
Capability based Secure Access Control to Networked Storage Devices

Michael Factor Dalit Naor Eran Rom Julian Satran
Sivan Tal

IBM Haifa Laboratory, Haifa, Israel
{factor,dalit,eranr,Julian Satran,sivant}@il.ibm.com

Abstract

Today, access control security for storage area networks
(zoning and masking) is implemented by mechanisms that
are inherently insecure, and are tied to the physical net-
work components. However, what we want to secure is at a
higher logical level independent of the transport network;
raising security to a logical level simplifies management,
provides a more natural fit to a virtualized infrastructure,
and enables a finer grained access control. In this paper,
we describe the problems with existing access control se-
curity solutions, and present our approach which leverages
the OSD (Object-based Storage Device) security model to
provide a logical, cryptographically secured, in-band ac-
cess control for today’s existing devices. We then show
how this model can easily be integrated into existing sys-
tems and demonstrate that this in-band security mechanism
has negligible performance impact while simplifying man-
agement, providing a clean match to compute virtualization
and enabling fine grained access control.

Keywords

storage, security, access control, virtualization, net-
worked storage, capability-based security protocol.

1. Introduction

While access control is common in higher level proto-
cols for accessing remote systems, services and application
data (e.g. [21, 28, 25, 14], etc), lower layers protocols are
less likely to have integrated access control mechanisms. In
particular, the protocols used today for accessing network
attached storage devices do not have an integrated strong
access control mechanisms. Instead, access is enforced at
the network or service delivery level. In this paper we dis-
cuss access control in storage area networks (SANs).

Today, access control for SAN attached storage is real-
ized using transport level abstractions and not storage level

abstractions. More concretely, access control in current
SANs is achieved using Port Zoning and/or LUN Mask-
ing. At the heart of both schemes (and their many flavors)
are access rules of the form: A requests coming from a
node connected to port a, can get responses from a node
connected to port b1.

The fundamental drawback with this approach to SAN
security is it involves entities, the ports, which have noth-
ing to do with the desire to control which executing im-
ages can access which persistent storage. From this basic
problem stem several concrete issues. For instance, since
access is tied to ports, changing the physical connection of
a node requires updating the SAN security configuration.
This is particularly problematic in a world of compute vir-
tualization, where virtual machines co-exist inside the same
physical machine sharing physical resources, and migrate
between physical machines. Even without virtualization,
this mixing of levels of abstraction is a recipe for manage-
ment confusion: to specify which (logical) host can access
which storage volume, one needs to map from a virtual ma-
chine to a physical host, from a host to a port and a port to
another port and to a volume. A third issue of trying to pro-
vide storage access control at the level of ports is that the
access control mechanisms are transport-dependent; thus
different mechanisms have to be developed, deployed and
maintained for IP SAN, FC SAN, SAS SAN and so on.

For Fibre Channel storage networks, two emerging stan-
dards - FC-SP [2] which provides port authentication and
N Port ID virtualization (NPIV) [1] which provides means
to dynamically create virtual FC ports - can be combined
to address some of the above weaknesses. However, adopt-
ing them involves hardware changes, and the access policy
is still managed in the port level, meaning they still suffer
many of the weaknesses we outlined above.

To address these we weaknesses we propose a new se-
curity model enforcing access control to storage in SANs.
Our model is based on the Object Store Device (OSD) se-

1The above description is a simplified generalization of Port Zoning
and LUN Masking. Section 2.2 details more about these access control
solutions.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:02 UTC from IEEE Xplore.  Restrictions apply. 



curity model [16, 7], as developed in the OSD technical
working group in SNIA [4] building upon research done in
CMU [17] and IBM [10]. The OSD model is well under-
stood, has been reviewed and implemented. We apply this
model to SCSI logical units2 (and extents within them) in
general. The model (Figure 1) provides a mechanism for
enforcing dynamic access policies by requiring that stor-
age I/O commands, initiated by some application client,
provide a cryptographically hardened credential. This cre-
dential is obtained from a security/policy manager which
ensures that only authorized clients are given appropriate
credentials for a given storage device. The storage device
grants or denies access based on this credential. A secret
key shared between the security manager and the storage
device is used by the storage device to validate the authen-
ticity of the credential shown by the client.

The cryptographically hardened credential is coupled
with the client’s I/O command using an encapsulation
paradigm, where a secure I/O command encapsulates the
original I/O command together with the credentials. Us-
ing encapsulation we avoid the need for massive changes
in the host or storage. Our approach is called Capability
based Command Security (CbCS).

CbCS addresses the weaknesses we described above.
CbCS provides an access control mechanism that is highly
amenable to use in a virtualized environment since it se-
cures the logical entities at the appropriate level of abstrac-
tion. It provides fine-grained access control which works
at the command level, rather than the connection level. It is
independent of transport since it is an end-to-end protocol
at the SCSI level. Finally, it simplifies management by pro-
viding a single point where storage access control needs to
be managed. The CbCS approach is a proposed new SCSI
extension standard, currently in review at the T10 technical
committee of INCITS [5].

Our main contributions in this paper are:

• We define a logical, in-band access control protocol
for storage in SANs, be it a disk a CD or a tape.

• We outline the architecture for realizing an I/O path
implementation of the model. In particular, we use
command encapsulation, which enables a smooth in-
tegration with the SCSI protocol.

• We demonstrate that this protocol can be realized with
minimal impact on performance.

Table 1 compares our approach with existing solutions.
Equivalent security level can be achieved by using Object
Storage Devices with an emulation layer in the host system
that maps block logical units to OSD objects. The reasons

2Logical Unit (LU) is the SCSI terminology for the basic entity serving
as a target for SCSI commands. LU is sometimes referred to as LUN - the
logical unit number.

