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Abstract

Compliance storage servers are designed to meet orga-
nizational needs for trustworthy records retention, largely
mandated by recent legislations such as HIPAA, SEC Rule
17a, and the Sarbanes-Oxley Act. These devices export
a file-system-level interface, and enforce write-once read-
many (WORM) semantics for file access. Compliance stor-
age protects records from alteration, as long as they remain
on the same storage server. However, the decades-long
records retention requirements of recent legislation mean
that a compliance storage server will often be obsolete long
before the documents it contains can be destroyed. Unfor-
tunately, records will be vulnerable to change during mi-
gration to a new server. Records are also vulnerable dur-
ing retrieval, when they are taken off the server and “mi-
grated” to the person or organization who needs them. In
this paper, we propose techniques for trustworthy document
migration and retrieval, by enhancing the storage servers
with the capability to sign their files and directories. The
proposed techniques can be used to verify that a migration
was carried out properly, even across multiple migrations,
deletions of expired documents, and changes in the content
and structure of migrated directories. In our approach, file
writers incur no performance penalty, which is important
since compliance workloads are write-intensive. Migration
incurs a reasonable 5-10% space overhead and requires 24
msec processing time per file. The result of the migration
can be verified at a rate of 24 msec per file by a trustworthy
auditor (or ordinary user), who can then generate a certifi-
cate attesting to the correctness of the migration.

1. Introduction

The trustworthy retention of financial information, cus-
tomer communications, medical images, drug development
logs, quality assurance test reports, and other important
documents is increasingly being mandated by government
regulations, such as the US Sarbanes-Oxley Act [8] and
SEC Rule 17a-4 [28]. At each point in their life cycle, these

documents must be readily accessible. Non-compliance
with these regulations has recently resulted in stiff penal-
ties from the Securities Exchange Commission [2], with
accompanying bad publicity and potential investor flight.

Organizations have been addressing these needs by pur-
chasing compliance storage servers [11, 15, 17, 23]. These
are file servers that store documents on WORM storage,
implemented by ordinary magnetic disks surrounded by a
file or object interface that prevents users from overwriting
previously-written bytes. Additional features prevent users
from removing, tampering with, or replacing the server’s
disks [16]. Unfortunately, merely using WORM storage,
as is the current focus, is insufficient to ensure that docu-
ments are trustworthy—the entire document life cycle must
be secured, from the moment of creation on through stor-
age, maintenance and retrieval. This life cycle may span
decades. For example, HIPAA requires medical records of
infants to be retained for 21 years. The Occupational Safety
and Health Administration (OSHA) requires employers to
keep records on exposure of employees to toxic substances
for 30 years.

It is unlikely that a record can be stored on a single
server for such long periods of time. Many practical con-
siderations will mandate the migration of records from one
storage server to another, such as the challenges of main-
taining obsolete storage servers (no vendor support, archaic
underlying supporting technology, and the cost and diffi-
culty of finding support staff), corporate mergers and spin-
offs, the introduction of storage servers with much larger
capacity, the need to migrate data from a backup server in
the event of device failure, and so on. However, migration
of records introduces a weak link in the process of ensur-
ing trustworthiness. A powerful insider adversary such as
a CEO can modify or remove records while they are being
moved from one device to another. The goal of trustwor-
thy migration is to ensure that any such attempt to tamper
with the records during migration can be quickly and easily
detected.

In this paper, we propose techniques for supporting
trustworthy policy-driven migration of compliance records
to new compliance storage servers. Every migration in-
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volves three steps. First the (untrusted) migrator creates
a log of planned operations. The log defines the file and
directory omissions and restructurings that will take place
during migration. Then the migrator has the current storage
server generate certificates attesting to the current contents
of its directory tree. Finally, the migrator puts the migrated
files, directories, and logs on the new storage server.

After migration, an auditor (or an ordinary user) can run
validation routines to determine that the files and directo-
ries that they access have been migrated correctly from the
servers where they were originally committed. Subsequent
readers can trust the migration based on the certificate of
migration generated by the trustworthy auditor, or can per-
form their own validation if desired.

The remainder of this paper is organized as follows.
We present the storage model, threat model, and supported
functionality in Section 2. Related work is discussed in
Section 3. We propose the architecture for trustworthy mi-
gration in Section 4. In Section 5, we show how the archi-
tecture can be used to support trustworthy migration, in-
cluding special cases such as migration into a nonempty
device or multiple migrations. Section 6 discusses tech-
niques to support policy-driven migration. A performance
evaluation appears in Section 7. Finally, we conclude in
Section 8.

2. Background

Storage Model In this paper, each record is a single file
that has been written to a compliance storage server. The
compliance storage server offers an ordinary file system in-
terface (with a few restrictions described below) to users
over a remote file access protocol. While NFS is popular
for this purpose today, new protocols may be adopted over
the decades. We allow the file system interface to change,
as long as files are still organized in a directory hierarchy
and metadata regarding the name, size, owner and expiry
date is kept for each file and directory. (Support for addi-
tional metadata is a straightforward extension.) Although
we focus on a storage server with a file system interface,
our ideas can be extended to object servers.

We assume that the file system interface will allow users
to create new directories and files and to append to existing
regular (i.e., non-directory) files; it will not allow users to
overwrite previously written file bytes. (We include append
operations because they are required for trustworthy index-
ing [20].)

At its creation, each file and directory is given an expiry
time by its creator or through a previously declared sys-
tem of default expiry times. Once assigned, a file or direc-
tory expiry time cannot be moved earlier, but can be moved
later. The file system prevents the deletion of existing files
and directories before they expire. Once a file or directory

expires, the storage server can delete it, on instruction from
the user or an application. If a directory is deleted, all the
files and directories under it should also be deleted. The
expiry time of a directory should hence be later than that of
all the files and subdirectories under it.

Threat Model The primary non-physical threat to com-
pliance records is undetectable alteration or destruction of
existing records at the behest of high-ranking company in-
siders such as CEOs and CFOs, who wish to retroactively
hide activities documented in the organization’s compli-
ance records. For example, Ralph may want to hide an
email conversation that he had with Martha about his ex-
pectations of a drop in the stock price for his company. Be-
cause the threat comes from high-ranking insiders, attack-
ers can have superuser privileges, can initiate and control
the migration process, and can attempt to modify or omit
records during migration.

More formally, a legitimate user, say Alice, creates a
file R and commits it to the compliance server. We trust
the document insertion code used by Alice to create R,
so R does reach compliance storage initially. Moments or
decades after R has been created, a malicious user Mala
starts regretting its existence. Mala wants to prevent ev-
ery future legitimate user Bob, who may be a prosecutor or
auditor, from retrieving R.

