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Abstract

The ANSI Object-based Storage Device (OSD) standard
is a major step toward enabling explicit application-
awareness in storage systems behind a standard, fully-
interoperable interface [3]. In this paper, we explore a par-
ticular flavor of application-awareness, that of database ap-
plications. We describe the design and implementation of
a database-aware storage system that uses the OSD inter-
face not only as a means to access data, but also to per-
mit explicit communication between the application and
the storage system. This communication is significant, as it
enables our storage system to transparently optimize data
placement and request scheduling. We demonstrate that
OSD makes it practical to improve storage performance in
these ways without exposing proprietary disk drive param-
eters to application code, and without labor-intensive, frag-
ile parameter measurement.

1 Introduction

Storage system researchers, designers, and users have long
bemoaned the limitations of standard block-based storage
interfaces [5]. While providing good performance for most
applications and concealing unnecessary complexity of the
storage subsystem from applications, block-based inter-
faces keep parties on both sides of the interface ignorant
of the other. There have been suggestions that interfaces
should be more expressive [5, 6, 12, 16, 17, 19, 22, 28], that
storage should intuit the details of the data they store and
the applications that access it [24, 23], or that applications
should run inside the storage subsystem itself [1, 8, 16]. In
each case, impressive benefits were demonstrated “if only”
the interface could be extended, or benefits were limited
because the interface could not be changed.

These systems demonstrate that combining knowledge of
storage system parameters and application details can im-
prove overall performance for a variety of workloads. At
a high level, the goal of combining storage and application
parameters to improve performance leads to two alternative
approaches: storage-aware applications and application-
aware storage. While each could achieve the same ends,
there are real concerns of practicality arising from the lack
of a communication channel between storage and applica-
tions, and of depending on parameters which can often be
hard to measure, fragile, and proprietary.
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Figure 1: OSD moves the low-level storage management functions down
to the storage device and provides an object interface.

The industry has taken a significant step forward in
addressing practicality concerns by ratifying the ANSI
Object-based Storage Device (OSD) standard [3]. The
OSD interface includes a standard and extensible shared at-
tributes mechanism which allows, among other things, ex-
plicit communication of parameters between applications
and storage systems. While such a mechanism can en-
able both storage-aware applications and application-aware
storage, we believe that only application-aware storage
is practical because space management is handled by the
object-based storage device.

Dealing with parameters is difficult and is usually storage-
and application-dependent. Useful storage system parame-
ters can be low-level, such as cache sizes and configuration,
disk geometry, and prefetching and replacement policies.
Some parameters, especially those regarding physical char-
acteristics, are difficult to measure externally and are frag-
ile even across different drives of the same model. On the
other hand, some parameters are general statements about
hardware (number of disks) or data (type of a particular
file), and some are proprietary to particular hardware (the
low-level geometry of a drive) or applications (the internal
data structures of documents). Successful storage-aware
applications or application-aware storage systems will need
to strike the right balance between specificity and general-
ity across a range of hardware and applications.

In this paper, we make the case for application-aware stor-
age, and we investigate a particular flavor of application-
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aware storage that is enabled by OSD: that of database
applications. We make the case that database-aware stor-
age is more viable and can lead to better results than
storage-aware databases, as have been proposed in the
past [17, 20, 22]. In our system, database applications store
each relation (table) in a single object and annotate that
object with an OSD shared attribute specifying that rela-
tion’s schema. The database-aware storage system uses the
schema and its own knowledge of drive parameters to op-
timize low-level placement of the data independent of the
database itself. In this way, the storage system is tasked
with all low-level storage management tasks previously
handled by the database application, but can do a better job
by leveraging its own knowledge of low-level storage pa-
rameters.Unlike low-level storage parameters, schema in-
formation about a particular relation is not proprietary to
the database vendor, but is a general statement providing
semantic information about the data being stored.

The rest of the paper is organized as follows. Sec-
tion 2 compares and contrasts storage-aware applications
and application-aware storage, and describes related work.
Section 3 describes how database-aware object-based stor-
age devices can improve database performance. Section 4
describes our proposed database-aware OSD, including
the proposed shared attributes. Section 5 describes how
database software can be adapted to use OSD. Section 6 de-
tails our implementation. Section 7 presents an evaluation
of the prototype’s performance, and Section 8 concludes.

2 Storage-aware applications or
application-aware storage?

Performance of storage-bound applications can be im-
proved by combining detailed knowledge of both the ap-
plication and the storage system. The question is whether
the applications should be made aware of storage charac-
teristics (i.e., storage-aware applications) or should storage
systems be made more aware of application characteristics
(i.e., application-aware storage)? As with so many things,
the answer depends on which characteristics are to be used,
how readily available those characteristics are, and where
they are most easily and effectively put to use.

Fortunately, a major barrier to enabling both storage-aware
applications and application-aware storage, the lack of a
standard communication mechanism between applications
and storage, has been broken down by the adoption of the
industry-standard OSD interface. The OSD interface opens
the door for new research in practical, interoperable sys-
tems that leverage application and storage characteristics
to improve performance.

Storage becomes more
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Figure 2: Progression of storage interfaces. Each new interface moves
more intelligence to storage.

2.1 Object-based storage

Object-based storage has its roots in the network-attached
storage research of the 1990s [ 7], and now it is an accepted
industry standard [3]. It is the next logical step in the pro-
gression of storage interfaces. As shown in Figure 2, stor-
age interfaces have progressed steadily over the last sev-
eral decades, and each change has moved more intelligence
from hosts to storage devices (disks). OSD follows this tra-
dition.

The basic unit of storage in OSD is an object. An object is
a logical unit (i.e., sequence of bytes) of storage with well-
known, file-like access methods (including READ, WRITE,
CREATE, and REMOVE), object attributes describing the
characteristics of the object, and security policies that au-
thorize access [13]. An object is a variable-size entity
and can store any type of data including text, images, au-
dio/video, and database relations. The storage application
decides what should go into an object. An object grows or
shrinks dynamically as data is written or deleted.

The difference between OSDs and block-based devices is
the interface, not the physical media the objects are stored
on. Hence, magnetic or optical, read-only or writable, ran-
dom access or sequential access, all storage devices can
store objects and can be considered an OSD [13]. Early
examples of OSD are single disk drives (e.g., Seagate OSD
disks), smart disks (e.g., Panasas storage blades), and disk
array/server subsystems (e.g., LLNL units with Lustre).
Tape drives and optical media may also be used as OSDs in
the future.