Figure 1. The security model architecture.

we have chosen to augment the existing protocol with se-
curity features instead of emulating disks on top of OSD
devices, are avoiding the complications involved in the pro-
tocol conversion, and retaining the use of existing storage
system that have a much higher level of maturity than OSD
systems.

The rest of the paper is organized as follows: Section 2
gives background on virtualization and current access con-
trol solutions in networked storage. Section 3 elaborates
on the model, the aspects of integrating it into SCSI, and
its implementation architecture. Section 4 deals with our
prototype implementation and its performance. Section 5
looks at related work and section 6 concludes with a dis-
cussion and further work.

2. Background

2.1. Virtualization

Compute virtualization is the ability to run multiple in-
stances of an operating system (i.e., virtual machines) on
a single physical system. The virtual machines run on a
software layer called a VMM (virtual machine monitor) or
hypervisor. Roughly speaking, the VMM exposes a vir-
tual hardware environment to the virtual machines. There
are several approaches to virtualization (e.g. [20, 27]) and
many implementations (e.g. [11, 9, 6]) One feature of vir-
tualization servers is the ability to migrate virtual machines
across physical servers. Migration is a useful tool for ad-
ministrators of data centers and clusters: It facilitates fault
management, load balancing, and non-disruptive hardware
maintenance [12]. Security mechanisms must be adapted to
virtualized environments. Existing mechanisms which are
based on physical properties become problematic as phys-
ical resources are being virtualized. Access control is one
such instance, as outlined below.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:02 UTC from IEEE Xplore.  Restrictions apply. 



Table 1. CbCS vs. current access control approaches in the SAN
Traditional Zoning/Masking CbCS

Zoning/Masking with NPIV/FC-SP
Prevents identity spoofing No Yes Yes
Supports differentiated access per LU extent No No Yes
Supports differentiated access per command No No Yes
Supports physical adapter/port sharing No Yes Yes
Transport layer independent No No Yes
Single point of management No No Yes

2.2. Historical SAN security

The access control to storage volumes in FC SAN is
done today using port zoning and LUN masking. In this
section we overview these methods.

2.2.1. Port zoning. Port zoning is an access control
functionality supported by all the fabric switch vendors to-
day. There are several flavors of port zoning and some
variations between different vendor implementations. A
storage area network (SAN) fabric consists of one or more
switches having fabric ports (F Ports) which are connected
to node ports (N Ports) located in server hosts and in stor-
age systems. A given N Port communicates with the fab-
ric through its F Port connection. A zone is a set of FC
ports (either N Ports or F Ports, or both) that are allowed
to pass commands and data between one another. This can
be viewed as a virtual fabric residing inside the physical
fabric. Zones may overlap, that is a port can be a member
of more than one zone. Zoning methods can be categorized
along two dimensions: the way enforcement is done and
the port type on which it is based (F Port or N Port).

Enforcement Methods: There are two methods of en-
forcing zoning by the fabric switches:

1. Enforcing zones through discovery: When connecting
an N Port to a switch F port there is an establishment
phase in which the connected N Port is informed with
the set of N Ports addresses it can communicate with.
This, however, does not prevent a given N Port from
sending data to some known N Port address which
does not appear in the set.

2. Enforcing zones on frame by frame basis: With this
method, each frame is examined for its source and
destination ports, and if the two don’t belong to a com-
mon zone - the frame is dropped.

Zoning According to Port Type: Zoning can be done by
grouping either F Ports or N Ports in zones.

1. F Port based zoning: Every two F Ports in the switch
are either allowed or disallowed to exchange data.
This method has the merit that it cannot be attacked
by host port ID spoofing. However, it is hard to man-
age, as any change in cabling requires change in zon-
ing configuration. Moreover, control over which host
port can connect to each F Port has to be implemented
by some means. For that purposes, switch vendor
provide a port binding feature that binds N Ports to
F Ports. Unfortunately, port binding suffers from port
ID spoofing similarly to N Port based zoning.

2. N Port based zoning: Each N Port connected to the
SAN can be grouped with other N Ports defining an
N Port zone. The advantage of this zoning type is that
the hosts and storage systems are explicitly defined
as zone members. This is easier to manage, and also
allows moving systems and N Ports around the fabric
without affecting the zoning configuration. However,
this method is vulnerable to spoofing the identities of
N Ports.

Port Zoning Limitations: Port zoning suffers from the
following limitations:

1. Port Zoning is vulnerable to identity spoofing, unless
it is complemented with port authentication.

2. Both F Port and N Port based zoning are not
amenable to virtualization, as they are based on ports
which are naturally shared between virtual servers
and/or dynamically allocated to virtual servers.

2.2.2. LUN masking. Zoning alone does not provide
sufficient segregation of storage access in all SAN envi-
ronments: One of the main features of networked storage
is the ability to have shared storage systems. A shared stor-
age system may contain many LUs serving multiple host
servers. Every LU within the storage system may be ac-
cessed through any of the system’s N Ports. Clearly, port
zoning does not provide sufficient access control because
of the need to segregate host access between the different
LUs residing in the same storage system, using the same

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:02 UTC from IEEE Xplore.  Restrictions apply. 



N Ports. To enable segregation of host access on LU ba-
sis, shared storage system vendors support various man-
agement functions which are referred to as LUN masking.

One way of masking LUNs is by defining which LUs
are accessible through each storage system N Port. This is
sometimes called port binding, but should not be confused
with switch port binding mentioned above. A management
interface enables binding LUs to specific storage system
ports. This can be used in conjunction with port zoning to
limit the LUs visible to hosts. A host can only access LUs
that are bound to storage target ports that have a common
zone with the host port(s).

