client
() ()

c

x
NMIDCIDEHAOgGRPUIDCCKY ,,,,,,,−

() ()
i

x

c kEHAOgGRPNUIDMIDCIDS }|0|||0||||{

MDS

() () TSNNCIDMIDEHASgGRPUIDCCKYMCKY cm

y
,,,,,,,,,, −−

() ()
i

xy

cm kEHASggGRPTSNNUIDCIDMIDS }|||||||||{

() () TSNNMIDCIDEHASgGRPUIDMCKYCCKY mc

x
,,,,,,,,,, −−

() ()
i

yx

mc kEHASggGRPTSNNUIDMIDCIDS }|||||||||{

Figure 1. Authentication flow.
authentication method; usually this will be RSA or DSS.
The signature key is the result of applying a one-way

function to data | . Where k is the shared key
between the client and MDS.

ik

cN k

12) TS is the clock synchronization information sent
back to the client by MDS.

13) ()baprf , denotes the result of applying pseudo-
random function with key " a " to data "b ".

Authentication Flow. Figure 1 shows the authentication
flow. The client generates a unique cookie and associates
it with the expected IP address of MDS, and its chosen
state information: the group identifier GRP, a pseudo-
randomly selected exponent x , EHAO list, nonce,
identities. The first authentication choice in the EHAO list
is an algorithm that supports digital signatures, and this is
used to sign the message with the signature key . The
client further sets a timer for possible retransmission
and/or termination of the request.

ik

When MDS receives the message, it may choose to
ignore all the information and treat it as merely a request
for a cookie, and continue to exchange the key using the
conservative mode of the Oakley protocol. In this paper
we assume that MDS is more aggressive and accepts all
the information offered by the client, i.e., group with
identifier GRP, first authentication choice which must be
the digital signature method used to sign the initiator
message. Then MDS validates the signature with
generated by MDS with the shared secret k , and
associates the pair (CKY-C, CKY-M) with the following
state information:

ik

1) User identity from the message.
2) The source and destination network addresses of the

message.
3) The key state of "unauthenticated".
4) The first algorithm from the authentication offer.
5) Group GRP, a " " exponent value in group GRP,

and from the message.

y
xg

6) The nonce and a pseudo-randomly selected

value .
cN

mN
7) A timer for possible destruction of the state.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

VFS

OFI
iSCSI

initiator socket

Client

MDS

metadata/security
manager

DB

iSCSI target

OSD

OSC

iSCSI
initiator socket

LDAP API

data path
control path

Figure 2. System model.

MDS computes , forms with the concurrent
system clock, forms the reply message, and then signs the

yg TS

ID , TS and nonce information with and sends it to
the client.

ik

When the client receives the MDS message, and if the
signature is valid, it will synchronize with MDS and send
the confirmation message signed with the signature key

. In this step, the client and MDS compute
 and associate it with the

. The final result of this
exchange is a key with

ik
() () xyyxxy ggg ===Ζ

MCKYCCKYKEYID −−= |
MCKYCCKYKEYID −−= |

and value ()MCKYCCKYgNNprfsKEYID xy
mc −−= ||,| .

4. System design and implementation

Our object-based storage system consists of three
components: OSD (Object-based Store Device), MDS
(Meta Data Server) and clients. The three components are
interconnected by IP network. As shown in figure 2, the
grayed blocks are our reference implementation.

The client implements two kernel modules: the Object
Filesystem Interface (OFI) and the iSCSI initiator driver.
The OFI is implemented compliant with VFS like any
other file systems on Linux. It receives the file operation
commands from VFS and translates the file operations to
object operations. The iSCSI initiator driver provides
iSCSI transport to access remote iSCSI targets over IP
networks.

OSD implements the SCSI OSD command sets
compliant to the T10-OSD standard specification. It
includes two kernel modules: the Object Storage
Controller (OSC) and the iSCSI target driver. The iSCSI
target driver accepts and decapsulates iSCSI PDUs from
the iSCSI initiator driver and presents the decapsulated
SCSI OSD commands to OSC. OSC processes the SCSI
OSD commands and manages the physical storage media.

MDS executes as a user level process that implements

OSD Client

Object Command Mapping

Metadata and
Credential Cache

MDS Client

VFS

iSCSI initiator Socket
Figure 3. Object filesystem interface.

the functionalities of the Security Manager and
Policy/Storage Manager. It includes the metadata/security
manager and iSCSI initiator driver. The metadata/security
manager is responsible for authenticating users,
authorization, metadata maintenance, global namespace
management, key management and workload balance; it
presents the SET KEY and SET MASTER KEY
commands to OSD through the iSCSI initiator driver.