One significant advantage of OSD is that the space man-
agement is delegated to storage devices. Thus, the storage
system has complete knowledge of how each disk block
is used and is related to other blocks. This is a dramatic
change from today’s block-based storage devices, which
cannot even detect which blocks are free and which are
used.

The OSD standard also provides for two types of attributes
that can be associated with data objects, as illustrated in

IEE l-i

COMPUTER
SOCIETY

24th |IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:15 UTC from IEEE Xplore. Restrictions apply.



OSD Client

OSD Interface

Opaque
at#ibqltes

READ/WRITE

10001110101
10000001110
11001110111
10001111000

interpreted)
Attribute pages
(can be defined by standards,

vendors, users without
changing the standard)

Figure 3: The basic unit of storage in OSD is an object: a logical unit
of storage with file-like access methods (i.e.,READ and WRITE). Appli-
cations can attach two types of attributes to objects: opaque and shared.
Opaque attributes are not interpreted by the OSD, just stored on behalf of
applications. Shared attributes are both stored and interpreted by the OSD,
and can be used as a communication mechanism between the application
and the storage system.

Figure 3. The first type, opaque attributes, are not inter-
preted by the OSD itself, but are simply maintained on be-
half of applications for their own use. The second type,
shared attributes, can be interpreted by both the application
and the OSD and provide a standard, yet extensible, com-
munication channel. For example, shared attributes can re-
lay information such as an application’s requirements for
quality of service, reliability, and security. While attributes
are generally described as being attached by applications
to objects to be read by the storage system, attributes could
also be attached to objects by the storage system to be read
by the application.

Related attributes are grouped together in attribute pages,
the format of which is defined in the standard for interop-
erability. Therefore, any OSD application can access these
pages even if these pages are not known to the application
ahead of time. There is a discovery mechanism (called ob-
ject directory pages) that enables applications to find out
every attribute page defined on a particular OSD, either by
standards, device manufacturers, or other applications.

The OSD standard defines a small set of attributes that are
deemed necessary for all applications. A significant por-
tion of the attribute name space is intentionally left unde-
fined by the standards body, to be used by (1) future stan-
dards, (2) device manufacturers, (3) vendors, and (4) appli-
cations (created on the fly). This division of the attribute
name space makes OSD extensible with shared attributes
defined by device manufacturers while still complying with
the specification. If there is demand, these shared attributes
can be included in future versions of the specification.

Since the format of the attribute pages is defined in the stan-
dard, there is no interoperability problem between applica-
tions and devices that do or do not support these shared

attributes. Those applications that are optimized to take
advantage of the shared attributes can do so by accessing
and interpreting these attributes, while standard applica-
tions can use the OSD as if these shared attributes do not
exist. Since attributes are tied to objects, as objects move
around (e.g., migrate from one device to another) attributes
move with them. Hence, an object with a shared attribute
can live on devices that do or do not support that particular
shared attribute with no interoperability problems.

The benefits of a higher level of abstraction for storage has
been described elsewhere, and much of that value comes
from the use of objects rather than blocks as the primary
unit of access [7, 13]. OSD’s shared attribute mechanism
has been explored less in the literature, however. Shared at-
tributes specifying quality of service levels have been pro-
posed and evaluated [11]. We believe that the shared at-
tribute mechanism can be used much more widely and can
enable both storage-aware applications and application-
aware storage.

2.2 Storage-aware applications

Many have argued that applications should know more
about the details of storage and can effectively use this in-
formation to improve performance. These efforts demon-
strate the potential for storage-aware applications, but they
are often deemed impractical since there is no standard
means for an application to receive parameters from stor-
age. OSD shared attributes could solve this parameter
passing problem by allowing the storage system to attach
shared attributes to individual objects, collections of ob-
jects, or to the entire drive. Applications could then query
that attribute to read the required parameters and make their
own optimizations on a global or per-object basis.

While OSD could provide a means for solving the parame-
ter passing problem, there remain several shortcomings of
using OSD attributes to enable storage-aware applications.
First, storage vendors will likely remain reluctant to expose
proprietary parameters. There is little reason to believe that
vendors will become more willing to expose more param-
eters just because there is a standard mechanism to do so.
Second, storage parameters can change more often than ap-
plication parameters, often asynchronously due to data mi-
gration or disk failure, meaning that storage-aware applica-
tions will have to be built to tolerate parameter changes at
any time. Third, and most significant, OSD provides a vir-
tualized view of data via the object abstraction, taking full
control over data placement and free space management.
Even if an application has the parameters that describe low-
level details of the storage system (e.g., disk characteristics
that can be used to improve data placement), the applica-
tion cannot use them since it has no control over how data
is placed on disk. As a result, a large class of storage pa-
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rameters that could be exposed using OSD shared attributes
are useless to storage-aware applications.

2.3 Application-aware storage

Application-aware storage devices can use the shared at-
tribute mechanism of OSD to receive parameters of data
and applications, and can perform optimizations behind
the storage interface. By understanding the data that they
store and the applications that are using them, application-
aware OSDs can proactively optimize storage and access of
data in application-specific ways. OSD can enable a vari-
ety of application-aware object-based storage devices, each
tailored to one or more applications [9]. End-users will
choose OSDs that are optimized for their specific applica-
tion.

We believe that application-awareness avoids several of
the shortcomings of storage-aware applications described
above and is, therefore, more practical.

First, many application parameters are more static and
generic than physical hardware parameters. Take the type
of a file as an example. A file’s type can be expected to re-
main constant over its lifetime, and the various types them-
selves tend not to change very quickly, Image and docu-
ment formats like JPEG and Microsoft Word files remain
fixed for reasonably long periods of time, much longer than
any particular disk layout. While the internal structure of
some of these file types is proprietary, many are standard-
ized to promote interoperability.

Second, application-awareness using OSD maintains ap-
propriate abstraction boundaries between applications and
storage. At a high level, application-awareness represents
the right division of labor between applications and storage
systems. More practically, this means that low-level stor-
age optimizations are handled by the storage system, which
is armed with the requisite application and storage param-
eters. Optimizations are made transparently — the applica-
tion is unaware of the optimization except for, hopefully,
improved performance. Applications are not required to
handle changes in the storage hardware, nor do they need
to re-optimize when moving data from one storage system
to another. If the original application parameters follow the
data when it is moved between systems, then the new stor-
age system can re-optimize.