Although enabling the segregation between LUs, LUN
masking suffers from the same basic vulnerability of
N Port based zoning as it works on host port basis, thus
leaving the same management and security vulnerabilities.

2.3. New enhancements

The root problem that causes port zoning and LUN
masking to be unusable for virtualized environments is
that there is no one-to-one mapping from an N Port to a
server, when there are multiple virtual servers using the
same adapter port. The N Port is physical, and may be
shared among multiple logical (virtual) servers. A new ap-
proach that addresses this issue virtualizes the N Port, and
enables assignment of virtual N Ports to virtual machines.
Industry-standard N Port ID Virtualization (NPIV [1]) is
the capability for a single N Port to use multiple port iden-
tities.

Combining this approach with port authentication [2]
addresses some of the issues raised above. However, these
solutions are specific to the Fibre Channel transport layer,
thus other types of transport layers still require their own
solutions. Moreover, since this solution is at the fabric
’level’ it still suffers the weaknesses of ”all or nothing” ac-
cess control and the need to map logical entities to ports.

3. The CbCS model and architecture

3.1. The protocol

The CbCS protocol is a capability-based SCSI-
extension protocol which cryptographically enforces the
integrity of the capability and its legitimate use by the
client. The protocol is based on the OSD security model
[10, 7, 16, 17], mapping the objects to logical units of any
device type, with appropriate adjustments. Many of the
protocol details are similar to the OSD security protocol.
In this section we give an overview of the access control
protocol, and describe the major changes from the OSD
protocol.

3.1.1. Basic flow. Like OSD, CbCS involves three ac-
tive entities: an application client, a storage device, and a
security manager (See Figure 1). As a capability-based ac-
cess control system, requests to the storage device must be
accompanied by a cryptographically secured capability3 ,
which encodes a set of rights the holder has on a logical
unit. The capability is obtained from the security manager
by authenticating to it, and specifying which logical unit is
to be accessed.

In return to the capability request, the security manager
sends back a pair [CAP;Ckey] called a credential.

CAP is the capability which describes the rights that the
authenticating client has for accessing the requested logical
unit (e.g. read only permissions). The capability contains
additional properties detailed in 3.1.3, enabling features
such as fine-grained revocation of capabilities and perfor-
mance optimizations. Ckey (Capability Key) is a crypto-
graphic hash taken over the capability by the security man-
ager using a secret key. Ckey must be securely kept by the
client. The secret key used for the computation of Ckey is a
symmetric key shared with the storage device (see Figure
1).

In order to prevent network replay attacks, where an ad-
versary might replay a legitimate I/O request, the client
needs to tie the credential obtained from the security man-
ager to the channel over which the I/O command is issued.
This is done by an additional cryptographic hash taken over
a unique identifier associated with the channel, using Ckey

as the secret key. That integrity check value is called val-
idation tag and is included in each command. The next
section elaborates more on the validation tag and channel
identifier.

Once the validation tag is calculated the client can issue
an I/O command together with the necessary capability and
validation tag. This is done using command encapsulation:
The client encapsulates the I/O command together with the
capability and validation tag within a standard wrapping
SCSI command.

Once the storage device gets the wrapping SCSI com-
mand, it extracts the capability part from it. The storage
device calculates Ckey from the capability using the secret
key shared with the security manager. It then calculates
the expected validation tag. If the expected validation tag
matches that from the SCSI command the capability is con-
sidered authentic and the encapsulated SCSI command can
be serviced given that it is permitted by the capability.

To enable flexibility in the upper software layers, feder-
ation of client identities and client authentication methods
are not defined by the protocol.

3Since the protocol is defined at the command level, not necessarily
every I/O request must have this capability. For example, the protocol
may be applied only to commands that read or write user data from a
storage device.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:02 UTC from IEEE Xplore.  Restrictions apply. 



3.1.2. The security features of the protocol. As
shown in [16], the above protocol ensures that the capa-
bility presented by the application client is not modified,
forged or replayed. To ensure that the credential is not re-
played the protocol uses some channel unique identifier as-
sumed to be featured by the underlying channel. The pro-
tocol assumes that communication sent over the channel
can be trusted. Thus, the validation tag which is a cryp-
tographic hash of the channel id using Ckey attests both the
integrity of the capability and the reliability of the transport
channel on which it was received. A replay attacker send-
ing the validation tag over another channel would fail as his
message is received on a different channel.

The OSD security protocol includes higher levels of
security, such as securing the integrity of commands, re-
sponses and data (and not only integrity of capability as
described above). As our protocol uses the same model, all
these security methods can be deployed under our model.
However, we concentrate on integrity of capability only.
We believe that end-to-end security, providing access con-
trol security along with integrity and confidentiality of all
the data in-flight, should be achieved by combining this
protocol with lower-level protocol at the transport layer to
provide secure communication channel between the initia-
tor and the target. When the initiator and the target use a se-
cure communication channel, the additional security meth-
ods do not provide additional security. Moreover, they cre-
ate redundant functionality that only adds complexity and
could potentially harm performance. See ”Security Meth-
ods” in [16] for more information.

3.1.3. Capability arguments. The capability CAP is
described as

CAP = {Permissions,SecurityIn f o,ExpireryTime,

Audit,LUDescriptor,PolicyAccessTag}

1. The Permissions field encodes the set of allowed func-
tions on the logical unit. We elaborate more on that
field in the next section.

2. The SecurityInfo field identifies the shared key used
for the capability-key calculation and the crypto-
graphic hash function (e.g. HMAC-SHA-256.)