4.1. Object filesystem interface

As depicted in Figure 3, OFI consists of four modules,
namely, the Object Command Mapping (OCM), the OSD
Client (OC), the MDS Client (MC) and the Metadata and
Credential Cache (MCC). OCM translates file operations
to object operations, gets metadata and credentials via
MC and accesses OSD by OC. OC presents object
commands to OSD through the iSCSI channel. MC
accesses MDS through the TCP/IP protocol and
implements an MDS command collection that we have
defined in our system. MCC caches credentials and
metadata in the client to improve the system performance,
as evidenced in our experiments.

User processes access OFI through the Virtual
Filesystem Switch (VFS), which offers user processes a
unified, abstract and virtual file interface. After receiving
the file operation commands from VFS, OCM searches
the metadata and credentials related to the requested file
in MCC. If MCC has cached the metadata and credentials,
then OCM translates file operations to object operations
and sends object commands to OC, or else MCC first
requests the metadata and credentials through MC. Except
for sending object commands, OC is responsible for
transfering data to and from OSD. A data buffer in OC
enables multiple small object writes to be “batched” into a
single large network write.

4.2. Object storage controller

The OSD object abstraction is designed to repartition
the responsibility for managing the access to data on a
storage device by assigning the storage device additional
responsibilities in the area of space management [12]. The

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

Command Verification Module

Object Command Handler

Storage DeviceSpace Manager

Object Commands

OSD CDBs OSD response

iSCSI target

Authentication
Module

Credential Generator

File Command Handler

Key Manager Buffer Manager

LDAP Database

SocketiSCSI initiator

 Figure 4. Object storage controller.
Figure 5. Metadata/Security manager. task of the traditional file system was divided into two

parts: the file system user component and the file system
storage component. The user component contains the
functions of hierarchy management, naming and user
access control. The storage component is focused on
mapping file system logical view to the physical storage
media.

use in encrypting subsequent conversations. After login
success, the client sends the request to MDS, including
the requested filename, operation code. FCH is
responsible for mapping the file requests onto
corresponding objects, and returns the object metadata,
including the object identifier, operation rights, security
policy etc. to CG. CG acquires the appropriate key from
KM to generate a cryptographically secure credential for
that object. BM calls the LDAP (Lightweight Directory
Access Protocol) API to get the metadata from the LDAP
Database and caches the recent metadata that is used
frequently. A hash algorithm is implemented for fast
retrieving the cached information.

In our case, the user component is assigned to MDS,
and OSD takes the task of the storage management. MDS
decides how files are mapped to objects and which OSDs
serve to store the objects. There is one root object for
each OSD logical unit and it is the starting point for the
navigation of the structure on the OSD logical unit. There
are any number of partition objects and user objects for an
OSD logical unit, while collection objects are not
supported in our current implementation. All partition
objects and user objects are managed by the local
filesystem; the partition objects are mapped onto
directories and the user objects are mapped to files. As the
functions of hierarchy management, naming, and user
access control are managed by MDS, all user objects that
belong to the same partition are on an equal footing with
each others, and there is no hierarchical relationship (like
traditional file systems) for objects. So OSD can only
maintain a platform namespace for every partition, all
user objects belonging to the same partition are stored in
one directory.

KM is responsible for key management and refresh.
When an OSD is added to the system the key hierarchy
between OSD and MDS is built via the SET MASTER
KEY and SET KEY commands committed by KM.
During the use of OSD, the master key does not change
unless the system administrator is changed. The root key
refresh command is a privilege assigned to the
administrator that manually refreshes the root key in case
it is comprised. The partition key and working key are
refreshed periodically according to the key refreshing
policy. All the SET MASTER KEY and SET KEY
commands are performed under the protection of the
CMDRSP method. As depicted in Figure 4, the Object Storage Controller

(OSC) consists of two modules: the Command
Verification Module (CVM) and the Object Command
Handler (OCH). The CVM first checks the validity of the
OSD CDBs from the iSCSI target and then presents the
legal object commands to OCH. OCH translates object
operations (e.g., read objects) to filesystem calls to finish
object operations.

The Hybrid Scheme for Object Allocation. In an
object-based storage system, files are mapped into one or
more data objects stored on OSDs. The policy for object
allocation is a critical aspect affecting the overall systems
performance. At present, most object allocation schemes
employ one of two techniques [14]. The first one allocates
a file to one device by using hashing functions that map
file IDs to OSD IDs. This approach converts a file to one
object and sends it to only one device. The second object
allocation technique, called fragment-stripping or
fragment-mapping, uses equal-sized fragments of each
file to widely distribute the file among the OSDs. Both
techniques have their advantages and disadvantages: the
hashing approach achieves good load balance and
provides rather high effectiveness in data allocation, but it
can not provide readily available parallelism for large
files; the fragment-stripping approach takes full advan-

4.3. Metadata/Security manager

As shown in Figure 5, the metadata/security manager
consists of five modules: the Authentication Module
(AM), the File Command Handler (FCH), the Buffer
Manager (BM), the Credential Generator (CG) and the
Key Manager (KM). AM is responsible for authenticating
users and implements the authentication protocol. An
application client wishing to access the storage system
must login first and negotiate a secret key with MDS for