Lastly, storage interfaces have been changing over time, be-
coming increasingly functional and handling higher-level
storage tasks. Figure 2 illustrates how early storage in-
terfaces provided only very low-level functionality, requir-
ing applications to directly control formatting, error cor-
rection, and even aspects of magnetic recording. Over
time, storage systems have moved higher-level functions
from the host system behind the storage interface, becom-

ing more application-aware over time. OSD is the next nat-
ural step in that progression, moving the next lowest lev-
els of storage functionality into the storage system. This
progression is significant in this discussion, as there is mo-
mentum in the storage industry to move more and higher-
level functionality into the storage system, and no mo-
mentum toward exposing lower-level parameters to appli-
cations. Application-aware storage embraces rather than
fights this momentum, providing an interesting new avenue
of research in improving storage performance for specific
applications.

Not all OSDs will be application-aware, and not all appli-
cations will have corresponding application-aware OSDs.
As well, interoperability between standard and application-
aware OSDs is critical to their success. An application-
aware OSD should provide baseline performance for
all applications that is equivalent to normal (i.e., non-
application-aware) OSDs. In other words, an application-
aware OSD should not impose a performance penalty to
applications for which it is not optimized. Also, a non-
application-aware OSD should function correctly for all
applications, but will not provide the performance benefits
of application-awareness. For example, a database storage
manager that has been written for OSD should function
correctly on both database-aware and database-unaware
OSDs. Of course, that database should perform better when
using a database-aware OSD.

2.4 Related work

Perhaps the most direct form of application-aware storage
is when a part of the application executes in the storage sys-
tem itself. Active Disks allow application code to run on
storage nodes directly with demonstrated benefits for mul-
timedia and databases [1, 8, 16]. However, practical Active
Disks will require more work beyond the standard OSD in-
terface, both on the host side and the target side. Although
OSD is the right interface for active disks, it needs to be
extended to enable application code to be downloaded to
storage nodes. Local runtime systems on the storage nodes
must be defined that provide good performance, portability,
and isolation.

Semantically-smart disk systems are another form of
application-aware storage that take a different ap-
proach [23, 24]. Their goal is to imbue the storage sys-
tem with application-awareness while maintaining the stan-
dard block interface. The storage system monitors the on-
disk data and request stream to intuit application-specific
knowledge of the data and the applications. Semantically-
smart disks have been demonstrated to improve perfor-
mance, reliability, and security, both for filesystems and
for databases. While our goals are similar, our technique
avoids the guesswork of interpreting on-disk datastructures
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and sequences of requests by using explicit communication
enabled by OSD shared attributes.

OSD provides a practical middle ground that is both ef-
fective for enabling application-awareness and is general
enough to allow the right level of interoperability among
vendors and applications. OSD is similar to active stor-
age in that the application-awareness it enables is explicit
rather than implied. That is, the application uses shared at-
tributes to communicate its characteristics directly with the
storage system, as opposed to requiring the storage system
to try and interpret the data it stores on its own. Being an
industry-standard interface that is already designed to be
extensible, OSD can support a wide variety of applications
and interoperable devices.

The Fates project developed a storage-aware database sys-
tem that used detailed characteristics disk drives to preserve
physical locality of multidimensional datasets [17, 20, 22].
As with many storage-aware applications, the Fates work
depends on the availability of these parameters to the
database. As we describe in the next section, application-
aware storage (in this case, database-aware storage) can
address this shortcoming and make these techniques much
more practical.

3 Motivation - OSD for databases

In this section, we make the case that databases are a good
candidate for application-aware storage. Databases are of-
ten very dependent on storage performance, and so im-
provements in storage subsystems can lead to significant
benefits. Studies have shown that database storage per-
formance can be improved by leveraging detailed knowl-
edge of storage subsystem characteristics which are gener-
ally unavailable at the application level. Furthermore, the
majority of commercial databases share the relational stor-
age model, meaning that a storage system that understands
relational databases has the potential to benefit many appli-
cations.

3.1 Using storage parameters in databases

Recent research showing the benefit of leveraging storage
system parameters is promising, but is generally imprac-
tical because those parameters are unavailable at the ap-
plication level. Database-aware storage turns this prob-
lem around by passing the parameters of the database to
the storage system, enabling storage to use internal knowl-
edge of storage parameters to improve performance trans-
parently to the application.

3.1.1 Classical database storage management

A database management system (DBMS) typically ac-
cesses storage via its own storage manager. The storage
manager handles data placement, file access, and schedul-
ing of disk requests. A DBMS usually implements its own
in-memory buffer pool management as well. The stor-
age manager reads and writes fixed-sized data pages (typ-
ically 8-64 KB each) to and from the disk into the buffer
pool.

Most current database systems use the N-ary storage model
(NSM) as their low-level data layout, which organizes the
table into fixed-size pages (e.g., 8KB) each containing a
short range of full records [14]. Pages are stored sequen-
tially on disk. NSM is well-suited to workloads that access
full records, such as online transaction processing (OLTP)
workloads, but is not well-suited to workloads that ac-
cess partial records, such as decision support system (DSS)
workloads. Full records are always fetched into mem-
ory regardless of whether the query actually touches the
data, wasting memory capacity and, more importantly, disk
bandwidth.

DSS workloads are often better-served by the decompo-
sition storage model (DSM), which organizes a table in
column-major order by storing individual fields sequen-
tially on the disk [4]. Because of its column-major organi-
zation, DSM gives good performance when accessing just
one or a few fields from a relation, but suffers when recon-
structing full records, leading to poor OLTP performance.
A more recent system, C-Store [26], is a column store that
is built for read-optimized DSS workloads.

The shortcomings of these storage models stem from the
fact that the storage interface is inherently linear, requir-
ing serialization of the relation along one axis or the other.
The serialization problem can be mitigated by maintaining
two copies of the relation, one using NSM and one using
DSM, as suggested by Ramamurthy et al. [15]. However,
this technique doubles the required storage space and must
propagate updates to both copies of the relation.

3.1.2 Geometry-aware storage management

A more optimal storage model would allow the DBMS to
fetch only the data required by a given query as efficiently
as possible, given the characteristics of the underlying stor-
age subsystem. Put differently, a successful storage model
should deliver performance comparable to NSM for full-
record access, equal to DSM for single-attribute access, and
provide a linear tradeoff for partial-record access.

DBMS storage managers typically have little or no in-
formation about the underlying storage subsystem, which
can lead to inefficient storage performance. Several of
these shortcomings have been explored and solved in the
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Fates project [17, 20, 22], which investigated three aspects
of storage performance inefficiency in databases. Lach-
esis [17] showed the importance of aligning disk accesses
to track boundaries. Atropos [20] demonstrated the use of
semi-sequential disk access to enable two dimensions of
efficient access on disk. Clotho [22] showed the benefit
of building query-specific, rather than fixed-content, pages
in the buffer pool, and how advanced data placement tech-
niques such as those enabled by Atropos can make fetching
query-specific pages from disk efficient. Clotho introduced
a new storage model, CSM, which equaled or exceeded the
performance of NSM and DSM for both full-record and
single-attribute access, respectively.