3. The ExpiryTime field specifies the expiration time of
the capability. The capability can be reused as long as
it is not expired. Thus, the application client does not
have to obtain a credential for each I/O.

4. The Audit field contains a value that the security man-
ager may use to associate the capability and creden-
tial with a specific application or client (thus achiev-
ing confinement of credentials as described in [18]).

However, the protocol does not mandate a specific al-
gorithm to use, and use of this field is optional and
considered to be vendor-specific.

5. The LUDescriptor field uniquely identifies the logi-
cal unit to which this capability applies. We elaborate
more on that field in the next section.

6. The PolicyAccessTag field is a settable LU attribute,
and it provides a mechanism to invalidate all outstand-
ing credentials for a given logical unit: A valid capa-
bility must match the policy access tag of the logical
unit; hence, we can invalidate credentials for a logical
unit by modifying the value of its policy access tag.

3.2. Integration with SCSI

Integrating the protocol with the SCSI standard has the
following aspects:

1. Adding the credential (capability and validation tag)
to the SCSI command. This is done using a newly de-
fined command called Encapsulating SCSI Command
(ESC). This command allows encapsulating another
SCSI command with additional parameters. The ca-
pability and validation tag are the encapsulating pa-
rameters in our case.

2. Identifying the SCSI LU to which access is granted.
The exact format of SCSI LU identification is derived
from the SCSI standards that require a logical unit to
have a globally unique designator (see [3]). It is possi-
ble to address a LU in finer granularity by adding ex-
tent within the LU, using SCSI logical block addresses
(see [3]). Thus, separate capabilities can be generated
for different LU extents.

3. Formulate the permissions. One way to formulate the
permissions is to identify which access rights are rel-
evant to SCSI commands (e.g. read/write), and define
for each SCSI command the access rights it requires.
Section 4.1 details the way we handled permission in
our prototype.

4. Provide within the SCSI protocol means to: Query
and set LU security attributes, such as the policy ac-
cess tag, and perform key exchange between the se-
curity manager and storage device. Additional stan-
dard commands are added for those purposes in the
proposal under review in the T10 committee, and they
are not detailed in this paper.

5. Provide a key management framework. The key man-
agement framework defined for OSD is closely related
to the object store structure. Adapting the protocol to

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:02 UTC from IEEE Xplore.  Restrictions apply. 



logical units implies the need for a modified frame-
work. However, the principles behind the framework
are the same as in the OSD protocol (see [16] section
5).

3.3. Implementation architecture

3.3.1. The basic architecture. In this section we detail
the architectural considerations and changes involved in re-
alizing the model. Figure 2 depicts a typical architecture
with a Linux server and a networked storage system.

The application client runs in the operating system hav-
ing a layered I/O stack. In Linux this stack involves three
layers: the host bus adapter (HBA), which connects the
host to the SAN, the SCSI driver and the block device
driver.

The model’s storage system is a SCSI device connected
to the SAN using a network adapter on top of which there
is a SCSI driver. In addition there is a policy/security man-
ager which communicates with security clients residing in
the host and the storage system.

Figure 2. System architecture.

In order to realize the model, a change is required in
the host component that constructs the I/O commands to
include credentials, namely, the SCSI driver. A similar
change is required on the controller.

The general purpose of the security client on the host
is to authenticate the entity requesting access against the
security manger, retrieve the credential and calculate the
validation tag. The host side security client should provide
an interface for fetching the credential based on the logical
unit accessed and the ID of the accessing entity. The pur-
pose of the security client in the storage side is to exchange
the secret keys with the security/policy manager and to val-
idate the authenticity of the capability using the validation
tag received as part of the I/O command.

3.3.2. Architecture in virtualized environments. In
virtualized environments we identify the virtual machine as
the logical entity granted access to storage. Different vir-
tualization systems require different implementations. [20]
classifies virtualization along two dimensions: The inter-
face they provide to virtual machines and the underlying
platform they are built upon. We are interested in the I/O
interface given to the virtual machines and the hardware
interface used by the hypervisor or VMM to do the actual
I/O.

The IBM POWERT M hypervisor [9] has a way to pro-
vide the generic SCSI system within the virtual machine a
direct mapping of virtual LUNs to real LUNs. In this case
the virtual machine acts as the host in the basic architecture:
The SCSI driver which needs to be changed is the virtual
machine driver, and the security client runs in the virtual
machine.

On the other hand VMMs such as Denali [29] and Xen
[11] provide generic devices to the virtual machine, elim-
inating the SCSI stack from the virtual machine. This re-
quires a different solution. Figure 3 depicts the I/O stack in
Xen. In Xen virtual machines are called user domains, and
there is a special domain called domain0 which is the only
domain having direct access to physical devices. The user
domain operating system is provided with a virtual block
device (VBD) having a front-end driver in the user domain
operating system, and a back-end driver in domain0, which
manages all VBDs.

Figure 3. The Xen block I/O architecture.

4. Our prototype

4.1. Implementation details

We have built a prototype system to demonstrate the fea-
sibility of the good path data flow in a virtualized environ-
ment.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:02 UTC from IEEE Xplore.  Restrictions apply. 



The application client is a Xen user domain. The stor-
age device is a storage system, which exposes logical units
to the Xen server which runs user domains. The security
manager is realized by code running on the client system,
which constructs the capability structure and computes the
capability key. Since we are interested in the I/O path we
did not implement the security manager as a separate server
which requires authentication. Our prototype is realized by
the following components:

Access control permissions: We have classified a subset
of the SCSI commands as either read, write or control com-
mands. The permissions granted to user domains to access
a LU consist of three bits controlling Read/Write/Control
access. The actual policies and the secret keys were imple-
mented as files located in the client and storage systems.
Our prototype does not include client authentication. Cre-
dential requests are emulated by directly invoking func-
tions that read data from files and return the appropriate
credentials.