We assume that the compliance server itself is trust-
worthy, i.e., no bytes of user files are ever rewritten, and
every requested read/write/append operation is performed
correctly. Our migration scheme relies on the ability of the
storage server to sign files and directories using a public
key cryptosystem. The server private key must be properly
secured so that it is unavailable to the adversary (we pro-
pose a storage architecture for achieving this in the longer
version of our paper [21]). Bob will have to learn the names
and public keys of all the storage servers that have ever
been used in the company. The names and public keys
themselves can be certified by a trusted third party such as
the storage server vendor. This also prevents the adversary
from launching a man-in-the-middle attack by introducing
fake compliance storage servers (for which he knows the
private keys) and migrating data through them.

Because the compliance server enforces the WORM se-
mantics properly, Mala can modify or omit records only
during migration. A successful attack on migration con-
sists of undetected tampering. If tampering is detected, an
investigation (with presumption of guilt) will be launched
immediately. Thus we aim for a tamper-evident migration
system. For the same reason we are not concerned with
physical destruction or loss of compliance servers.

Migration Scenario R can be migrated from one com-
pliance server to another (server-to-server migration), or
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Figure 1. (a) Typical Server-to-Server Migration Scenario. Alice commits a file on server A. The file is then migrated through
B1, C and D. Finally, Bob queries the file from E. Adversary Mala could tamper with any of these migrations. (b) Query Result
Migration. Remote user Bob submits a query to Mala, who obtains the query results and “migrates” them to Bob.

from the compliance server to a user in response to a query
(query result migration), as shown in Figure 1. A server-
to-server migration involves copying the contents of the
source storage server SA to SB. However, the contents of SB

may not be an exact copy of SA, as files may be renamed or
moved from their original location. For example, the con-
tents of the old server might be placed under the /archive/SA

directory of SB. Further, there may be legitimate reasons to
omit certain files during migration. For example, during
a corporate spin-off, only documents relevant to the new
company may be copied to the destination storage server.
In such cases, we assume that a corporate migration pol-
icy determines the subset of files that must be copied to the
destination device.

In query result migration (Figure 1(b)), Bob submits
a query and receives a set of files in response. His query
plays the same role as a migration policy. If Bob does not
have a direct hardware connection to the compliance server,
he faces threats identical to those of server-to-server migra-
tion: Mala can try to omit or alter files during migration
from the storage server to Bob.

Query Model Suppose Bob is looking for a file or di-
rectory R. Bob must learn the server name and the path
under which R was originally committed. Bob will typ-
ically obtain this information using a trustworthy index
structure [20]. For example, if Bob wants all files con-
taining the keyword “compliance”, he may get the path
SA:/home/Alice/audit from a lookup in an inverted index.
Or he may know a priori that he is only interested in files
from SA:/home/Alice/mbox/.

Security Guarantees We provide two types of security
guarantees. The integrity guarantees enable a querier Bob
to verify that a migration was carried out in accordance
with a stated migration policy. The secrecy guarantees

prevent Bob from obtaining information that he should not
be able to access. For example, if the policy dictates the
removal of a file R during migration, Bob should not be
able to access R’s contents or metadata on the new server.
Our security guarantees are summarized below.

Case 1: R has the same location (path) on SB as on SA.

Integrity Guarantee: Bob can verify that the contents of
R’s data or metadata have not been altered since they left
SA, other than data possibly having been appended to it on
SB.

Case 2: R’s location has changed and the change to its
path is recorded in the migration log.

Integrity Guarantee: Bob can determine R’s new location
on SB. Also, as in the previous case, Bob can also verify
the integrity of R’s contents and metadata.

Case 3: R has been omitted during migration, or its
location has changed and the change to its path is not
recorded in the log.

Integrity Guarantee: Ordinary file system commands to
open R or read its metadata will be met with the response
“file not found”, as for any deleted or nonexistent file.
However, through a separate channel that we provide, Bob
can validate that R’s omission was consistent with the
migration policy in effect at the time.

Secrecy Guarantee: Bob should not learn any metadata
or data other than what may be required to validate the
migration policy. For example, if the policy was to omit
files expiring in the coming year, Bob can learn the expiry
times of all omitted files but not their contents, size or any
other metadata.

Our guarantees do not cover every possible way that
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Bob can learn about R’s contents or metadata:

- Index leaks: When an index over the files is migrated
to a new server, care must be taken to avoid the inclusion
of information about omitted files in the index [22]. Such
techniques are beyond the scope of this paper.
- Partial metadata leak: Under one of our proposed
migration approaches, Bob can learn the metadata values
that are required to validate the migration. Ideally he
should only learn whether the metadata satisfied the mi-
gration policy, not the exact metadata values. For example,
for the expiry date based omission policy given above,
Bob should only learn whether expiry date was within
the specified period, not the exact date. We also offer a
migration approach that prevents such leaks, as discussed
later.

- Path leaks: If the path to a file or directory is altered
during migration (as described in Section 5.1), we require
Mala to record both its old and new location in the migra-
tion log. The path to a file or directory may also be recorded
in an index. Unless the index or the log is cleaned up, Bob
can learn that a file with a given path existed, even after the
file has been deleted. Securely cleaning up an index or the
migration log is a non-trivial problem and is left as future
work. In this paper we assume this path is not sensitive.
The other option is to store the path encrypted, as briefly
outlined below.

Every file and directory in the system is assigned a
symmetric encryption key, used to encrypt the path. Ev-
ery occurrence of the path (e.g., in the log) is hierarchi-
cally encrypted – the top directory is encrypted with the
top directory specific key, the subdirectory under it with
a subdirectory specific key, and so on. For example, if
the complete path to a file is /A/B/C, it is encrypted as
Eka(A)/Ekb(B)/Ekc(C), where ka, kb and kc are the keys
associated with A, A/B and A/B/C. The encryption (de-
cryption) key is stored with the file/directory itself as meta-
data and is deleted when the file/directory is deleted.

To decrypt the path, Bob reads in the corresponding
decryption keys from the file metadata, starting from the
top directory. After a directory is deleted (and hence
the decryption keys of all the files/directories under it are
deleted), Bob cannot decrypt the paths of the files under it.
Additional measures like padding the encrypted paths to a
default length can be used to prevent Bob from guessing the
depth of the directory hierarchy under the deleted directory.
Bob can still decrypt the portion of the path corresponding
to the parent directories of the deleted directory. Bob hence
can learn the number of files created under the deleted di-
rectory. We assume that this is not a serious threat. A de-
tailed version of the this scheme is available in the longer
version of the paper.

For query result migration, Bob must be able to verify

that his query ran correctly on the server and the query re-
sults were not altered during shipment.