As these systems are storage-aware applications, each re-
quires the storage manager or logical volume manager to
have detailed knowledge of the characteristics of the un-
derlying disk drives. Lachesis and Atropos require knowl-
edge of each disk’s track boundaries. Atropos requires even
more detail, including a full logical-to-physical map of the
disk blocks, the settle time of the disk head after a seek, and
tight control over request scheduling. Unfortunately, these
parameters are not likely to be exposed by storage system
vendors, which raises questions about the practicality of
these techniques.

3.2 Turning the problem around with
application-awareness

In order to enable the geometry-aware storage optimiza-
tions described above, two sets of parameters must be
brought together: the parameters of the disks in the stor-
age system and the schema of the database relations being
stored. Detailed disk parameters are notoriously difficult
to come by, and are generally viewed as proprietary in-
formation by storage vendors and are not exposed. Disk
parameters can be extracted empirically using specialized
tools [18, 27, 29]. Unfortunately, these techniques are
generally time-consuming and fragile, as disks continually
change from year to year, vendor to vendor, even disk to
disk. Without continual effort, parameter extraction tools
are bound to lag behind disk development.

On the other hand, the majority of databases use the re-
lational model: tables of strongly-typed records each with
a fixed schema. Database software from different vendors
may implement the relational model somewhat differently
(e.g., vendors use their own page formats when storing re-
lations to disk). However, since most of these databases
share the relational model, we can expect database-aware
storage to benefit the majority of databases. As well, a re-
lation’s schema is specified by the database user, generally
does not change over time, and is not proprietary to any
particular database system.

The approach that we advocate in this paper is to enable

the database software to expose the relevant characteristics
of the relations to a database-aware storage subsystem, en-
abling the optimizations to be handled at the storage level,
where the necessary storage parameters are known. Ex-
posing a relation’s schema to the storage system is much
more practical than exposing the storage subsystem’s pa-
rameters to the database software, and can achieve the de-
sired goal of enabling parameter-driven database storage
management.

Using object-based storage, a DBMS can inform the stor-
age subsystem of the schema of a relation, thereby pass-
ing responsibility for low-level data layout to the storage
device, where the requisite disk parameters reside. The
DBMS no longer needs information about the storage sub-
system, but still can take advantage of geometry-aware
data layouts such as CSM [20, 22]. The database-aware
object-based storage prototype that we describe in this pa-
per demonstrates this approach, implementing the CSM
layout behind the object interface. In the following sections
we describe how the shared attribute and session mech-
anisms of the OSD standard can enable an OSD to im-
plement optimizations that were impossible or impractical
with previous storage interfaces.

By moving the storage component of the DBMS to stor-
age devices, object-based storage also removes the biggest
obstacle to data sharing. Database management systems
(and file systems) have their own ways of placing the data
on the disk and maintaining block-level metadata. There-
fore, when different hosts access the same data, they need
to have a priori knowledge of both the metadata and on-
disk layout. For a DBMS, this usually means a rela-
tion created with one vendor’s software cannot be shared
with another vendor’s software. With objects, since meta-
data is offloaded to the storage device, the dependency be-
tween metadata and the storage system/application is re-
moved, enabling portability and data sharing between dif-
ferent storage applications (i.e., cross platform data shar-
ing). This also improves the scalability of clusters since
hosts no longer need to coordinate all metadata updates.

For DBMS, the above advantages can further be comple-
mented with on-disk processing either for ongoing main-
tenance of stored relations or more advanced concepts like
execution of portions of queries. Using background tasks
transparent to the user, storage devices can handle many
ongoing maintenance tasks such as reorganization, sorting,
indexing, and free space management. For example, rela-
tions that are sorted on a primary key must be kept sorted
on disk as records are inserted and deleted. Indices and
materialized views must also be maintained as the data is
updated. As the data and workload changes, the storage
organization can be optimized on disk. These maintenance
tasks can be handled synchronously while the workload is
running, but at a cost in performance. A database-aware
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storage system could more effectively exploit idle time and
excess capacity to provide many of these ongoing mainte-
nance functions asynchronously or lazily without interven-
tion by the DBMS by employing techniques such as free-
block scheduling [12].

With an active disk approach, database-aware storage de-
vices could take part in the execution of the queries. With a
minimum amount of data movement and better disk utiliza-
tion, on-disk query processing may provide overall better
performance in many cases. Obviously, there are several is-
sues that require further study. For example, deciding how
much of the query can/should be executed at the storage
level (e.g., processing power available at the storage) and
how the query structures can/should be passed to storage
devices.

4 Using the OSD interface

In this section, we examine how to use the OSD interface to
enable database-awareness. We seek to answer three ques-
tions: (1) How is a relation mapped to data objects? (2)
How is semantic information provided to the storage sys-
tem? (3) How is data accessed most efficiently?

We start with the standard OSD interface [3] and find that it
is well-suited for mapping relations, incorporating seman-
tic information from applications, and providing database-
awareness. However, one shortcoming remains: data ob-
jects are addressed through the interface as linear arrays of
bytes, which contrasts with the two-dimensional structure
of relational databases. We propose a solution using ses-
sions, a concept that was considered as part of the original
OSD specification [2], but was dropped in the last phases of
the standardization process for the sake of simplicity. Ses-
sions are currently being investigated by the OSD working
group [25] and academia [11] as part of the QoS extension
to OSD. In this paper, we provide another compelling use
for OSD sessions.

4.1 Mapping relations to objects

We consider several options for mapping database relations
to objects: (1) one object per record, (2) one object per
field, (3) one object per data page (e.g., 8KB), (4) one ob-
ject per relation.

Most relations contain too many records (millions or bil-
lions) to store each record in its own object. Using a per-
record mapping, scans that address large portions of the ta-
ble would generate too many requests to be practical. Fur-
thermore, the OSD security model requires a credential for
every object accessed and there can be only one credential
per CDB (command). Therefore, only one object can be
accessed with a single command. This type of mapping

Table 1: Shared attribute specifying a relation’s schema.
| Attribute page | Number [ Value |
Relation schema (8003h) 1h Field 1 length
2h Field 2 length
3h Field 3 length

Nh Field N length

would significantly reduce the efficiency of the system as
each record would require a separate command to be sent to
the storage device. Therefore, a row-major decomposition
seems infeasible.