The Xen virtual block device: An architectural issue
arising when coming to realize the model is associating the
requesting user domain with the I/O command constructed
in the I/O stack in domain0. This association is done us-
ing Xen user domain id. This id is unique and persistent
across Xen systems, making it suitable for migration of a
virtual machine between systems without changing the ac-
cess control policy. To do the actual association we have
added the user domain’s unique id to the I/O request struc-
ture constructed in the back-end driver of the virtual block
device. This block I/O structure is part of the data handed
finally to the SCSI subsystem in domain0, which constructs
the actual SCSI command, and needs to set the proper cre-
dential within the command.

The SCSI driver in the host: In the I/O stack every
physical device is associated with an instance of a driver
according to its type. For example, different types of SCSI
devices (disks, tapes, CDs) are associated with instances
of SCSI drivers having the appropriate type. For our pro-
totype, we defined a new type of SCSI device for block
logical units with CbCS access control4. The SCSI driver
we associated with this type is a modified SCSI disk driver,
changed to:

• Obtain the appropriate capability and validation tag
from the security client according to the user domain
id issuing the command and the target logical unit.

4This implementation differs from the standard proposal, which intro-
duces a new flag in the logical unit’s VPD to denote use of access control
security rather than a new device type.

• Wrap the original SCSI command descriptor block
(CDB) inside a larger CDB that contains the capability
and the validation tag.

The host side security client: The host side security
client is implemented as a kernel module, so that it can
be accessed efficiently from the SCSI driver. As mentioned
above, the host security client provides an interface for the
host SCSI driver to obtain the capability and validation tag.
Because our prototype does not include a full implementa-
tion of security manager, the host side security client em-
ulates the security/policy manager. The host side security
client calculates the capability-key and validation tag once
upon first request and fetches them from memory on sub-
sequent requests. We mention that this mode of operation
is similar to a real world scenario, where the capability is
not retrieved from the security manager on every command,
and the validation tag does not change as long as the same
channel is used.

The host’s HBA: The SCSI standard supports CDBs up
to 255 bytes in size [3]. However, current Fibre Chan-
nel HBA drivers support only CDBs up to 16 bytes in
size, as larger CDBs are not in use. The QLogic Fibre
Channel HBA card supports a mode of operation where
the Fibre Channel frame is constructed in software (In the
usual mode of operation the card would accept the SCSI
command and construct the Fibre Channel frame using its
firmware). Thus, we needed to modify the open source
Linux driver of the QLogic HBA to construct a Fibre Chan-
nel frame containing the larger CDB, and use this mode of
operation.

The SCSI target driver: The SCSI driver in the storage
system was modified to:

• Declare its exported logical units as having the new
SCSI device type.

• Strip the credential from the wrapper SCSI command,
and forward it to the storage side security client for
validation.

• Upon successful validation pass the encapsulated
SCSI command to the code that normally processes
the commands.

The storage side security client: The security client ex-
poses an interface to the SCSI driver for command vali-
dation. To do this it calculates the Ckey and validation tag
based on the appropriate key5 and the received capability.

5For our prototype, keys were hard coded for each LUN.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:02 UTC from IEEE Xplore.  Restrictions apply. 



Table 2. Number of lines added/modified
Module Lines of code
Newly introduced code
LibTomCrypt 580
Security client code 1240
Modified/Added code to existing components
Xen code 20
Linux kernel SCSI code 140
QLogic HBA 200
Storage system 90
Total: 2270

The security client caches the calculated validation tag6 in
a hash table with the capability serving as a hash table key
to save cryptographic computations on future access.

All cryptographic hash calculations are HMAC-SHA1
calculations. We have used the LibtomCrypt [15] open
source library to do all calculations in both the host and
storage system.

The total amount of code added/modified in our proto-
type is less than 2300 lines. Table 2 lists the amount of
added/modified code by components.

4.2. I/O path performance

Realizing the CbCS model brings up the question of per-
formance impact. The prototype considers the I/O path
only and does not take the authentication into account, as it
is not on the critical I/O path.

We compare the I/O performance of the described en-
vironment with and without the access control mechanism.
We do this using synthetic I/O and Benchmarks.

4.2.1. Hardware. The test environment has the follow-
ing specification:

• Host. IBM blade server HS20-8843, with a single In-
tel Xeon 2.80GHz CPU7, 512MB RAM and 2Gbps
QLogic Fibre Channel Adapter. We used Xen 3.0
based on Linux kernel 2.6.

• SAN. IBM BladeCenter FC Switch and a Brocade
switch.

• Storage system. A storage system, based on two
Linux machines, each equipped with two Intel Xeon
CPU 3.00GHz CPUs, 8GB RAM and 2X2Gbps Fibre
Channel Adapters.

6As long as the same channel is used for a given capability the valida-
tion tag does not change.

7This model has two processors, but we configured the OS to use a sin-
gle processor for the purpose of measuring command latency accurately.

4.2.2. Synthetic I/O. We first compare a CbCS secured
setup to a standard setup using synthetic I/O measured on a
per I/O command basis. We have performed the measure-
ments in 3 modes:

1. Kernel. The measurements were taken within the
SCSI device driver in Domain0. The time measured is
the time elapsing between initializing the SCSI com-
mand and the time the SCSI disk driver completes the
command.