Notation Our notation is summarized in Figure 2. Sup-
pose the path of a file or directory f is / f1/. . ./ fn. We
will often write this path as f p/ f r, where f p is the path
/ f1/. . ./ fn−1 to the parent of f , and f r is the remain-
ing component fn of the path. For example, for the file
/emails/alice/mbox, f p is /emails/alice and f r is mbox.
Additionally, we use the terminology path, directory path
and relative file name to refer to f p/ f r, f p, and f r, respec-
tively. For brevity, we will often use the term file f to refer
to the path to f .

3. Related Work

The problem of securing data on a storage server has
received a lot of research attention. One of the earliest
works in this direction introduced cryptographic file sys-
tems [5], in which all the files and directories are encrypted
with a user-provided key. Subsequent research addressed
untrusted storage servers [12, 13, 19, 4], or provided se-
curity even against superuser attacks [27]. These systems
were designed to secure data on a single storage server and
not across migration. The most important issue that differ-
entiates compliance storage from single-server security is
that we cannot trust the original owner of the data (who has
the file secret key). An adversarial owner can tamper with
a record during migration and re-encrypt it with the secret
key. We also cannot rely on integrity checkers like Trip-
wire that periodically compare file hashes against a trusted
source of known file hash values. In our setting, these
known file hash values must themselves be maintained on
the storage server and migrated along with the data. An
adversary can alter these stored hash values during migra-
tion and make them consistent with the tampered files, thus
avoiding detection by Tripwire.

A problem of binding files to their positions in the di-
rectory hierarchy has been studied before in SFS-RO [12].
SFS-RO however, is a read only file system and does sup-
port file creations, appends or namespace alterations. Ran-
dal et. al. proposed a system for providing verifiable audit
trails for versioning file systems [7]. In their scheme, a set
of published MACs lets a querier verify the authenticity of
current and older versions of the filesystem. Unlike a ver-
sioning file system, the querier in our case has access to
only the latest file/directory version on the current storage
server. Based on this current version and a set of old file
signatures, the querier must verify that the current version
has been obtained through a series of proper migration op-
erations.
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h( f ) A cryptographically secure hash function acting on data (usually the contents of file) f .
〈x1, . . . ,xn〉 Ordered sequence x1, . . . ,xn.
ht(〈x1, . . . ,xn〉) A cryptographically hash function acting on a tuple (x1, . . . ,xn).
K and K−1 Public and private keys of a public key cryptosystem.
{}K and {}K−1 Encryption and decryption with public and private keys respectively.
Cx[ f ] Certificates of type x that can be looked up by path f .

Figure 2. Notation

In this paper, we also explore the problem of trust-
worthy, secrecy preserving, policy driven file deletion.
The problem of deletion of file system data from backup
copies [6] and versioning file systems [25] has been ex-
plored before. Their goal, however, was to securely delete
data from multiple copies (using cryptographic schemes),
rather than to authenticate the deletion operation for subse-
quent queries. These works assume that the person invok-
ing the deletion is trustworthy. We also explore the prob-
lem of secure namespace alterations which to the best of
our knowledge hasn’t been studied before.

The problem of securely migrating a query result is
closely related to the problem of query execution for out-
sourced databases [9, 14, 24, 29]. In database outsourcing,
the server itself is untrusted, the surrounding environment
and users are trusted, the goal is to ensure correct answers
to all possible supported queries, and the data publishers
sign the data and indexes beforehand. We trust the server
and expect it to create certificates on the fly in response to
the migration query. This flexibility enables us to handle all
possible migration queries, unlike the database outsourcing
work where only a restrictive subset of SQL queries is sup-
ported.

One of our migration schemes requires running the
query engine inside the storage server. The idea of down-
loading parts of a query engine into the storage server was
proposed in research on active disks [26, 3], although the
goal there was to improve query performance. In our case,
the query can run slowly; our goal is to ensure that its an-
swer is correct and verifiable.

4. Infrastructure for Migration

For trustworthy migration, we enhance the storage
server so that it can sign any file or directory and return
certificates attesting to its contents and metadata. These
certificates let the querier Bob verify that the file/directory
contents or metadata have not been tampered with during
migration. These certificates are only generated at migra-
tion time, i.e., they are not generated or accessed during
ordinary file system write operations.

Specifically, we add three functions, SG M, SG C and
SG D, to the access protocol (e.g., NFS) supported by the
storage box. SG M takes a file f (its complete path) and

a list of metadata fields (meta-list) as argument and re-
turns a tuple consisting of i) hash of its full path ht( f p/ f r)
ii) meta-list, iii) the hash ht (list-metadata), where list-
metadata is the ordered list of f ’s metadata values corre-
sponding to the fields listed in meta-list and iv) the current
time ts from the storage server SA’s reliable clock—signed
with the server’s private key K−1

SA . In this paper, meta-list
is a subset of the metadata (create time, owner, expiry time,
commit server). For example, if meta-list=〈expiry time,
owner〉, then expiry time and owner of f are included in
list-metadata. As we discuss later, those metadata fields
that must be preserved while migrating a file f are passed
as the argument meta-list.

SG C( f ) returns the hash of f ’s path, the hash of its
contents ( f .contents) and the current time ts, signed with
the server’s private key. Finally, SG D returns the signed
hash of the directory contents—the sorted list of the rela-
tive paths ( f r) or subdirectories within the directory. We
use the notation Cmeta, Cdata, and Cdir to refer to the cer-
tificates returned by the functions SG M, SG C and SG D,
respectively. We use the notation {Cx}KSA

[i] to refer to the
ith field of a certificate. For example, the 0th field is the
hash of the path.

Our threat model says that Mala does not regret the ex-
istence of a particular document before it has been commit-
ted to the server. This does not rule out the possibility that
Mala believes that some day there may be some document,
currently unspecified, that she would like to hide. We use a
timestamp in certificate generation so that Mala cannot sys-
tematically pre-generate certificates for files and directories
long before they are migrated. When Bob wants to verify
a file on SB, he will look up the public key and migration
start time for SA from a trustworthy source.

5. Trustworthy Migration

We first consider the case where the entire directory
structure is copied intact from SA to SB. To migrate a
file with path f , the migrator Mala must invoke SG M( f ,
all-metadata) and SG C( f ) on SA and store the returned
certificates Cmeta and Cdata on SB. Here all-metadata is
〈create time, owner, expiry time, commit server〉. Simi-
larly, for a directory d, she must generate Cmeta and Cdir

and copy them to SB. The certificates must be stored in a

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:43:44 UTC from IEEE Xplore.  Restrictions apply. 