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

a

/user1

/

/user2 /userm… … … …

b … … … …

small file
A big file is divided into n objects
according to the mapping policy

directory created by users

/user2/dir

cn=root, dc=example,dc=com

cn=user1,cn=root, dc=example,dc=com

cn=user2,cn=root, dc=example,dc=com

cn=userm,cn=root, dc=example,dc=com

cn=a,cn=user2,cn=root, dc=example,dc=com

cn=b,cn=user2,cn=root, dc=example,dc=com

cn=1,cn=b,cn=user2,cn=root, dc=example,dc=com

cn=2,cn=b,cn=user2,cn=root, dc=example,dc=com

cn=n-1,cn=b,cn=user2,cn=root, dc=example,dc=com

… … … …

cn=dir,cn=user2,cn=root, dc=example,dc=com
… … … …

(a) M apping of files to objects (b) M apping of metadata to LDAP records
Figure 6. Mapping of files to objects and metadata to LDAP records.

tage of device parallelism, simplifies the clients’ operations,
but this policy is not fit for small files.

In our case, we employ a hybrid scheme of hashing and
fragment-stripping for object allocation [14], which
combines the best aspects of these two techniques while
avoiding their disadvantages. The scheme converts a small
file to a single object and a large file to multiple objects and
each object will be distributed to an OSD (see Figure 6(a)).
According to OBFS [15], the boundary of small and large
files should be around 512KB. How many objects a file is
divided into and which OSDs serve to store the objects are
based on the size of the file, the total number of OSDs, the
speed and free-capability of devices, as well as other
parameters. The algorithm makes sure that an optimal
number of objects is mapped from a file and the best-
conditioned devices are used first. Figure 6 depicts the
mapping of files to objects and metadata to the LDAP
records. The /useri is the work directory of the user(i) (see
Figure 6(a)). The directory created by users and the object
metadata are stored as records in the LDAP database (see
Figure 6(b)).

4.4. Timing

In order to detect replays and expiration on capabilities,
the clocks of OSD, MDS and client must keep some degree
of synchronization. But the OSD protocol does not define
the clock synchronization protocol.

By the Simple Network Time Protocol [9], we achieve
clock synchronization between MDS and OSD. We run a
SNTP sever at MDS and keep clock synchronization with
the SNTP host located in the Internet. On each OSD a
SNTP client synchronizes the OSD with the MDS.

When a client communicates with an OSD or MDS, the
client must know the proper (secure) time value for
generating request nonces. But not every remote client
prefers to run the SNTP client in its own host. The client
only needs to know the current value of the OSD clock but
needs not to adjust the system clock to the network time.
We maintain a secure clock value in the client by the
authentication protocol. At the Diffie-Hellman half-key
exchange stage MDS sends the current value of the MDS

clock, then at the client login period the time difference
between the client system clock and the MDS system clock
is used to adjust the request nonce timestamps. When OSD
verifies the request nonce timestamps invalidation, a new
time difference will be obtained according to the value of
the OSD clock returned by OSD.

5. Performance evaluation

We ran experiments to evaluate the following: (1) the
performance of our OBS system with the three security
methods against an unsecured storage system; (2) system
throughput and scalability under a bandwidth-intensive
workload; and (3) the overhand of key refreshes.

Our experiments were conducted on 3 to 17 Super Micro
SUPER X6DH8-XB nodes, each with one Intel 604-pin
EM64T (NoconaTM) Xeon 3.0 GHz processor, 2MB L2
cache, PCI-E x8 slot (Physical x4), PCI-X-133 MHz slots,
800MHz Front Bus (FSB) and a total of 512MB PC2700
DDR-SDRAM physical memory. The machines are
connected by a 1000 Mbit/s Ethernet switched through a
Cisco Catalyst 3750-24PS switch. In addition, each node is
connected to a Highpoint Rocket 2240 Raid controller
attached to 15 SATA disks (300GB each). All machines
run RedHat AS3 Linux kernel 2.4.21.

The configuration for our OBS system includes one
MDS, several OSDs and clients, each using separate
machines. Also, we compare the performance of our OBS
system with those of iSCSI, NFS and Lustre. For all the
above storage configurations, the same client-server
machine combination was used, same disk partitions were
used at the target or OSD to ensure the disk performance
remains constant across all configurations. For iSCSI, we
use the open-source Source Forge Linux iSCSI
implementation (version unh-iscsi-1.6.00) and SCSI Target
Mid-level for Linux (version scst-0.9.3) to set up the iSCSI
configuration. Loading the initator driver creates a SCSI
device on the client. iSCSI performance is measured on a
ext2 filesystem constructed on this SCSI device. For NFS,
we use the default Linux implementation of NFS version 3
for our experiments and ext2 as the default filesytem. The
NFS daemon was set up on the target and exported a share