Decomposing the relation into columns and creating an ob-
ject per field is a natural approach [26], but reconstructing
a full record is often expensive, as in standard DSM lay-
outs [4]. In fact, decomposing the two-dimensional relation
in either order (row- or column-major) presupposes that the
stored relation will be accessed in that order. Accesses in
the chosen order are, therefore, efficient and accesses in the
other order are inefficient. Making that decision a priori is
not always possible, so the storage system should not re-
quire it.

Storing the data in fixed-sized data pages (e.g., 8KB NSM
or DSM pages) with an object for each page has the ad-
vantage that it naturally fits the storage model of current
databases. However, geometry-aware layouts do not use
pages with fixed contents, since the DBMS must be free to
access arbitrary ranges of records and fields within those
records.

Therefore, our implementation stores the entire relation in
a single object. This organization allows the storage sys-
tem to optimize placement of the relation under the hood
in any way it sees fit, while ensuring that the database sys-
tem can address that data in a consistent, interoperable way.
This interoperability is really the key — if application-aware
storage is to be successful, data representations need to be
abstract and simple, and impose no restraints on the appli-
cation. As well, it provides the right division of labor be-
tween the application and the storage system. In this case,
the database is able to logically read and write data regard-
less of its physical organization on disk.

4.2 Passing semantic information

When an object is created to store a relation, the schema is
expressed as a shared attribute that is assigned to that ob-
ject. We defined a shared attribute page that specifies the
schema of a relation, identifying the length of each field in
bytes, as shown in Table 1. Note that our attribute speci-
fies the length or an attribute rather than its particular type
(e.g., int, float, char). Specifying the length is sufficient
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Block Storage: Read(LBA, size)
Query A: Read(4, 4)
Query B: Read(0, 1), Read(4, 1), LI, Read(16, 1)

0N/ 2 A8 | | (10 Reqs) Read(2, 1), Read(6, 1), [ . Read(18, 1)

411516 |17]

s |19 10141 Standard OSD: Read(byte offset, len) n=block size
Query A: Read(4*n, 4*n)

12 14|15 Query B: Read(0, 1*n), Read(4*n, 1*n), [1, Read(16*n, 1*n)

16ﬂ18 o (10 Reqs) Read(2*n, 1*n), Read(6*n, 1*n), [, Read(18*n, 1*n)

OSD w/ Sessions: Read(byte offset, len, session Id)
Query A: Read(4*n, 4*n, x), where bitmap=1111 in session x
Query B: Read(0, 10*n, y), where bitmap=1010 in session y
(1 Req)

Query B

Figure 4: Linearization of the relation causes problems when generat-
ing requests for projections. Compare the number of requests required
for Query A versus Query B. For standard block-based storage, OSD,
and OSD with sessions, servicing Query A requires only a single request.
However, Query B requires 10 strided requests for both block storage and
standard OSD. OSD with sessions satisfies Query B with a single request,
since it can be made in terms of a schema bitmap.

for the optimized two-dimensional placement of data that
we implement, although future optimizations may benefit
from specifying explicit types. A special value of FFFF
FFFFh is used to indicate a variable length field, which are
handled separately from the fixed-length fields. The OSD
standard allows up to 232 attributes (fields) to be defined on
a page.

4.3 Accessing relations

Once arelation object is created (viaa CREATE command)
and the schema defined (via a SET ATTRIBUTES com-
mand), the DBMS needs to be able to address ranges of
records. Objects in the current OSD specification are ad-
dressed as a linear array of bytes, despite the fact that the
underlying storage may be optimized for multidimensional
access. To address individual records, the DBMS must cal-
culate the byte offsets of those records within the relation.
Individual fields within records can also be addressed at a
byte granularity. Once byte offsets are calculated, READ
and WRITE commands access the data in a relation object.

Unfortunately, specifying arbitrary ranges of fields and re-
cords from the relation using the byte interface is problem-
atic, as illustrated in Figure 4. The linear byte address space
imposes a serialization on the relation, even though multi-
dimensional access is efficient due to geometry-aware disk
layouts. The illustration shows a simple example of lin-
earizing a table in row-major order. For example, accessing
the second row of the table (Query A) requires only a single
READ request to block 4 of size 4. However, accessing two
entire columns of the table (Query B) requires ten requests,
each of size 1. Such an interface is unwieldy and expen-
sive, and is only a result of the linear byte abstraction. A
preferable approach would be to issue a single request for
either case.

The main difficulty with the current OSD specification
comes from the fact that objects, and hence their access

methods, are defined as linear entities. This is accept-
able with current file systems where files are defined as
sequence of bytes. However, database systems use two di-
mensional tables which require a translation from a two di-
mensional record/attribute structure to a one dimensional
byte offset. This not only requires extra effort and book-
keeping at the application level, but also is inefficient when
a single attribute of all the records needs to be accessed
(i.e., partial record access), as illustrated in Figure 4. The
goal should be for the DBMS to generate its requests in
terms of the schema of the relation and the desired con-
tents of the resulting pages in memory. Toward this end,
we propose a solution that utilizes the session mechanism
proposed for OSD.

An OSD session is a set of 1/0 requests that are to be hon-
ored by the OSD device in the same way. That is, appli-
cations can use the SET ATTRIBUTE command to set up
session attributes. In return, OSD devices process the 1/0
requests per those specifications. A session is started with
an OPEN or CREATE command upon which OSD returns
a unique Session Id. Clients then supply this Session Id in
each READ, WRITE, or APPEND command. The session is
ended with a CLOSE command [2].

Sessions were part of the OSD proposal throughout much
of the standardization process (up until version 0.8 of the
specification). However, they were dropped in the last
phase to keep the first version of the OSD specification
simple. They are now being discussed in the OSD working
group as part of the upcoming OSD QoS proposal, and will
likely be part of the future versions of the OSD standard.

We keep the original definition of OSD sessions and intro-
duce a Field Bitmap attribute that describes which fields
of a record should be accessed with each 1/O request. The
Field Bitmap attribute is set for each session that will be
used for the database object with the SET ATTRIBUTE
command. After that, regular READ and WRITE com-
mands are used to access the database object where a dif-
ferent Session Id is used to indicate a different field bitmap.

Figure 4 shows the READ commands issued to an OSD with
sessions support to execute Query A and Query B. For both
queries, the DBMS specifies the starting byte address, re-
quired number of bytes to be transferred, and the Session
Id to be used for the transfers. Each of the two sessions (la-
beled x and y) represents a different bitmap specifying the
desired fields. In contrast to the other two approaches, OSD
with sessions can deliver data for either query with a single
request that is made in terms of the relation’s schema.