2. User. The measurements were taken from a user
mode process running in Domain0. We measured the
elapsed time of a blocking read or write command
done directly to the device, bypassing any local file
system caching.

3. Virtual machine. Same as in User mode only the pro-
cess runs in a virtual machine, meaning the I/O is per-
formed against a virtual device mapped to a physical
device through Domain0. Again, there is no local file
system caching.

Note that the kernel mode and user mode cases are equiva-
lent to a regular Linux system (running on bare metal with-
out VMM) and the results are applicable to such systems
as well.

In each mode we have done separate I/Os for read and
for write, each with block sizes of 512 bytes, 4kb and 64kb.
Each of the above combinations was measured for both
cache misses and cache hits in the storage system. Alto-
gether we have tested 12 different types of I/O commands
in each mode. Each command type was executed 100000
times.

Computing the average and standard deviation over all
100000 commands in all configurations gave standard de-
viation that is much larger than the time difference between
the CbCS and standard setups. In fact in some configura-
tions CbCS performed better than the standard setup. Tak-
ing out 5% of the commands significantly reduced the stan-
dard deviation and the averages were comparable.

Looking at 95% of the data, it turns out that there is
a constant overhead of approximately 8 microseconds per
SCSI command incurred by CbCS in all modes and com-
mand types. Figure 4 shows the absolute times of all
cache hit measurements, demonstrating the constant addi-
tive overhead incurred by CbCS.

Considering the CbCS protocol, this constant overhead
is expected. The changes are independent of the actual
transfer length requested by each command.

To better understand the 8 microseconds overhead we
have used an additional setup called ”large CDB”, where
we construct a CDB of size necessary to pass the encapsu-
lated command with the credential, but we don’t populate
it with a credential and perform no validation. This setup

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:02 UTC from IEEE Xplore.  Restrictions apply. 



Figure 4. Cache hit I/O absolute times. CbCS shows a constant overhead of about 8 microseconds
over the standard setup.

was used to estimate the overhead of using large CDBs in
both the host and the storage systems. Looking at 95% of
the data (dropping 5% to reduce standard deviation) we see
that the constant time difference between the large CDB
and standard setups is about 3 microseconds.

We conclude that the host and storage system security
code takes 5 microseconds on average. The security code
in the host fetches the cached credentials and copies them
into the SCSI CDB. On the storage system the security code
fetches the cached validation tag and compares it with the
received validation tag. Note that in the most common case
no cryptographic computations are performed as they are
done only once and their results are cached.

To estimate the time saved using caching of the cryp-
tographic computations we have used the synthetic I/O to
measure the actual time spent in the security code with and
without the caching. It turns out that with the host hard-
ware listed above (using only one CPU) approximately 3.8
microseconds are saved when using caching. On the stor-
age system we did not observe any difference. This can be
explained by its significantly stronger hardware.

4.2.3. Benchmarks. To estimate the CbCS overheads
at the application level we have tested the CbCS and stan-
dard setups using the postmark [19] and Bonnie++ [13]
benchmarks. Each benchmark was executed in 4 config-

urations: CbCS and standard setups in both domain0 and
virtual machine modes as above. The benchmarks were
executed using the hardware listed above, over an ext3 file
system. Each configuration test was executed 50 times. Af-
ter each execution the file system was un-mounted, the de-
vice formatted and re-mounted again.

The Postmark benchmark is designed to simulate short
lived small files workloads. The benchmark workload first
creates files, and then performs read/write transactions on
randomly chosen files. Each run was configured to create
30,000 files and to perform 50,000 transactions. Other than
that we have used the benchmark defaults. We have used
version 1.5 of Postmark. Figure 5 shows for each of the
configurations its maximum, average and minimum total
execution times. Although the averages show that CbCS
seemingly performed better than the standard setup, the
maximum and minimum values show that the difference
between the CbCS and standard setups are in fact indistin-
guishable.

Bonnie++ [13] performs sequential I/O on large files en-
suring bypass of the filesystem’s cache. For the domain0
mode a 1 GB file size was used as the host RAM is 512 MB.
For the user domain mode a 512 MB file size was used as
the virtual machine RAM was defined to be 256 MB. Other
than that we have used the benchmark’s default. The Bon-
nie++ benchmark performs sequential read and write oper-

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:02 UTC from IEEE Xplore.  Restrictions apply. 



Figure 5. Postmark results.

Figure 6. Bonnie++ results

ations. The sequential writes are done per char, block-wise
and rewrites. The sequential reads are done per char and
block wise. We have used version 1.03 of Bonnie++. Fig-
ure 6 shows the resulted kilobytes per second rates. CbCS
average rate degradation is 0.57% reaching its maximum
of 1.2% in virtual machine mode rewrite test. We men-
tion that for all tests the rate difference between CbCS and
standard setups is smaller than the standard deviations. We
conclude that Bonnie++ shows a negligible difference be-
tween the CbCS and standard setups.

5. Related work

In his PhD thesis [17], Gobioff introduces a new design
for access control to network attached storage. Moving the
storage device from the server to the network gives rise to
various network attacks. Coping with these network at-
tacks must be done in accordance with higher level applica-
tions to enforce their access policies over storage resources.
[17] suggests a cryptographic capability system which en-
ables application file managers to define policy decisions,
which are enforced by the storage, in an asynchronous way,
such that the file manager does not have to be available
during actual I/O. In this work we adapt Gobioff design
concepts, which were part of the Network-Attached Secure

Disk (NASD) architecture (later evolved to the object stor-
age devices (OSD)).