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

(a)Sequential access

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

4k 8k 16k 32k 64k

Block size (bytes)

T
h
r
o
u
g
h
p
u
t

(
K
B
/
S
e
c
)

NOSEC-read CAPKEY-read CMDRSP-read ALLDATA-read

NOSEC-write CAPKEY-write CMDRSP-write ALLDATA-write

(b)Random access

0

2000

4000

6000

8000

10000

12000

4k 8k 16k 32k 64k

Block size (bytes)

T
h
r
o
u
g
h
p
u
t

(
K
B
/
S
e
c
)

NOSEC-read CAPKEY-read CMDRSP-read ALLDATA-read

NOSEC-write CAPKEY-write CMDRSP-write ALLDATA-write

Figure 7. Performance of three methods and the baseline.

directory in the common test partition on the target. For
Lustre, we employ the stable version 1.4.5 for our
experiments and run the MDS, an OST and a client on the
three nodes respectively.

5.1. Performance evaluation for the different
security methods

This section compares the performance of our OBS
implementation with the three security methods against its
unsecured counterpart. The motive of this experiment is to
see how much performance degradation is incurred when
security protocol overhead is added to an object-based
storage system.

We ran the Iozone benchmark on the client. File size
was set to 1Gbytes, using record sizes from 4Kbytes up to
64Kbytes. For both files and records, each size increases
will simply be a doubling of the previous value. The metric
for evaluating the Iozone performance is the average
number of megabytes read and written per second with two
access patterns: random and sequential.

Figure 7 shows the performance of a one client and one
OSD system. As expected, the random accesses are slower
than sequential accesses. For the sequential accesses there
is only a marginal difference among different block sizes;
for the random reads as the block size is increased, the
performance is enhanced. But for the random writes as the
block size is increased, the performance is few enhanced.
We attribute the primary reason to the data buffer in the
clients of our system, which enables multiple small objects
writes to be “batched” into a single large network write.

In the next paragraphs, we used the performance
measurements of the NOSEC method as a baseline for our
other performance measurements, showing the effect of the
OSD security protocol on object-based storage system
performance for each security method.

Figure 8 shows the performance of all three security

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Th
ro

ug
hp

ut
 (K

B
/S

ec
)

Sequential
Read

Sequential
Write

Random
Read

Random
Write

NOSEC 44198 26960 2184 10127

CAPKEY 42342 26364 2115 10019

CMDRSP 41601 25946 2110 9893

ALLDATA 20346 14042 1978 7962

Sequential Read
Sequential

Write
Random Read Random Write

Figure 8. Performance of three security
methods and the baseline for 8KB blocks.

methods and the baseline (unsecured storage system) in a
system using 8KB blocks. We chose 8KB blocks because,
although many current UNIX systems use 4 KB blocks, we
believe that 8KB (or even larger) is an appropriate size in
future storage systems. As shown, the protocol suffers
primarily because it was designed to confirm all data
transmitted between the client and the OSD.

In a system dominated by small random reads, any of
the security methods would be acceptable, and would not
reduce performance significantly. In systems with many
sequential operations or even a moderate number of writes,
however, only the CAPKEY and CMDRSP methods
maintain performance within 95% of unsecured storage. To
achieve data integrity 3 , the system with the ALLDATA
method suffers a higher performance penalty: large
sequential accesses run at 46% and 52% of the maximum

3 With openssl, it takes 743 μsec to perform a HMAC-SHA1 operation for

a block size of 64 kbytes.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

Table 1. Completion times for sub-operations.
Sub-operation Completion time (μsec)

Generating a capability key 37

Generating a credential 45

Read a LDAP record 640
Read 10 LDAP records each time 880

Write a LDAP record 815
Delete a LDAP record 2750

bandwidth of the baseline for reads and writes
respectively,while random writes run at 79% of the
maximum bandwidth.

5.2. Latency of metadata operations

We ran a set of micro benchmarks on our OBS system
and measured the latency of each metadata operation in
order to evaluate the performance of MDS. All the latency
benchmarks were run on a 7-level directory tree and there
were 10 files in every directory, each of size 4KB. For
directory operations, each operation (e.g., mkdir or readdir)
was performed 10 times on every level directory. The file
system was mounted before each operation started and
unmounted before each operation completed. For file
operations, each operation (e.g., create or rm) was
performed on each of the files in one directory. We
instrumented the MDS Client to gather the latency results.
All numbers reported are the average of the 10 runs. We
also instrumented the metadata server to report the time
spent in fine-grained sub-operations. While we gathered the
raw performance of metadata operations, the completion
times of sub-operations were not recorded (To prevent the
monitoring overhead from influencing performance results).