Figure 5 describes the sequence of events to satisfy Queries
A and B illustrated in Figure 4. Two sessions are created to
represent two types of access patterns required for queries
A and B. The respective Session Ids are used with each
READ command to execute either query. Both sessions
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OPEN(obj_id='k?),

ET ATTRIBUTES(Bitmap=11111)

OPEN(obj_id='k1),
SET ATTRIBUTES(Bitmap=1010:)

READ(obj_id=Tk', session_id=[x)

| QueryAresults ——————
]

READ(obj_id='k!, session_id=[y!)

—
| QueryBresuls _——
[l

CLOSE(obj_id=1k', session_id=(x)

DBMS Client
dso aleme-dQ

CLOSE(obj_id=[k', session_id=ly!)

——CLOSEob id=tky sosson_ie=1y) |

/WV—\
& TCP/IP ‘—;

Figure 5: In order to service Queries A and B illustrated in Figure4, a
DBMS client opens two sessions and specifies which fields will be ac-
cessed for each session by setting a Field Bitmap attribute. Then, it ac-
cesses the database object with regular READ and WRITE commands each
time specifying a Session Id to indicate what fields are to be accessed.
When no Session Id is specified, a regular “byte order” access is realized.

are closed when they are no longer needed. Note that ses-
sions are created only once at the beginning and used many
times, making their overhead negligible over the length of
a query.

5 Adapting database software

As illustrated in Figure 1, database-aware object-based
storage devices can take on many of the low-level storage
management tasks required of today’s database systems.
In this section we describe the changes to database soft-
ware that we envision due to database-aware storage. For-
tunately, the DBMS buffer pool provides a strong layer of
abstraction between the upper level DBMS software (i.e.,
query optimizer, planner, etc.) and the lower-level storage
manager. No changes are required above the buffer pool
manager.

5.1 Database storage manager

Database-aware storage devices have the potential to han-
dle much of the storage management functionality present
in today’s databases. This is analogous to the object store
replacing much of the lowest levels of a filesystem, includ-
ing inodes, block pointers, and free space management, and
encapsulating them below a standard interface. In a sense,
the storage manager would disappear as part of the DBMS.

A database-aware OSD can implement various low-level
data placement schemes, schedulers, read-ahead and write-
back policies, and background maintenance functions.
Most importantly, each of these functions can be tailored
to and optimized for the underlying storage devices and
topologies, transparently to the upper-level database soft-
ware.

5.2 Buffer pool manager

A traditional DBMS fetches data from relations into an in-
memory buffer pool. Relations are statically broken into
fixed-sized pages (typically 8-64 KB) which are stored se-
quentially on disk. When data is to be fetched into mem-
ory, the DBMS requests the required page be fetched into
the buffer pool by the storage manager. The buffer pool
manager’s task is to manage the memory pool, fetching
pages from disk, evicting pages when memory is needed,
and writing dirty pages back to disk when necessary.

However, with the migration of the lower-level storage
manager into the database-aware OSD, the buffer pool
manager is now the lowest level of the database software,
sitting just above the OSD interface. Since the storage sys-
tem handles data placement, there are no longer statically-
defined pages in the system. Access to the relation stored
on disk is all done in terms of the desired records and at-
tributes that are needed to satisfy a particular query. The
storage system ensures that those records and attributes are
fetched efficiently into memory and the buffer pool man-
ager is left to maintain the data once it is fetched.

Query-specific buffer pool management can provide sig-
nificant benefits to decision support workloads without af-
fecting the performance of other workloads. In particular,
sequential scans that fetch a subset of attributes will bene-
fit from increased disk bandwidth and better hit rates in the
buffer pool because only those attributes which are required
for the query are fetched. Using a static page layout like
NSM will always fetch all attributes into the buffer pool
even when just one attribute is needed by the query, wast-
ing disk bandwidth and buffer pool capacity. When full
records are required by the query, they are fetched either
using sequential track-aligned access (for accessing many
records) or efficient semi-sequential access (for accessing
single records). The policies and tradeoffs in query-specific
buffer pool management are beyond the scope of this paper,
but are explored in detail by Clotho [22].

Efficient construction of query-specific pages is enabled
with the help of geometry-aware data placement, which
was first demonstrated by the Atropos logical volume man-
ager [20]. As we show in this paper, database-aware object-
based storage can enable the geometry-aware data place-
ment required for efficient query-specific buffer pool man-
agement described above. Moving data placement func-
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Figure 6: Architecture of our prototype implementation.

tionality into the storage system can provide a significant
improvement over implementing it at the database software
level, since the required disk parameters are readily avail-
able within the storage system.

Many important database features such as indices, locking,
and logging are orthogonal to on-disk data placement and
will work as usual in a database system using a database-
aware storage device. Indices can be built for relations
without regard to their on-disk layout and can be stored
in their own objects. Locking can occur at the appropri-
ate levels, starting with the entire relation all the way down
to individual records. Since database-aware storage elim-
inates the standard notion of a fixed-size, static, on-disk
page, page-level locking would have to be handled in a sep-
arate datastructure.

Database-aware storage devices have the flexibility to han-
dle variable-sized attributes in a variety of ways, possi-
bly tailored to a specific relation or workload. Variable-
sized attributes can be stored entirely separately from the
rest of the relation or can be cast as very large fixed-sized
attributes with some provision for overflow. In our de-
sign, variable-sized attributes are identified to the database-
aware storage device in the schema shared attribute. Most
importantly, allocation and placement of variable-sized at-
tributes can be handled by the storage system in a way that
is optimal and transparent to the database software.

6 Implementation

In this section, we describe the design and implementation
of our database-aware object-based storage device proto-
type. Figure 6 shows the architecture of the database sys-
tem built over the object-based storage device. This sys-
tem consists of three distinct components: The database

management system (DBMS), an interconnect infrastruc-
ture, and the object-based storage device.

6.1 Database-aware object-based target

Figure 6 shows the components that comprise the database-
aware object-based target. Our target currently implements
geometry-aware data placement for relational tables and
translation of front-end OSD READ and WRITE requests
to efficient back-end disk requests. We explain below each
component of the target in further detail.

iSCSI Target: The iSCSI target module is responsible for
handling iSCSI specific functions (e.g., discovery, encapsu-
lation of responses to initiators). The basis of our target is
an open source OSD/iSCSI toolkit [10]. The CDB encap-
sulation and decapsulation routines were extended to build
/ unpack a CDB belonging to a database session.

OSD Command Processor: The OSD command proces-
sor fetches OSD commands from the iSCSI queue and
hands control over to the appropriate module that imple-
ments the command. We have extended the command pro-
cessor module to handle the READ and WRITE commands
within database sessions.