Function Runs on Implementation
SG M( f ,meta list) File/Directory {〈ht( f p/ f r),meta list,ht(list-metadata), ts〉}K−1

SA

SG C( f ) File {〈ht( f p/ f r),h( f .contents), ts〉}K−1
SA

SG D(d) Directory {〈ht(dp/dr),h(d.contents), ts)〉}K−1
SA

Figure 3. Storage Functions

VerifyFile( f ) // Checks f against certificate

1: Let f p/ f r be f ’s path
2: phash = ht( f p/ f r)
3: if !((phash == {Cmeta[ f ]}KSA

[0] == {Cdata[ f ]}KSA
[0]) then

4: return INVALID MIGRATION
{The certificate does not correspond to this file }

5: end if
6: M= f .metadata { f ’s metadata on destination SB}

7: (own,crt,exp,csrv)=
(M.owner,M.create date,M.expiry,M.commit server)

8: mtuple = 〈own,crt,exp,csrv〉
9: if (ht(mtuple) 6= {Cmeta[ f ]}KSA

[2]) then
10: return INVALID MIGRATION

{ f ’s metadata on SB does not match with certificate}
11: end if
12: sz = M.migration size {The size of the file when it was migrated. Stored

as metadata.}
13: cont hash = h( f .contents[0..sz]) {Hash the first sz bytes of f}
14: if (cont hash! = {Cdata[ f ]}KSA

[1]) then
15: INVALID MIGRATION;
16: end if
17: return VALID

VerifyDir(d) // Checks d against certificate

1: Let d p/dr be d’s path
2: phash = ht(dp/dr)
3: if !((phash == {Cmeta[d]}KSA

[0] == {Cdir[d]}KSA
[0]) then

4: return INVALID MIGRATION
5: end if
6: M=d.metadata
7: (own,crt,exp,csrv)=

(M.owner,M.create date,M.expiry,M.commit server)
8: mtuple = 〈own,crt,exp,csrv〉 {Create the tuple}
9: if (ht(mtuple) 6= {Cmeta[d]}KSA

[2]) then
10: return INVALID MIGRATION
11: end if
12: for all ( f ∈ d.files) do
13: if ( f .commit server == SA) then
14: dir list.append( f r)
15: end if
16: end for
17: hash = h(dir list

⋃
DELET E LIST (d))

18: if (hash 6= {Cdir[d]}KSA
[1]) then

19: return INVALID MIGRATION;
20: end if
21: return VALID

Figure 4. Validation Routines

manner that allows them to be looked up by file/directory
paths ( f ) on SB. On SB, we refer to these certificates as
Cx[ f ] where, x ∈ {data, meta, dir}.

While reading a file with path f on SB, Bob can validate
that its metadata and content have been preserved across
migration by hashing its metadata and content on SB and
validating it against the signed hashes stored in Cmeta[ f ] and
Cdata[ f ] (or Cdir[ f ] if f is a directory). The pseudocodes
for this operation appear as VerifyFile() and VerifyDir(d)
in Figure 4. Cdir[ f ] also lets one verify the completeness of
migration: if a particular file under directory d is omitted
inappropriately, the hash computed on the names of files
under d will not match the hash stored in Cdir[d].

We allow data to be appended to existing files, and new
files to be created in migrated directories on SB. To validate
a file or directory f against the certificate generated by SA,
Bob must compute the hash over the content that was mi-
grated from SA, excluding additional data committed on SB.
For this purpose, we record the name of the server where f
was originally committed, and the file size in effect at the

time of its migration. The file size f .migration size is used
to compute the hash over the portion of the file that was
committed on SA (lines 12-14 of VerifyFile). Similarly, for
directories, only those files and sub-directories whose com-
mit server metadata is SA are included while calculating the
hash over the directory contents (lines 13-15 of VerifyDir).
The migration time version of any other metadata that can
be updated on SB (for example last access time) must also
be recorded.

The above migration approach can be extended to han-
dle file omissions too. Consider a metadata based file omis-
sion policy, for example, where files expiring within a spec-
ified date are not copied to the destination storage. Let f be
the path of a file meeting this omission policy. Mala must
execute the following steps for f during migration:

• Invoke SG M( f ,〈 expiry date 〉).

• Store the returned certificate Cmeta[ f ] on SB. Bob
should be able to look up the certificate based on f ’s
path on SA.
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• Record f ’s path and its expiry date in the migration
log file (as a DEL operation, introduced later). No
other data or metadata of f is copied to SB.

When Bob attempts to access file f on SB, he gets a “File
Not Found” response. To verify if f ’s omission was legiti-
mate, he can verify that the expiry-date metadata stored in
the log satisfies the omission policy given in the log. Fur-
thermore, Bob can validate that the stored expiry date is f ’s
correct expiry date and not Mala’s fabrication, by compar-
ing it to the signed expiry date stored in Cmeta[ f ].

5.1. Namespace Alteration

In this section, we generalize the previous migration
scheme to handle namespace changes and file omissions
during migration. First, we define a set of basic operations,
SNAP, CREATE, COPY and DEL, such that any migra-
tion involving file omissions and rearrangements is logi-
cally equivalent to a composition of operations from this
set. As a part of the migration activity, we require Mala to
create and store a migration log file L , consisting of the
migration policy followed by the sequence of these basic
operations that maps the directory hierarchy on SA to SB.
We also require Mala to generate certificates attesting to all
the files and directories on SA, and store them in a manner
that allows them to be looked up by their paths on SB.

We then propose a framework that lets Bob verify that
the directory tree on SB can be obtained by applying the op-
erations in the migration log to the directory tree on SA. In
other words, if Mala omits a file from SA without recording
it in the log, then Bob can detect this. If Bob is looking
for a file f from SA, he can verify whether f was omitted,
renamed, or kept intact during migration, or whether it did
not exist on SA at all. Finally, we propose a framework to
let Bob verify the consistency of the log operations with the
corporate migration policy. For example, if a file is omitted
during migration, Bob can determine whether the omission
violated the policy.

5.1.1. Restructuring Operations Figure 6 shows an
example of directory restructuring. A migration log L

consists of one SNAP operation followed by a sequence of
CREATE , COPY , and DEL operations on the directory
tree, defined as follows.

• SNAP performs a complete copy of the entire direc-
tory tree from SA to SB, including all metadata.

• CREATE (dr
new, dp, meta) creates a new directory

dr
new under parent directory d p on SB, and associates

the usual metadata items meta with it. The parent di-
rectory d p must exist on SB when this operation is per-
formed.

• COPY ( f r
src, dp

src, f r
dest , dp

dest) copies the file or direc-
tory f r

src from under the directory d p
src on SB to the di-

rectory d p
dest with the new name f r

dest . If d p
src/ f r

src is a
directory, the entire tree under it is copied. The meta-
data of the copied files and directories (other than the
name if f r

src 6= f r
dest) is unchanged, and the original

file/directory d p
src/ f p

src is not deleted.

• DEL ( f r, dp, meta) deletes the file or directory d p/ f r,
that is, the file with relative name f r under directory
dp. The metadata meta required to validate the dele-
tion policy is also recorded in the log.