Aguilera et. al. [8] apply the same security model as we
do to enforce access control in a different setting. Their ap-
plication of the model is done in a network attached disks
(NADs) file systems framework. In a NAD filesystem, a
file operation goes through a metadata file server, which
provides the client with the block mapping of the file. Us-
ing the block mapping, the client can access the network
attached storage - which works at the block level - directly.
[8] add security management functionality to the metadata
file server, such that any client request is passed an autho-
rization check. Having passed the authorization check, the
client is provided with the block mapping, accompanied
with the required capability to perform the necessary op-
eration on each of the blocks in this mapping. Similar to
our approach, [8] also require no changes in the data layout
on disk, and can be incorporated relatively easily in exist-
ing NAD file systems. [8] introduce a different capability
revocation scheme required due to the large amount of ca-
pabilities which need to be granted.

Reed et. al. [26] define an authentication framework
for network attached storage. Their framework features
client and storage authentication, access control enforce-
ment, and integrity and freshness of messages without do-
ing key exchange and encryption. Freshness is guaranteed
using either nonce and counters or synchronized timers.
Authentication, access control and integrity are achieved
by cryptographically hardening request and response mes-
sages with the appropriate keys in a similar way done in
our model: A key, called disk key, is shared between an
administrator/security manager and a storage device. The
disk key is used to derive capability keys and identity keys,
which in turn are used for access control enforcement,
authentication and integrity checks. The capability keys
are generated using a cryptographic hash function which
hashes some access permissions using the disk key. The
identity keys are generated similarly, only the hash is taken
over some identity string.

Miller et. al. [24], and Mazieres [23] enforce access
control without the use of a centralized server, using en-
cryption of blocks on the disk. Access control is achieved
by distributing keys to authorized clients. Revoking access
in such filesystems implies re-encrypting the data with a
new key, and so is expensive.

Leung and Miller [22] modify the OSD security proto-
col to fit to peta-byte scale storage systems. In such systems
the security server must generate thousands of capabilities
per metadata request. The integrity check done on non-
cached capabilities in the storage also causes a significant
degradation in such large scale systems. They introduce
a coarse grained capabilities having expressiveness equal
to a collection of many finer grained capabilities, and can

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:02 UTC from IEEE Xplore.  Restrictions apply. 



span over many objects, rather than just one. Capability
integrity is kept using a public key signature, rather that
the capability key which requires a shared secret between
the security manager and hundred of thousands of OSDs.
[22] also introduce a new and simple capability revocation
scheme. Although CbCS has inherently less capabilities,
as they are granted for LUs, it might be that some of these
ideas can serve in taking CbCS to large scale environments.

6. Conclusions and further directions

The CbCS protocol provides enhanced security to stor-
age devices without changing the whole storage access in-
terface paradigm. The prospects of CbCS adoption de-
pends on many factors. Technical issues that need to be
resolved and advances to be made on one hand, and market
demand that needs to be built up on the other hand. This
section addresses those considerations in brief.

A modification is required in the SCSI system to em-
bed the existing I/O commands in new commands contain-
ing credentials (when necessary). Storage systems should
provide support for validating credentials and for the new
security management commands. A management function
should also be developed. The accumulated impact of all
these changes on the existing systems, multiplied by the
number of different systems, is significant despite the fact
that the storage layout and access patterns remain the same.
Our prototype system leads us to an optimistic view of the
feasibility of applying these changes with a reasonable de-
velopment effort.

There are still numerous development and deployment
issues to resolve on the way to commercial productization.
End-to-end solutions have to be developed, and in particu-
lar virtualization creates a variety of scenarios that need to
be addressed. As the access of a virtual machine to its stor-
age is mediated by a hypervisor and/or by an I/O partition
with different storage abstraction schemes, a trust model
should be established for each environment, and definition
of roles of each component in obtaining and using creden-
tials of a VM to its storage. Another issue that should be
addressed is how to securely boot from an external device.
How can a credential be obtained before accessing the boot
image? For virtualization environment, the issue of secure
VM provisioning arises. When an entity requests permis-
sion to access an image for provisioning a VM, how can we
trust its innocence for accessing the storage only for provi-
sioning?

Standardization of the protocol is a key step towards
wide deployment, and a standard proposal is now under
review at the T10 technical committee of INCITS. Another
requirement for making the deployment of the protocol
practical in large commercial SANs is taking into account
gradual migration of currently deployed SANs, where host

support and storage systems support are likely to be avail-
able at different times from different vendors. It is thus
required that security attributes should be settable and re-
trievable at the LU level. Specifically:

• The protocol should allow for a storage system to sup-
port both regular and secure LUs at the same time
through the same target port.

• The protocol should provide an application client (in
a host system) means to determine the security access
controls applied to any particular LU.

• The protocol should maintain compatibility for old ap-
plication clients such that rejecting their access to se-
cure LUs is done in a way that allows for graceful fail-
ures.

Another key factor in making this mechanism a reality in
commercial systems is market demand for secure access
control to networked, shared, storage systems. This pa-
per describes significant security vulnerabilities of exist-
ing SANs. However, these vulnerabilities are not yet ac-
knowledged widely enough to make this a critical concern
in the IT world. IT organizations have used the same mech-
anisms for long years, and became very much used to their
limitations, such that those limitations are often perceived
as given facts. With lack of clear evidence for successful
attacks, the intention is drawn to other areas of IT secu-
rity. The emergence of compute virtualization could cat-
alyze the need for enhancing SAN security, as it opens a
gap between the logical and the physical entities in the net-
work. As the virtualized environments will become more
mature and large commercial virtualized systems will be-
come ubiquitous, the security concerns about them will rise
and comprehensive security solutions will be pursued more
seriously and intensively. Will CbCS become part of many
large scale mission critical IT systems? We believe that
the answer to that question depends, among other factors,
on our ability to standardize and develop effective imple-
mentations of the mechanism in a timely manner, such that
the mechanism will be ready for the challenge when the
demand for improved solutions for storage access control
security rises up as one of the top priorities in the IT indus-
try.