Schema Manager: This module exposes the schema in-
formation of relations to other modules.

Extent Manager: While exposing an object interface, the
target internally uses a block-based SCSI device to physi-
cally store and retrieve data. The extent manager module is
responsible for managing the disk space on the block-based
storage device.

The extent manager uses detailed knowledge of both the
data and the device to decide the size and position of the
extents allocated for an object. The size of extents allocated
to a table object is determined by its schema (number and
size of attributes) as provided by the schema manager. Ex-
tents are sized to align to record boundaries, ensuring that
while accessing multiple attributes within a single record,
seeks to different extents are avoided. Extents are always
positioned on track-aligned boundaries, which eliminates
the track-switch overhead and rotational latency for track-
sized 1/Os [19].

Cache Manager: In the current implementation, we do
not implement caching and hence all READ and WRITE
commands are relayed down to the 1/O manager.

1/0 Manager : The 1/0O Manager module converts a front
end READ/ WRITE command into actual disk block re-
quests based on the layout of the relation. Our I/O man-
ager supports the NSM, DSM and the CSM layouts. For
the CSM layout, the 1/0O manager chooses between sequen-
tial or semi-sequential access based on the number of at-
tributes and records requested. The 1/0O manager uses ef-
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ficient scatter-gather 1/O to transfer data from the storage
device to the network buffers and vice-versa.

The Logical Volume Manager: The basic functionality
of a logical volume manager (LVM) is to abstract one or
more disks and present them a single logical volume. We
use the Atropos LVM [20] to abstract one or more disks
and present them as a single volume. The Atropos LVM
also finds (through disk characterization) and exposes track
boundaries and semi-sequential blocks. The extent man-
ager and the 1/0 manager use these two parameters to con-
trol data placement and to plan I/0.

The database-aware OSD target was implemented using
3000 lines of C++ code. The extent manager and the
schema manager required 550 and 250 lines of code, re-
spectively. We added around 500 lines of code to the In-
tel iISCSI/OSD toolkit to handle database specific READ
and WRITE commands. The bulk of the target code went
into the 1/0 managers for different layout schemes: NSM
450 lines, DSM 650 lines, CSM 800 lines. The Atropos
LVM comprises of 2600 lines C++ and C code. The un-
modified implementation in the OSD/iSCSI toolkit consists
of 22,600 lines of C code. Hence, it is seen that adding
database specific functionality does not increase the com-
plexity of the system significantly.

6.2 Database software

In Section 5, we described issues of how DBMS software
may change to utilize OSD. Since in this paper we are inter-
ested only in evaluating storage performance, we use two
simple user-level programs on the initiator that generate 1/0
requests representative of typical database workloads. The
first program, called the buffer pool emulator, emulates the
I/O traffic generated by a buffer pool manager. The sec-
ond program is a simple query engine to perform TPC-
H benchmark queries. The query engine internally uses
the buffer pool emulator to generate table scan requests to
the target. The query engine implements two-phase merge
sort and hash join operators and uses regular objects on the
OSD target to store intermediate data. \We use a separate
user-level program to bulk-load the tables into the database.
The buffer pool emulator and the query engine comprise of
1700 lines of C code.

7 Evaluation

In this section we evaluate the performance of the database-
aware target. Our goal is to show that our OSD based
implementation can provide the benefits of prior storage-
aware approaches [17, 20, 22] while providing a more prac-
tical route to solving the parameter problem.

In the first set of experiments, we evaluate the perfor-

mance of the database-aware target for database workloads.
The buffer pool emulator generates typical workloads of a
buffer pool manager through table scan and random read
microbenchmarks [21]. Next, we use the query engine
in conjunction with the buffer pool emulator to generate
more complete database queries as specified in the TPC-H
benchmark. In the second set of experiments, we evalu-
ate the performance of the database-aware target for non-
database applications. The buffer pool emulator measures
the overall response time of each query while the OSD code
is instrumented to provide an operational breakdown on the
time spent at the target.

7.1 Experimental setup

The OSD target was set up on a 3.6 GHz Pentium 4
Dell Dimension 8400 workstation running Linux kernel
2.4.27. A 37 GB, 10,000 RPM Seagate Cheetah 10K7 drive
(ST373207LC) is directly attached to the target through a
Adaptec 29160 Ultral60 SCSI adapter. The initiator was
set up on a 3.0 GHz Pentium 4 Dell Dimension 8300 Work-
station running Linux kernel 2.4.27. The host and the target
are connected through a gigabit Ethernet network.

The buffer pool emulator performs READ and WRITE oper-
ations in batches of at most 20MB data transfers at a time.
We are limited by 20MB because of kernel resource lim-
itations that prevent reserving more than 20MB of socket
buffer at any time. All READ and WRITE operations are
done in synchronous mode, i.e., the buffer pool emulator
does not issue the next command until the previous com-
mand has been processed in its entirety. The above two
limitations stem from the fact that in our current implemen-
tation we do not have a mechanism to split a large request
into smaller requests that can be queued up at the target
with an appropriate flow-control mechanism in between. In
a more complete implementation, this task would be han-
dled by a low-level iSCSI driver. However lack of this fea-
ture does not prevent us from evaluating the tradeoffs and
benefits of database-aware object-based storage devices.

7.2 Database performance

The set of experiments in this section investigate the effect
of disk layout strategies on the performance of representa-
tive buffer pool manager workloads. To evaluate the per-
formance of CSM, we have also implemented NSM and
DSM layout models. For DSM, we use the chunk-based
reconstruction algorithm [15] to reconstruct full records.

7.2.1 Microbenchmarks

Table scan operations: In the first experiment, we
compare the performance of the NSM, DSM and
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Figure 7: The graph on the left compares the performance of NSM, DSM,
and CSM for full table scans, with query payload varying from one to fif-
teen attributes. CSM achieves best-of-both-worlds performance by equal-
ing or exceeded NSM and DSM for all projectivities. The graph on the
right shows the components of runtime for a full table scan of fifteen at-
tributes. The high cost of DSM is due to joining attributes into full records.

CSM layouts through a range query microbench-
mark: SELECT AVG(al), AVG(a2) FROM
R WHERE Lo < al < Hi. The relation R has 15 at-
tributes each of size 8 bytes. R is populated with 8 mil-
lion records amounting to roughly 1GB of data. The buffer
pool emulator generates a READ request to read a 20MB
batch of records and applies the tuple selection criteria (the
WHERE clause) to every record in the batch. It sends a se-
ries of such READ commands to scan the entire table. We
vary the number of attributes in the SELECT clause from 1
through 15 and measure the effect on the overall response
time. Since we do not use indices and scan the full table to
perform tuple level reconstruction, the values of Lo and Hi
do not have a significant effect on performance.