Given a particular source directory, many different se-
quences of restructuring operations can produce the same
final directory structure. We claim that any such sequence
is logically equivalent to a sequence in migration log for-
mat. The log format facilitates reasoning about the effect of
the migration, and is not intended as a literal representation
of migration activities. For example, Mala cannot execute
DEL on WORM storage. Instead, she can simulate DEL by
not copying the deleted file during SNAP . Mala can per-
form any sequence of restructuring operations that is logi-
cally equivalent to the sequence she records in the log. Any
discrepancy between the two will be detectable by our ver-
ification routines. In this paper, we do not introduce a test
for logical equivalence or examine the question of which
migration logs are undesirable from some perspective (e.g.,
logs that create and delete the same file repeatedly, or copy
the contents of one file onto another). For our purposes, it
is sufficient that naming conflicts be resolved in one way or
another and that Mala be capable of producing a log.

5.1.2. Log-Based Migration onto an Empty Server

During migration, Mala must create a migration log file
that is logically equivalent to the migration operations she
intends to perform, and store the log on SB

1. As in an exact-
copy migration, Mala must also generate and store certifi-
cates for all the files and directories on SA. Bob can use
these certificates in conjunction with the migration log file
to verify the integrity of a file or directory migrated from
SA.

Consider a directory dA that was originally committed
on SA and migrated to dB on SB. To verify that dA was
migrated correctly, Bob will use the migration log to trace
the movement of dA and find it on SB. The migration log
can also be used to determine the set of files and directories
created and deleted under dA during the migration. This in-
formation can be used to reverse map the contents of dB on
SB to those of dA on SA. By verifying the integrity of the

1If desired, the migration logs and certificates can be stored on any
other compliance server accessible to users.
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VerifyDirRec(d, add set, del set, L , orig path)

1: while ((top = L .pop()) 6= END) do
2: if (top == COPY ( f r

src,dp
src, f r

dest ,d
p
dest )) then

3: if (d p
dest == d ) then

4: add set.Append( f r
dest )

5: end if
6: if (isprefix(dp

src/ f r
src, d)) then

7: rel path =suffix(dp
src/ f r

src, d)
8: new d = d p

dest/ f r
dest/rel path

9: ret=VerifyDirRec (new d,add set,del set,L , orig path)
10: if (ret 6= DELETED) then
11: return ret
12: end if
13: end if
14: end if
15: if (top == DEL ( f r ,dp,meta)) then
16: if (isprefix(dp/ f r ,d)) then
17: return DELETED
18: end if
19: if (d p == d) then
20: if ( f r 6∈ add set) then
21: del set.Append( f r)
22: else
23: add set.Erase( f r)
24: end if
25: end if
26: end if
27: if (top == CREATE (dr

new,d p,meta)) then
28: if (d p==d) then
29: add set.Append(dr

new)
30: end if
31: end if
32: end while
33: if (d.not exists) then
34: return DELETED
35: end if
36: dir list = 〈〉; {Now compute the hash properly}
37: for all ( f ∈ d.files) do
38: if ( f .commit server == SA) then
39: if ( f r 6∈ add set) then
40: dir list.Append( f r) {Include in hash only if f was not

present}
41: end if
42: end if
43: end for
44: phash = ht(orig path)
45: if !(phash == {Cdir[d]}KSA

[0]) then
46: return INVALID MIGRATION {Certificate does not correspond

to the correct directory}
47: end if
48: dir list.Append(del set)
49: hash = h(dir list)
50: if (hash 6= {Cdir[d]}KSA

.[1]) then
51: return INVALID MIGRATION
52: end if{Also verify the metadata and path hash}
53: return VALID;

VerifyDir(d)

1: Let d = d p/dr

2: return VerifyDirRec(d,{},{},L ,dr)

Figure 5. Log Verification Routines

reverse-mapped contents of dA with respect to the certifi-
cate for dA obtained from SA, Bob can verify the integrity
of the migration.

Figure 5 presents the routine VerifyDir for verifying the
contents of a directory d. VerifyDir invokes VerifyDirRec,

/

d1 d4

ƒ1

d2

ƒ2

ƒ3

ƒ4

ƒ5

d3

ƒ6

ƒ7

/

d1 d4

ƒ1

d2

ƒ4
ƒ7

ƒ5

d3

ƒ6

dnew

SBSA

Figure 6. The sequence SNAP, DEL (GID(d1/ f2),
/d1, meta( f2)), DEL (GID(/ f3), ’/’, meta( f3)), CRE-
ATE (dnew, / ), COPY (d3, /d2, d3, /ddest ) and DEL
(GID(/d2/d3), /d2,meta(d2)) is applied to the left direc-
tory tree to obtain the right one.

passing two variables add set and del set. These keep
track of the set of directories and files that have been added
to or deleted from d, as explained below.

• If a file or directory is created under d (using COPY
and CREATE operations), it is included in add set.
The entries of add set are excluded when computing
the hash of the contents of dB on SB (line 39 of Veri-
fyDirRec).

• If a file or directory is deleted under d using the
DEL operation, the deleted file/directory is added to
del set. The entries of del set are added to the con-
tents of dB on SB, to produce its contents on SA (line
48).

• If d is copied to a new location new d, its contents can
be recovered from both its current and its new loca-
tions. Hence VerifyDirRec() is invoked on the new
location as well (line 9). The original path to d is also
passed as an argument to VerifyDirRec(), for validat-
ing the certificate.

The routine isprefix(d, f ) (not defined in Figure 5) re-
turns true if d is an ancestor of f (or is equal to f ) in the
directory hierarchy. The routine suffix(d, f ) returns the re-
mainder of the path to f once one has reached d. For exam-
ple, isprefix(/A/B/, /A/B/C/D) is true, while suffix(/A/B/,
/A/B/C/D) is C/D.

The security of the scheme can be argued as follows. If
Mala omits a file f in directory d during migration, but does
not record that in the migration log, then Bob’s reconstruc-
tion on SB of d’s contents on SA will not include f , and the
validation of d against the certificate generated on SA will
fail. The same argument holds after d is copied into a new
location during migration, since we validate d’s contents
with the original certificate for d. If Mala creates an illegal
log—e.g., she copies d into a nonexistent directory—Bob’s
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validation check will detect that where the directory con-
tents are reconstructed. Any undefined operation in the log
indicates an invalid migration and will lead to automatic
presumption of guilt.

The pseudocode for verifying the integrity of a file is
simpler. The log is used to trace the movement of the file
across migration. The file contents are validated with the
certificate for f obtained from SA.