Table 1 reports the completion times for some sub-
operations. The overhead is only 45 μsec for generating a
credential and 37 μsec for generating a capability key. The
low latencies generally translate to cache hits at the MDS.
In case of cache misses, MDS must get capabilities from
the LDAP database, which usually incurs greater latencies.
The LDAP access latency for delete operations is 2750
μsec, which is larger than that for read and write operations.
The overhead is 640 μsec and 815 μsec for reading and
writing a record respectively. The results indicate that the
batch reads can decrease the total overhead for accessing
LDAP database, which cost only an extra 240 μsec for
reading 10 records each time in contrast with reading one
record from the LDAP database.

Table 2 depicts the measured latencies for the NOSEC,
CAPKEY, CMDRSP and ALLDATA methods. The
messages between MDS and clients are cryptographically
hardened using the secret keys generated by the
authentication protocol. The login operation involves both
authentication and key negotiation, so it requires a
significantly latency, roughly 20.5 ms. In contrast, the
logout operation costs only 267 μsec.

Impact of Security Methods. First of all, we observe that
the latencies for the directory operations (e.g., mkdir,
readdir and rmdir) while using the CAPKEY, CMDRSP
and ALLDATA methods are similar to the ones reported
for the NOSEC method. This is because for the directory
operations the similar access control is performed for any
of the security methods. But the latencies for the file
operations (e.g., create, rm, write and read) while using the
CAPKET, CMDRSP and ALLDATA methods increase by
less than 0.3 ms (5%). This is because for the file
operations the additional cryptographic overhead for
generating capability keys incurred in the CAPKEY,
CMDRSP and ALLDATA does not occur in the NOSEC.
We also observe that the write and read commands have
significantly lower latencies than other commands. This is
because the write and read requests, after the first, will be
serviced by the MDS cache. The rm and rmdir commands
respectively incur a much larger latency than other file and
directory operations due to the high overhead in deleting a
LDAP record.

Impact of Directory Depth. The numbers shown in Table
2 gave a preliminary indication of the sensitivity of the
latencies to the depth of the directory where the metadata
operation was performed. For each operation except readdir,
the latencies are comparable for directory depths of zero
and three. By systematically varying the directory depth,
we examine this sensitivity in detail. Figure 9 plots the
directory operation latencies for varying directory depth. A
directory depth of i implies that the operation is executed in
mnt_point:/dir1/…/diri. For readdir commands, the
latencies significantly increase as we increase the directory
depth. This is due to the need to access the directory inode
as well as the directory contents to construct the local
directory tree. In contrast, it slightly increases with
directory depth for mkdir and rmdir commands, since the
directory content access and inode lookup is done by MDS.

5.3. Performance comparison of OBS, iSCSI, NFS
and Lustre

In this section, we study the performance of our OBS
system and compare it with those of iSCSI, NFS and Lustre.
We ran the same benchmark that we had used in the first
experiment to measure the performance of iSCSI, NFS and
Lustre, while for our OBS system the performance
measurements of the NOSEC method are employed. Figure
10 shows the throughput for sequential and random access.
For sequential reads, our OBS system and NFS yield
comparable performance and outperform Lustre and iSCSI,
while for sequential writes, our system is outperformed by
Lustre and NFS and the performance is better than that of
iSCSI. For random accesses, our OBS system achieves a
better performance for both reads and writes: the system
outperforms Lustre for reads and yields comparable
performance with iSCSI and NFS, while in

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

Table 2. Latency of metadata operations (μsec).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7

Directory Depth

L
a
t
e
n
c
y

(
u
s
e
c
)

mkdir

rmdir

readdir

Figure 9. Effect of the directory depth on the
operation latency.

write case, our system outperforms iSCSI and NFS and
with the transfer size 16 KB or less, such performance is
also better than Lustre.

5.4. Aggregate throughput and scalability

In this section, we ran the Iozone benchmark to measure
the throughput for various numbers of OSDs and clients,
each running on a separate machine. The size of the test file
was set to 1Gbytes and record size to 8Kbytes.

First, we varied the number of OSDs from 2 to 8 and
measured the bandwidth of reads and writes by one client.
The fragment-strip policy for object allocation was used in
this experiment, i.e., the file was striped among all the
OSDs. Figure 11 shows the system throughput as a function
of the number of OSDs for the NOSEC, CAPKEY,
CMDRSP, and ALLDATA methods. As expected, the
throughput grows with the number of OSDs. The number of
4 delivers nearly the maximum performance permitted by a
client for reads and the number of 8 for writes. We

(a) Sequential access

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

4k 8k 16k 32k 64k

Block size (bytes)

T
h
r
o
u
g
h
p
ut

(
K
B
/
S
e
c
)

OBS read iSCSI read NFS read Lustre read

OBS write iSCSI write NFS write Lustre write

(b) Random access

0

5000

10000

15000

20000

25000

4k 8k 16k 32k 64k

Block size (bytes)

Th
ro
u
gh
pu
t
(K
B/
S
ec
)