References

[1] Fibre channel link services. http://www.t11.org/ftp/t11/pub/
fc/ls/06-393v6.pdf.

[2] Fibre channel security protocols. http://www.t11.org/ftp/
t11/pub/fc/sp/06-157v3.pdf.

[3] Scsi primary commands. http://www.t10.org/ftp/t10/drafts/
spc4/spc4r09.pdf.

[4] Storage networking industry association. http://www.snia.
org.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:02 UTC from IEEE Xplore.  Restrictions apply. 



[5] Technical committee t10. http://www.t10.org.
[6] Virtual pc overview. http://www.microsoft.com/windows/

virtualpc/evaluation/techoverview.mspx.
[7] Scsi object-based storage device commands. In T10 Tech-

nical Committee of INCITS, October 4, 2004.
[8] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick,

E. Oertli, D. G. Andersen, M. Burrows, T. Mann, and
C. Thekkath. Block-Level Security for Network-Attached
Disks. In Proc. 2nd USENIX Conference on File and Stor-
age Technologies, Mar. 2003.

[9] W. J. Armstrong, R. L. Arndt, D. C. Boutcher, R. G. Kovacs,
D. Larson, K. A. Lucke, N. Nayar, and R. C. Swanberg. Ad-
vanced virtualization capabilities of power5 systems. IBM
J. Res. Dev., 49(4/5):523–532, 2005.

[10] A. Azagury, R. Canetti, M. Factor, S. Halevi, E. Henis,
D. Naor, N. Rinetzky, O. Rodeh, and J. Satran. A two lay-
ered approach for securing an object store network. In SISW
’02: Proceedings of the First International IEEE Security in
Storage Workshop, page 10, Washington, DC, USA, 2002.
IEEE Computer Society.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauery, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In In Proceedings of the 19th
ACM Symposium on Operating Systems Principles, October
2003.

[12] C. Clark, K. Fraser, S. Hand, J. G. Hanseny, E. July,
C. Limpach, I. Pratt, and A. Warfield. Live migration of vir-
tual machines. In In Proceedings of the 2nd ACM/USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI), Boston, MA, May 2005.

[13] R. Coker. Bonnie++ benchmark tool. 2004.
http://www.coker.com.au/bonnie++/.

[14] M. DeBergalis, P. F. Corbett, S. Kleiman, A. Lent,
D. Noveck, T. Talpey, and M. Wittle. The direct access
file system. In FAST, 2003.

[15] T. S. Denis. Libtomcrypt - modular cryptographic library.
http://libtomcrypt.org.

[16] M. Factor, D. Nagle, D. Naor, E. Riedel, and J. Satran.
The osd security protocol. In SISW ’05: Proceedings of
the Third IEEE International Security in Storage Workshop
(SISW’05), pages 29–39, Washington, DC, USA, 2005.
IEEE Computer Society.

[17] H. Gobioff. Security for a High Performance Commodity
Storage Subsystem. PhD thesis, Carnegie Mellon Univer-
sity, 1999.

[18] S. Halevi, P. A. Karger, and D. Naor. Enforcing confinement
in distributed storage and a cryptographic model for access
control. Cryptology ePrint Archive, Report 2005/169, 2005.
http://eprint.iacr.org/.

[19] J. Katcher. Postmark: A new file system benchmark. In
NetApp Technical Report TR-3022, 1997.

[20] S. T. King, G. W. Dunlap, and P. M. Chen. Operating system
support for virtual machines. In USENIX Annual Technical
Conference, General Track, pages 71–84, 2003.

[21] J. T. Kohl, B. C. Neuman, and T. Y. Ts’o. The evolution of
the Kerberos authentication service. In Proceedings of the
Spring 1991 EurOpen Conference, 1991.

[22] A. W. Leung and E. L. Miller. Scalable security for large,
high performance storage systems. In StorageSS ’06: Pro-
ceedings of the second ACM workshop on Storage security
and survivability, pages 29–40, New York, NY, USA, 2006.
ACM Press.

[23] D. Mazieres. Don’t trust your file server. In HOTOS ’01:
Proceedings of the Eighth Workshop on Hot Topics in Op-
erating Systems, page 113, Washington, DC, USA, 2001.
IEEE Computer Society.

[24] E. L. Miller, D. D. E. Long, W. E. Freeman, and B. Reed.
Strong security for network-attached storage. In FAST ’02:
Proceedings of the Conference on File and Storage Tech-
nologies, pages 1–13, Berkeley, CA, USA, 2002. USENIX
Association.

[25] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan,
M. Eisler, D. Noveck, D. Robinson, and R. Thurlow. The
NFS version 4 protocol. Proceedings of the 2nd inter-
national system administration and networking conference
(SANE2000), page 94, 2000.

[26] B. C. Reed, E. G. Chron, R. C. Burns, and D. D. E.
Long. Authenticating network-attached storage. IEEE Mi-
cro, 20(1):49–57, 2000.

[27] R. Rose. Survey of system virtualization techniques.
[28] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An

authentication service for open network systems. In Pro-
ceedings of the USENIX Winter 1988 Technical Conference,
pages 191–202, Berkeley, CA, 1988. USENIX Association.

[29] A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight
virtual machines for distributed and networked applications,
2002.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:02 UTC from IEEE Xplore.  Restrictions apply. 