5.1.3. Other Metadata Changes We can general-
ize the migration log introduced in the previous sec-
tion to handle arbitrary metadata changes during migra-
tion. Metadata changes applied to f can be recorded
in the migration log by introducing a new log operation
MetaChange( f ,old meta,new meta), which records f ’s
old and new metadata. These log entries can be used to re-
verse map the metadata of a file on SB to that on SA, while
validating the certificate.

5.2. Special Cases

Migration onto a Nonempty Server Naming conflicts
can arise when the contents of SA are migrated onto a
nonempty server SB. If a file or directory f on SA has the
same path as a file already present on SB then Mala must
place f in a different location during migration. Figure 7(a)
gives such an example, where the file / f1 on SA conflicts
with / f1 already on SB, and hence is given a new name
fnew. While verifying the contents of the directory on SB

against the certificate signed by SA, Bob can use the com-
mit server metadata to identify the portion of the directory
tree that was migrated from SA. For example, Bob uses this
metadata to determine that only f1 and d1 were migrated
from SA.

Multiple Migrations We now consider the case where a
file or directory is migrated several times before Bob ac-
cesses it. Figure 7(b) shows directory d as it is migrated
from SA to SB and from SB to SC.

In a multiple migration scenario, all the certificates of
a file must also be migrated. Each migration stores its
own log plus the logs from all previous migrations, and
also generates and stores a certificate for d’s content. Thus
two certificates are stored with d on SC in Figure 7, signed
by SA and SB, respectively. If Bob wants to read d, he
should validate d against both certificates. When validat-
ing against SA’s certificate, Bob must consider only those
files/directories which were committed on SA; when vali-
dating against SB’s certificate, both SA’s and SB’s content
must be included. Furthermore, paths of files that are cre-
ated on SA and are subsequently deleted on SB (for example
on expiry) must be recorded in the log, as a DEL operation.

Those must also be included while reconstructing d’s con-
tents on SA based on its contents from SC.

An ordinary file f may have had data appended to it on
each storage server. The migration time sizes of f , sizeA

and sizeB, are both kept as metadata for f . Bob can val-
idate f ’s contents by computing the hashes over the first
sizeA and sizeB bytes of f , and comparing them against the
certificates from SA and SB, respectively.

The above scheme can be extended to the case where the
directory structure is also modified during each migration
step, by considering the two logs LAB and LBC in con-
junction. Suppose Bob queries for the directory d that was
committed on SA and wants to verify that its contents from
SA have been properly migrated. Bob can trace the set of
operations applied to d, using the concatenation of the logs.
Furthermore, while reconstructing d’s contents on SA us-
ing d’s contents on SC (to validate it against the certificate
signed by SA), Bob must consider only the files or directo-
ries under d with SA listed as their original storage server.
To verify a directory committed on SB, Bob must use the
migration log LBC and consider files or directories under d
with original server SA or SB.

Retaining all the certificates for a file raises the threat
of information leakage from older certificates. Consider a
file f that was created on SA, migrated to SB and omitted
during migration to SC, say based on its expiry date. In
order for Bob to verify that f ’s expiry date has not been
tampered with during migration, f ’s certificates signed by
SA and SB must be stored on SC. However, unlike the SB

certificate, the SA certificate was obtained when f was mi-
grated to SB and hence includes all of f ’s metadata. We can
handle this by precomputing an expiration certificate for a
file each time that it is migrated. The expiration certificate
includes only the file’s initial commit path and expiry date,
which is all that is needed to validate its eventual omission
and thus is the only certificate that needs to be stored for f
on SC. Precomputing the certificate is feasible only when
the omission policy is known in advance. The other option
of precomputing separate certificates for each of the meta-
data fields is highly space inefficient.

An alternate solution is to encrypt the metadata fields
before including them in the certificate (this is simi-
lar to our path encryption idea). Specifically, Cmeta[ f ]
can include the hash of the encrypted metadata fields
— ht〈Eko(owner), Ekc(create date), Eke(expiry)〉 instead of
hash of the plain text metadata. ko, kc and ke are symmet-
ric keys used to encrypt the owner, create data and expiry
date metadata fields respectively. The encryption keys are
stored with the file/directory as a metadata.

File omissions are handled by migrating the encrypted
metadata fields of the omitted file to the destination stor-
age. In addition, the decryption keys of the metadata fields
required to validate the omission (e.g. expiry date in the
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Figure 7. (a) The contents of SA are migrated onto SB (original), which already contains files with similar names. File f1 on SA is
renamed to fnew. The original storage server is noted in the metadata for each file. (b) Directory d is migrated from SA through SB
to SC. The metadata associated with file f0 on SC includes the server SA where it was originally committed, and its sizes sizeA and
sizeB at the time of each migration. On SC, the originating server SB is recorded in the metadata for d1, f2, and f3.

example above) are copied. The encrypted fields lets a
querier verify the last certificate (generated by SB in the ex-
ample above) against the old certificates (SA’s certificate).
Using the migrated keys, the querier can decrypt the meta-
data fields (and only those fields) that are required to vali-
date the migration.

The above scheme is space inefficient since it requires
a separate key to be maintained for each metadata field.
We can address this by generating the metadata specific
key from a single shared key and the unencrypted con-
tents of the metadata. For example, the key ke used
to encrypt the expiry date metadata can be generated as
k⊕ h(expiry date). We discuss this scheme in details in-
cluding its security properties in the full version of the pa-
per.

6. Migration Policies

Metadata-based migration policies can be validated us-
ing the log. Since we store the relevant metadata of each
omitted file in the migration log file as an argument to the
DEL operation, Bob can verify whether a file or directory
satisfies this omission policy. Bob can validate the meta-
data stored with the DEL operation by comparing it to the
signed metadata hash in Cmeta[ f ].

Complex migration policies may be needed, for exam-
ple, during a company spinoff. Only the “relevant” data
from the original company’s storage server is to be mi-
grated to the new company’s server, and relevance depends
on the file contents. For example, a policy may state that
all email documents where either the sender or receiver is
an employee of the new company must be migrated. The
sender/receiver information is available only by scanning
document contents.

We treat a complex migration policy as a query executed
over the storage server, such that the result of the query is
the set of files that must be migrated. Bob can tell whether

the migration policy was satisfied for a particular file or di-
rectory d by examining the query result and determining
whether the file is present on the target server. This raises
a key issue: how can Bob verify the integrity of the query
result? In other words, why should Bob believe that the
query result was obtained by running the query on the set
of files on the original server, and is not just Mala’s fabri-
cation? If we solve this problem, we also have a solution
to the problem of delivering a query result to a remote user.
We propose two solutions to address this problem.