OBS read iSCSI read NFS read Lustre read

OBS write iSCSI write NFS write Lustre write

Figure 10. Performance comparison of OBS,
iSCSI, NFS and Lustre.

also observe that the throughput for the ALLDATA method
grows slower than that for the NOSEC, CAPKEY and
CMDRSP methods and the throughput surface is almost flat.
This is because the overhead introduced by the ALLDATA
method, which is dominated by MAC computation on data,

Directory Depth 0 Directory Depth 3

NOSEC CAPKEY CMDRSP ALLDATA NOSEC CAPKEY CMDRSP ALLDATA

mkdir 2952 3112 3031 3032 3052 3225 3235 3239

readdir 550 533 539 531 2182 2207 2160 2136

rmdir 4048 4291 4235 4236 4208 4327 4277 4270

create 4566 4651 4640 4611 4639 4693 4718 4756

rm 5303 5351 5459 5523 5346 5467 5470 5598

write 317 340 338 342 317 349 356 353

read 320 361 363 370 317 366 365 371

login 20512

logout 267

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

0

10000

20000

30000

40000

50000

60000

70000

80000

2 4 6 8

Number of OSDs

T
hr

o
u
g
h
p
u
t

(
K
B
/
S
e
c
)

NOSEC-Read CAPKEY-Read CMDRSP-Read ALLDATA-Read

NOSEC-Write CAPKEY-Write CMDRSP-Write ALLDATA-Write

Figure 11. Performance of the single-client
and multiple-OSD system.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4

Number of clients

Ag
gr

e
ga

te
 I

/
O

(
KB

/
Se

c
)

NOSEC-Read CAPKEY-Read CMDRSP-Read ALLDATA-Read

NOSEC-Write CAPKEY-Write CMDRSP-Write ALLDATA-Write

Figure 12. Aggregate bandwidth with 1 OSD.

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6 7 8

Number of clients

A
g
g
re

g
a
t
e

I
/
O

(
K
B
/S

e
c
)

NOSEC-Read CAPKEY-Read CMDRSP-Read ALLDATA-Read

NOSEC-Write CAPKEY-Write CMDRSP-Write ALLDATA-Write

Figure 13. Aggregate bandwidth with 8 OSDs.

is high enough to limit the throughput of the client.
We also ran the Iozone benchmark in the throughput

mode to measure the aggregate bandwidth by multiple
clients for various numbers of OSDs. On each client, one
Iozone process was active during the measurement and
opened one file at a time for reads or writes. Figure 12
shows the aggregate bandwidth with 1 OSD. The aggregate
write bandwidth increases with the number of clients, while
the aggregate read bandwidth decreases with the number of
clients. The decrease trend in the aggregate read bandwidth
can be attributed to the overhead of concurrency control in
OSD. Improving OSD is one of the main subjects that we
identify as future work.

Table 3. Completion times for SET MASTER
KEY and SET KEY commands.

Command Completion time (μsec)

SET MASTER KEY 28725

Root 2962

Partition 1922 SET KEY

Working 1398

Figure 13 shows the aggregate bandwidth with 8 OSDs.
According to the hybrid scheme for object allocation, each
file was mapped to three objects and each object was
distributed to an OSD. As shown in Figure 13, the
aggregate write bandwidth increases with the number of
clients, while the earlier tread that we observed in Figure 12,
where the aggregate read bandwidth decreases with the
number of clients, is weakened. One reason is that the
system with a larger amount of OSDs can yield a higher
aggregate bandwidth. Another primary reason is that the
hybrid scheme ensures that one file is distributed to only
several OSDs but not all, that is, one client is served by
only several OSDs at a time. The hybrid scheme effectively
balances the overhead among all of OSDs. We also observe
that there is a bottom in the aggregate read bandwidth curve
around the number of 3. This is because that multiple read
requests to an OSD are emerging when the number of client
is more than 2. As the number of clients scales up the
aggregate bandwidth reaches the upper limit permitted by
the OSDs and remains relatively constant. Although, the
theoretical results in [14] show that for 1GB files the
number of 40 is the optimal number of objects mapped
from one file, Figure 11 shows that for reads the client
yields the maximum performance when a file is distributed
across 4 OSDs and above and for writes the number of
OSDs for the maximum performance is 8 and above.
Distributing a file across more OSDs can not improve the
aggregate bandwidth; on the contrary, it brings extra
overhead of concurrency operations to OSDs.

5.5. Overhead of key refreshes

In this section, we instrumented the metadata server to
report the time spent for key refresh commands. There is
one root object for each OSD logical unit, each with one
master key and one root key. There is one partition object
for an OSD logical unit, each with one partition key and 16
working keys.