The graph on the left in Figure 7 compares the performance
of the query, as observed by the initiator, for the three lay-
outs, while varying projectivity. We use NSM as the base-
line for comparison since runtime does not vary with pro-
jectivity. The runtime for NSM is 46.34 seconds indepen-
dent of the projectivity. It is seen that CSM layout per-
forms best at both ends of the projectivity spectrum. At
low projectivity, it has comparable performance to DSM.
CSM and DSM have good performance at low projectiv-
ity since column-major layout enables the DBMS to just
fetch those attributes required by the query. A row-major
layout like NSM does not take the project operation to the
I/0 level and fetches all attributes, regardless of how many
of them are required. However, the performance of DSM
quickly degrades due to the overhead imposed by joining
attributes together. On the other end of the projectivity
spectrum, where all attributes in the relation are used in
the query, NSM performs best by sequentially reading full
records from disk. CSM matches the NSM performance by
leveraging efficient track-aligned sequential accesses and
by scattering the data directly onto the iSCSI buffer. Re-

cent work on column-oriented data stores [26] shows that
the cross-over point, seen in Figure 7, between NSM and
DSM can be pushed further to the right. However, CSM
performance is always better than NSM, providing best of
both worlds performance of NSM and DSM.

The graph on the right in Figure 7 shows the components
that contribute to total runtime of a full table scan that
fetches all 15 attributes. The Disk 1/0 component repre-
sents the time spent on performing the read operation. Net-
work represents the sum of the iSCSI protocol overhead
and the time taken to transfer the data over the network.
The memcpy cost represents the time spent scattering the
data read from the disk into the iSCSI buffer. Also, we ob-
serve that total time spent in database-specific modules of
the the target is never more than 0.6% of the total runtime
of a full table scan operation. This shows that database-
awareness does not introduce high overhead for database
workloads. Lastly, the Join cost is the time spent joining
individual attributes into the payload defined by the projec-
tivity of the query.

We see that overall runtime of CSM closely matches that
of NSM and the join cost dominates the runtime of DSM.
Since all three techniques fetch the same amount of data
from the disk (approximately 1GB), the 1/0O and the net-
work time components have very similar values across the
three layouts. DSM needs to perform join operations be-
cause we want to access the data in row major order, one
tuple at a time. Hence DSM remains an inefficient layout
for workloads that have predominant row-major accesses.
In a similar vein, the performance of NSM will suffer when
the data needs to be accessed in a column major order (one
column at a time). CSM stores each column on a sep-
arate track, enabling efficient, sequential columnwise ac-
cess. For row-major access, CSM avoids the join operation
by directly scattering the data read from each column into
the target buffers. However when the amount of data re-
quired per column is not high, the advantage of sequential
access is impaired through positioning cost that is caused
due to frequent track switches. In this case, our CSM 1/O
Manager employs semi-sequential access to provide good
performance. Therefore CSM can access the relation in
both row-major and column-major orders efficiently.

Point queries: In the second experiment, we evaluate the
performance of a point query which generates a READ op-
eration to a random tuple. The projectivity is varied as in
the previous experiments and the response time is observed
for the three layouts. NSM is expected to have the best per-
formance since it has to pay the disk positioning cost only
once and then the entire record can be read sequentially.
The access time is constant because only a single disk block
(512B) needs to be read to obtain all the attributes of the
required tuple. For both CSM and DSM, sequential access
is not possible due to the column-major storage on disk.
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Figure 8: Response time observed at the buffer pool emulator for the
point query microbenchmark for NSM, DSM, CSM layouts.

ENSM ODSM B CSM

1.4 1
127

0.8
0.6 1
0.4 1
0.2 1

Runtime (relative to NSM)

Q1 Q6 Q14
Query number

Figure 9: Performance of NSM, DSM and CSM layouts for TPC-H
benchmarks.

Since the number of blocks required per attribute is small
(1 data block), CSM uses semi-sequential access to read
the record. DSM incurs random reads for each attribute,
and pay the additional join cost that CSM avoids. Figure 8
shows that our intuition holds with NSM performing best
and DSM the worst. CSM performs close to NSM at low
projectivity since it pays the position cost only once to ac-
cess the disk block holding data for the first attribute. From
there, it can access other attributes belonging to the same
record semi-sequentially. But as the projectivity increases,
performance of CSM degrades. However we see that the
semi-sequential access of CSM is better than a random ac-
cess as experienced by DSM, by at least a factor of two.

7.2.2 TPC-H Benchmarks

Next, we measure the performance of our target for a de-
cision support system workload using the TPC-H bench-
marks. Figure 9 shows the runtime for three represen-
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Figure 10: Comparison of read and write performance for the database-
aware and vanilla targets.

tative queries (relative to NSM) for the three data layout
strategies. We observe that CSM performs best across all
three queries by taking advantage of the low projectivity
of queries and avoiding the join cost. The performance of
NSM and DSM depends on the projectivity of the query.
For queries 1 and 6, the join cost of DSM dominates lead-
ing to higher runtime than NSM. Query 14, on the other
hand, uses only 6 attributes out of 20 attributes across two
tables (lineltem and Part) that are joined. In this case, the
I/0 cost expended to read the 14 attributes not required by
the query degrades the performance of NSM.

7.3 Standard application performance

In the previous set of experiments we showed that our
database-aware target shows good performance benefits
for database operations. In this section, we investigate
whether database-awareness incurs performance penalty
for non-database applications. To observe the overhead
of database-awareness, we compare the read/write perfor-
mance of the database-aware target with a vanilla target that
just implements the base T-10 standard. Figure 10 shows
throughput for read and write operations for the database-
aware target (dbOSD) and the vanilla target. First we see
that the throughput initially increases with sequentiality of
the read/write operation before reaching a plateau. More
importantly, there is almost no performance penalty for
non-database applications for both read and write opera-
tions across various request sizes. Therefore non-database
applications will see very little or no effect on their perfor-
mance due to database-awareness at the target.
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Conclusion

We have designed and implemented a prototype database-
aware OSD that is aware of the relations that it stores, their
schema, and which subsets of a relation are being requested
by the database software. Our prototype demonstrates that
database-aware storage systems can provide the benefits of
detailed knowledge of storage parameters, while avoiding
the shortcomings of previous storage-aware approaches.
Database-aware storage, and application-aware storage in
general, is a more practical approach to exploiting low-
level storage characteristics to improve performance.
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