Input-centric Policy-based Migration The key idea of
input-centric migration is to migrate the read set of the
query along with the query result. We define the read set
to be all the data read by the query engine while processing
the query defining the migration policy. For example, sup-
pose that the query is Migrate all documents containing the
keyword “X”, and an inverted index is available to answer
the query. Generally, we expect each posting list in the in-
verted index to be stored in a separate file. Thus the read
set includes the posting list for the term “X”, along with
the files containing any higher-level index structures used
by the query engine to access X’s posting list. These may
include the dictionary, the map between dictionary words
and pointers to the posting list, and the map from document
IDs to document locations. If Mala had used a B-tree to
execute her query, then the read set would have contained
all the nodes traversed in the tree (assuming separate nodes
are stored in separate files).

To perform a migration, in addition to her usual tasks,
Mala runs the query Q using the query engine QE and mi-
grates the read set and the files corresponding to the query
result to the destination server. Additionally, she must in-
voke SG M and SG D on all the files and directories consti-
tuting the read set and make those certificates accessible to
Bob. Finally, she records the fact that the query engine QE
was used with query Q to migrate from SA to SB, together
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with the timestamp for the start of migration.
To verify the migration, Bob obtains the query engine

QE and the query Q. To gain trust, Bob can inspect the
query engine code to determine that it will execute the
query properly. Alternatively, Bob can run a trusted ver-
sion of the query engine certified by an appropriate orga-
nization. Bob must verify that the read set was migrated
correctly based on the certificates signed by SA, and deter-
mine that the read set has been set up properly for the query
engine to find it. Finally, Bob can run the query engine QE
with query Q on the migrated read set to regenerate the
query result. He can use the query result to verify that the
files omitted during migration satisfied the corporate omis-
sion policy.

The input-centric approach is infeasible if the read set
is extremely large (e.g., all documents on the server must
be scanned for a keyword) or the query engine will not be
portable for the lifetime of the migrated documents. The
read set can also leak information. For example, Bob might
be able to reconstruct the contents of a deleted file from the
read set [22]. To address these problems, we propose an
output-centric approach to migration in the next section.

Output-centric Policy-based Migration The key idea
behind the output-centric approach is to run the query en-
gine inside the trusted environment of the storage server,
and have it sign a certificate of execution that testifies to the
code used, the arguments passed to it, and the query result
produced. The certificate, together with a small amount of
auxiliary information, allows Bob to verify the correctness
of the migration at any future point.

More precisely, we extend the storage server inter-
face so that it can accept a program V from an external
user (subject to the usual authorization controls), along
with arguments x1, . . . ,xn. The server executes V with ar-
guments x1, . . . ,xn, and returns a certificate of the form
{ht(V.code,x1, . . . ,xn,r)}K−1 , where ht is a one-way hash
function (e.g., SHA1 or its successors) acting on the tu-
ple (V.code,x1, . . . ,xn,r); V.code is the source code of pro-
gram V ; r is the value returned by executing V (x1, . . . ,xn);
and K−1 is a private key known only to the storage server.
The certificate is a proof that V was run with arguments
x1, . . . ,xn on the server and the result r was produced.

Consider the following migration policy: Migrate only
those files containing terms in keyword set. The query im-
plementing this policy is given by PolicySatisfy in Fig-
ure 8. It takes a file path as argument and returns true or
false depending on whether the file has a word from key-
word set.

To start the migration, Mala downloads and runs Poli-
cySatisfy on every file f on the system. After running Pol-
icySatisfy( f ) the server returns the following certificate:

PolicySatisfy( f ) // Does f satisfy the policy?

1: fkeys= f .Parse() {We assume that keyword set is hard-coded in the
function}

2: if (Intersect(fkeys,keyword set)) then
3: return true
4: else
5: return false
6: end if

Validate(C, f , PolicySatisfy, KA)

1: Let f p/ f r be f ’s full path.
2: cert = ht (PolicySatisfy, f p/ f r ,false)
3: if (cert == {C}KA ) then
4: return SUCCESS
5: else
6: return FAIL
7: end if

Figure 8. Query Code

C[ f ] = {ht(PolicySatisfy, f , true/false}K−1
A

For files which satisfy the migration policy (i.e. have a
word from keyword set) and have to be migrated, Mala in-
vokes SG M, SG C and SG D as before and stores the re-
turned certificate on SB. For every other file f , Mala copies
the above execution certificate C[ f ] to SB. As before, she
creates a migration log, recording all the name space al-
terations and the migration policy. She also records Poli-
cySatisfy and ht in the log.

Bob can verify that a file omitted during migration in-
deed did not have any word from keyword set by checking
the certificate C. For this, he must obtain the appropriate
version of PolicySatisfy and ht from the log and the public
keys of the secure coprocessor from a trusted key escrow
service. To gain trust, Bob inspects the code of PolicySat-
isfy to determine that it implements the omission policy ap-
propriately. He validates all this against the certificate C, by
running the Validate code in Figure 8. This scheme is se-
cure because if Mala logs a different version of PolicySat-
isfy than the one she actually ran, then C will not match
the hash computed in line 3 of Validate. If Mala illegiti-
mately omits a file during migration, she will not be able to
produce a correct execution certificate for that file. In this
approach, Bob can trust that an omitted file did not have a
keyword from keyword set, without learning the contents
of the omitted file. The same idea, when implemented for
metadata based migration can prevent metadata leaks.
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Scheme Type Description

Metadata Migrated Files Cmeta[ f ], Cdata[ f ], commit server, migration time sizes
based Omitted Files DEL log entry, Cmeta[ f ] computed over enough metadata to validate omission

Other COPY and CREATE log entries, migration policy
Input Migrated Files Cmeta[ f ], Cdata[ f ], commit server, migration time sizes
Centric Omitted Files DEL log entry

Other read set, COPY and CREATE log entries, migration policy, query code
Output Migrated Files Cmeta[ f ], Cdata[ f ], commit server, migration time sizes
Centric Omitted Files DEL log entries, Execution Certificate C[ f ]

Other query code, COPY and CREATE log entries, migration policy

Figure 9. Objects that must be maintained for each file under the different migration schemes

7. Performance Evaluation

Trustworthy migration imposes no runtime performance
penalty on file write operations. It does impose a space
overhead for storing certificates and logs at destination
servers, a time overhead for generating certificates during
migration, and migration validation costs incurred by an
auditor (or a reader who does not trust the auditor) certify-
ing the results of a migration. Readers who trust the auditor
incur a one-time cost for checking the auditor’s migration
certificate for a new server. Some schemes require gener-
ation of a certificate when a file is deleted. We measure
these overheads below.