Table 3 shows the completion times for SET MASTER
KEY and SET KEY commands. All the commands are
performed under the protection of the CMDRSP method.
The SET MASTER KEY command involves the two steps,
namely, SEED EXCHANGE and CHANGE MASTER
KEY, as well as invalidating all the root, partition and
working key, so it requires a significantly latency, roughly
28.7 ms. In contrast, the SET KEY command costs only
2962 μsec for a root key, 1922 μsec for a partition key and

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

1398 for a working key. The SET KEY command costs an
extra 1564 μsec for a root key than that for a working key
due to an additional overhead for invalidating the partition
key and the working key, which is dominated by accessing
the LDAP database in our implementation. Similar
observation is true for the SEY KEY command for a
partition key. An additional overhead of 524 μsec is
introduced.

6. Related work

Object storage was first proposed in the Network-
Attached Storage Devices project [5] at CMU and the two
commercial products, Panasas [11] and Lustre [8], have
been released in the commercial market. Also, the security
of object stores has received significant attention in the past
few years. Gobioff, et al. [6] presented a cryptographic
capability system for network-attached storage systems,
built an NASD prototype implementation of a drive and
adapted NFS and AFS to run with NASD drives.

The protocol presented by Azagury, et al. [1] defined a
proprietary protocol for authorization on top of the secure
communication layer while utilized a standard industry
protocol for authentication, integrity and privacy on the
communication channel (IPSec for IP networks).

Leung and Miller [7] proposed a coarse-grained
capability security protocol for object-based storage
systems. They have implemented the security mechanism
for Ceph, UCSC’s implementation of an OBS [16], and
evaluated the performance and scalability of the protocol.
Their numbers demonstrated that coarse-grained
capabilities can effectively reduce the protocol overhead
and client request latencies.

But these security solutions use proprietary protocols
and hence limit interoperability. The OSD security protocol
defined in the ANSI T10 OSD standard proposed three
security methods for different application’s requirements.
Michael Factor et al. [4] further described the three methods
of the OSD security protocol and analyzed their
performance theoretically but they did so without
performance testing. Du et al. [2] presented their
experiences with the implementation of the T10 OSD
standard; however, their implementation was preliminary
and further work needs to be undertaken to demonstrate the
advantages of the object based technology.

7. Conclusions and future work

In this paper we have presented the implementation and
performance evaluation of a real, secure object-based
storage system compliant to the T10 OSD standard. In
contrast to previous work, our system implements the entire
three security methods of the OSD security protocol defined
in the standard and an Oakley-based authentication protocol
by which the Metadata Server (MDS) and client can be sure

of each other’s identities. Moreover, our system supports
concurrent operations from multiple clients to multiple
OSDs. The MDS, a combination of security manager and
storage/policy manager, performs access control, global
namespace management, and concurrency control.

We also evaluated the performance and scalability of our
implementation and compared it with iSCSI, NFS and
Lustre storage configurations. The overhead of access
control is small: compared with the same system without
any security mechanism, bandwidth for reads and writes
with the CAPKEY and CMDRSP methods decreases by
less than 5%, while latency for metadata operations with
any of the security methods increases by less than 0.3 ms
(5%). The system with the ALLDATA method suffers a
higher performance penalty: large sequential accesses run at
46% and 52% of the maximum bandwidth of unsecured
storage for reads and writes respectively. The aggregate
throughput scales with the number of OSDs (up to 8 in our
experiments). The overhead of the SET KEY commands for
partition and working keys refreshed frequently is less than
2 ms.

We have focused our minds on enabling our system to
seamlessly work with most of the applications in the real
world. HUSt [19], a massive storage system that was built
at the Wuhan National Laboratory for Optoelectronics in
China, integrates the object-based storage technology to
provide support for GIS Grid and its applications. Based on
HUSt, we are investigating the access mode of the metadata
as well as the characteristics of the data for optimizing our
design. Also, we would like to implement the remaining
OSD commands and make the upper-level applications
benefit from the intelligent interface of object stores.

In OBS, files are mapped into one or more data objects.
The policy for object allocation is a critical aspect affecting
the overall systems performance. We employ the hybrid
scheme for object allocation, while making an efficient
approach is quite complex and the result of experimentation
is quite different from the theoretical. We would like to
revise the parameters in our algorithm and improve the
scheme. CRUSH [17], a pseudo-random data distribution
function used in Ceph, maps data objects to storage devices
without relying on a central directory. We would also like
to compare the overhead of our approach with that of
CRUSH.

At present, object-based storage devices are designed to
passively provide services and the predominance of the
object store with intelligent interface and extended
attributes is far from being displayed. We would like to
push more intelligence into the OSD and make it more
active. An active OSD can utilize the extended attributes of
the object and redundant computing resource to provide
active storage and to achieve self-managing, self-
diagnosing and self-healing, so as to achieve higher
availability.