Space Overhead for Migrated Files The extra storage
required for each migrated and omitted file is summarized
in Figure 9. We calculate the size of Cmeta[ f ] as follows.
(1) 128 bits collision resistant hash of file/directory path.
(2) 32 bits for a meta-list bitmap, assuming up to 32 meta-
data items per file. (3) 128 bits for the metadata hash. (4)
64 bits for the timestamp ts. (5) 1024 bits for the signed
hash, assuming a 1024 bit RSA. (6) 16 bytes for additional
metadata such as the ID of the commit server. Thus an up-
per bound on the size of Cmeta[ f ] is 188 bytes. Similarly,
we computed the size of Cdata[ f ] as 168 bytes. This space
overhead can be reduced by storing only one copy of the
path hash and timestamp ts instead of two in Cmeta[ f ] and
Cdata[ f ]. Overall, the certificate storage space per file is
under 340 bytes per migration. We also record the migra-
tion time size (8 bytes per migration) and commit server
(4 bytes) of each migrated file. The total space overhead
comes to less than 5%, given today’s average file size of
10-100 KB [10, 18]. As average file sizes are likely to in-
crease in the future, due to the proliferation of multimedia
data, our approach hence incurs a very reasonable space
overhead.

Files omitted during migration require a tombstone on
the destination storage. In the case of files that were mi-
grated, subsequently expired, and then were deleted, this
tombstone should be computed by the time the file is

deleted. For the metadata-based migration scheme, this
tombstone includes Cmeta[ f ] (188 bytes), selected metadata
fields for policy validation, and a DEL log entry containing
the file path (32 bytes). For the input approaches, only the
DEL log entry is required. For output centric migration,
the tombstone constitutes the query execution certificate.
In either case, the total size for this tombstone is likely to
be much smaller than the file itself. Thus, if the migra-
tion involves a small number of file omissions, the tomb-
stone space overhead will be negligible compared to the
total migrated data. Migrations with large numbers of file
omissions too are often structured, for example, where a
directory and all the files under it are deleted based on the
directory’s metadata. Such cases also require a small num-
ber of per-directory tombstones.

In addition to the per file items, our migration schemes
also require three additional items to be stored. First, each
CREATE and COPY log entry must be recorded. Most
real life migrations are likely to involve only a few of these
directory restructuring operations, such as moving “/” to
a subdirectory. Second, the read set and query code must
be recorded for input-centric migration. Typically the read
set will be a subset of an index structure used to answer
the query. If the read set is large, output-centric migration
should be used instead. Finally, the log must record the
omission policy, and the query code for output-centric mi-
gration. The overhead for these two log entries is indepen-
dent of the size of the migrated files and should be modest
in practice.

Time Overhead for Migration Trustworthy migration
imposes costs for generating certificates at migration time.
To evaluate this cost, we implemented the signing func-
tions SG C and SG M using open source hashing and en-
cryption libraries. As test data, we used the Enron email
corpus [1]. It contains approximately 500,000 email mes-
sages from 150 users, mostly senior management of Enron,
with each message stored in a separate file. We carried out
the experiments on a single processor Pentium Xeon 1.3
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Function Enron Corpus Per File
(in sec) (in sec)

1. Path Hash 12 2.3x10−5

2. File Hash 9145 0.017
3. Metadata Hash 72 1.39x10−4

4. RSA Sign 3300 0.006
SG M (1+3+4) 3385 0.006
SG C (1+2+4) 12458 0.024

Figure 10. Run time for the file data and metadata sign-
ing operations

GHz machine with 512 MB of main memory. The emails
were stored in an ext2 file system on an 80 GB, 5400 RPM,
Maxtor 98196H8 drive with a 9 msec average seek time.
Figure 10 reports the time overheads for trustworthy migra-
tion: computing path hashes, obtaining the hash over con-
tent/metadata, and signing the hash. As expected, hashing
the contents and the public key signing constitute the ma-
jor component of the total run time. The signing overhead
per migrated and omitted file is 30 msec (cost of SG M and
SG C) and 6 msec (SG M) respectively.

All three migration approaches incur costs to determine
which files to omit; these costs are the same as for non-
trustworthy migration. Input-centric migration requires mi-
gration of all data touched during the process of determin-
ing which files to omit, which can be expensive if few files
are to be migrated but much data was touched. Output-
centric migration avoids this cost. Output-centric requires
generation of migration certificates for each file.

Because migration is rare, the migration-time overhead
to generate certificates will be a small component of the
server lifetime workload. Furthermore, in practice, the old
server is unlikely to be de-commissioned immediately. The
certificates can be obtained by a process running on the old
server after the new server is on line.

Time Overhead for Verification When the directory
structure is migrated intact to a new server, the entire mi-
gration can be verified in the amount of time required to re-
generate the file and directory certificates. A single file can
be validated in 24 msec. These time estimates are also ap-
propriate if the migration involves a modest number of di-
rectory restructurings, name space changes, and file omis-
sions.

If a migration involves many file omissions, the log will
be large. We can speed up directory verification by index-
ing each DEL operation in the log by the directory under
which the operation is invoked. Then the verifier can find
each omitted file for a particular directory in O(1) time,
as it only needs to consider DEL operations executed di-
rectly under d (not its descendants). The overall effect of
omissions on validation time depends on what is omitted.
If ordinary files are omitted but no directories, then vali-

dation of a metadata-based or input-centric migration will
take approximately the same amount of time as the original
process of selecting the files to omit and generating all the
migration certificates. Validation of an output-centric mi-
gration will take approximately the same amount of time as
generating the certificates for the migrated files.

The directory verification routine VerifyDir(d) calls it-
self recursively for every COPY operation involving d or
any of its parents, halting the process when one of the calls
succeeds. The worst case behavior occurs when n COPY
operations are performed for n directories that are all an-
cestors and descendants of one another, and all copies are
deleted later on in the log; in this case the overhead is
W(2n). However, such extensive and ultimately pointless
directory restructuring is unlikely in a realistic migration
scenario.

8. Conclusion

In this paper, we have proposed techniques for securely
migrating data from one compliance storage device to an-
other. Migration is carried out by generating a series of cer-
tificates attesting to the contents of the files and directory
structure and creating a log of name space alterations. The
certificates and the log allow any future user to verify that
the migration steps satisfied the corporate migration policy.
Together, these new facilities provide a trustworthy basis
for decades-long retention of files containing compliance
records.

Trustworthy migration imposes no performance penalty
on file writes, which are the primary component of
compliance workloads. Readers who trust an auditor
incur a small one-time cost when using a new compliance
server. Readers (auditors) who wish to verify migrated
files on their own can do so at a rate of approximately 24
msec per file, based on our experiments with an Enron
email data set. The additional cost at migration time
is also approximately 24 msec per migrated file in our
experiments. This is very reasonable, given that a typical
compliance storage server will only be migrated once in
its lifetime. Our migration approaches impose a space
overhead of about 400 bytes per migrated file and, under
some approaches, a 200-300 byte tombstone for each file
that is not migrated. This is less than 5% overhead, given
today’s average file size of 10-100 KB.
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