Privacy must be considered in a long term extension of
the OSD security system. There is no encryption in the

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

current version of the OSD standard. As a result, users must
instead rely on encryption at different layers of the protocol
stack (e.g., IPSec, application). However, we strongly
believe that privacy is a core requirement for future storage
systems. Therefore we are working on leveraging the
associated infrastructure for encryptions and privacy
mechanisms, defined by other standards to provide
encryption for data in transit and store.

Acknowledgements

We thank the anonymous reviewers for their helpful
comments and insights. This work was supported by the
Key Basic Research Project under Grant
No.2004CCA07400, National Science Foundation of China
under Grant No.60503059, National Basic Research
Program of China (973 Program) under Grant
No.2004CB318201, the Program for New Century
Excellent Talents in University NCET-04-0693 and NCET-
06-0650, and the US NSF under Grant No. CCF-0621526.

References

[1] Azagury, A., Canetti, R., Factor, M., Halevi, S., Henis, E.,
Naor, D., Rinetzky, N., Rodeh, O., and Satran, J. A two
layered approach for securing an object store network. In
Proceeding of the 1st International IEEE Security in Storage
Workshop, pp. 10–23, 2002.

[2] David Du, Dingshan He, Changjin Hong, Jaehoon Jeong,
Vishal Kher,Yongdae Kim, Yingping Lu, Aravindan
Raghuveer, and Sarah Sharafkandi. Experiences in building
an object-based storage system based on the OSD T-10
standard. In Proceedings of the 23nd IEEE / 14th NASA
Goddard Conference on Mass Storage Systems and
Technologies, College Park, MD, May 2006.

[3] Diffie, W. and Hellman, M. New Directions in Cryptography.
IEEE Transactions on Information Theory, V. IT-22, n. 6,
June 1977.

[4] Factor, M., Nagle, D., Naor, D., Riedel, E., and Satran, J. The
OSD security protocol. In Proceedings of the 3rd
International IEEE Security in Storage Workshop, pp. 29–39,
2005.

[5] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J.
Zelenka. A cost-effective, high-bandwidth storage
architecture. In Proceedings of the 8th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 92–103,
San Jose, CA, Oct. 1998.

[6] Howard Gobioff, Garth Gibson, and Doug Tygar. Security
for Network Attached Storage Devices. Technical Report
CMU–CS–97–185, Carnegie Mellon University, Pittsburgh,
PA, 15213, October 1997. http://www.cs.cmu.edu/Web
/Groups/NASD.

[7] Andrew W. Leung and Ethan L. Miller. Scalable Security for
Large, High Performance Storage Systems. In Proceedings of
the 2nd ACM Workshop on Storage Security and
Survivability, October 2006.

[8] Lustre. http://www.lustre.org.

[9] D. Mills. Simple Network Time Protocol (SNTP) Version 4
for IPv4, IPv6 and OSI. RFC 2030, October 1996.

[10] H. Orman. The OAKLEY Key Determination Protocol. RFC
2412, November 1998.

[11] Panasas. http://www.panasas.com.
[12] SCSI Object-Based Storage Device Commands -2 (OSD-2).

Project T10/1721-D, Revision 0. T10 Technical Committee,
NCITS, October 2004.

[13] Michael C. StJohns. Diffie-Helman USM Key Management
Information Base and Textual Convention. RFC 2786, March
2000.

[14] Fang Wang, Shunda Zhang, Dan Feng, Hong Jiang, Lingfang
Zeng, and Song Lv. A Hybrid Scheme for Object Allocation
in a Distributed Object-Storage System. In Proceeding of the
6th International Conference on Computational Science, UK,
May 28-31, 2006.

[15] Feng Wang, Scott A. Brandt, Ethan L. Miller, and Darrell D.
E. Long. OBFS: A File System for Object-based Storage
Devices. In Proceeding of the 21st IEEE/12th NASA Goddard
Conference on Mass Storage Systems and Technologies,
College Park, MD, April 2004.

[16] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., and
Maltzahn, C. Ceph: A scalable, high-performance distributed
file system. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, Seattle, WA,
November 2006.

[17] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn.
CRUSH: Controlled, scalable, decentralized placement of
replicated data. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing (SC ’06), Tampa, FL,Nov.
2006. ACM.

[18] Fangjun Xie, Chunli Xie, and Zhi Gao. Analysis and mend of
IKE protocol. Computer Applications and Software, pp. 103-
104, 117, No. 9, 2004. (in Chinese)

[19] Lingfang Zeng, Ke Zhou, Zhan Shi, Dan Feng, Fang Wang,
Changsheng Xie, Zhitang Li, Zhanwu Yu, Jianya Gong,
Qiang Cao, Zhongying Niu, Lingjun Qin, Qun Liu, Yao Li,
and Hong Jiang. HUSt: A Heterogeneous Unified Storage
System for GIS Grid. HPC Storage Challenge of
Supercomputing. Tampa, Florida, November 2006.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:32 UTC from IEEE Xplore. Restrictions apply.

