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Abstract

Data storage requirements have constantly evolved over
time. In recent times, the rate of increase in volume of data
has been exponential, partly because of regulations and
partly because of increase in richness of data. This trend
has led to an equally explosive increase in cost of man-
agement. Intelligent Storage Devices built using Object-
based Storage (OSD) Interfaces have gained increased ac-
ceptance due to the benefits of reduced management costs.

The command set of the current OSD standard does not
work well with tape-based storage solutions. In this work
we propose a few extensions to the OSD standard in order
to facilitate easier integration of tape devices into the ob-
ject storage ecosystem. Further, we propose an intelligent
buffering mechanism to maximize the utility of network at-
tached tape devices, and we also propose mechanisms to
make tape cartridges more portable within any object stor-
age ecosystem.

Our results for the intelligent buffering mechanism show
that our scheme adapts better to mismatches in network
and tape drive bandwidths. Specifically, our scheme helps
minimize the repositioning of the tape, leading to better uti-
lization and increased lifetime of the tape.

1. Introduction

An explosion in the volume of data storage primarily
triggered by digitization of tons of non-electronic data, the
growth of the Internet as a platform (Web 2.0), and several
other factors have put extreme demands on current storage
solutions. Both the performance and the financial costs of
storage systems have become causes of extreme concern.
The total cost of ownership, which includes initial acquisi-
tion cost and maintenance or storage administration costs,
has seen an unprecedented increase, the majority of which
is attributed to administration costs. In order to minimize
these management costs, we need to make storage devices
more intelligent, self-managing, self-tuning, and adaptive.

Intelligence in general requires inherent, in-depth
knowledge of the metadata, which is lacking in current sys-

tems. Block-based interfaces do not allow for communi-
cation of metadata between the applications that use the
storage and the storage devices that end up housing the
data. These limitations have led the industry and academia
to rethink the way data is stored. The NASD project
at CMU, [1] and [2], pushed forward the idea of stor-
ing data as objects. Conceptually, an object is a wrapper
around a block which stores relevant metadata. An inter-
face to communicate this metadata is one of the most im-
portant aspects of this model. Lustre file system [3] and
the Panasas ActiveScale file system are two popular exam-
ples. Both of these systems use proprietary object storage
interfaces, which leads to concerns regarding interoperabil-
ity. These concerns, along with acceptance of the impor-
tance of object-based storage interfaces, led to standardiza-
tion efforts. In late 2004, the first version of the T10 OSD
(Object-based Storage Device) standard was released, and
work continues on drafts of the second version of the stan-
dard [4].

The OSD standard is designed with the implicit assump-
tion that the storage device is a random access device, like
disk, but in an object-based storage ecosystem there is still
need for tape devices to satisfy archival and backup require-
ments. Tape storage is still the most cost effective and re-
liable way to archive and back up data for long periods of
time. Close to 90% of enterprises use some kind of tape-
based archive and backup scheme [5]. This continued pop-
ularity of tape could be attributed to several factors, chief
among them are the cost and capacity of tapes. The ca-
pacity of tape storage is doubling every two years [5]. A
T10000 tape cartridge from Sun/StorageTek has a raw ca-
pacity of close to half a terabyte. With compression, even
higher capacities can be achieved. There has been some
shift towards use of disk-based archive and backup systems
due to the fact that disks have also grown in capacity and
have become cheaper, but tapes still hold the edge due to
their portability and energy efficiency. Tape cartridges can
be shipped offsite for vaulting purposes, and when they are
not being accessed they consume no energy.

Use of traditional tape devices with block or NAS inter-
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faces in object storage ecosystems has several limitations.
A block interface is complicated to manage and difficult to
share among multiple higher-level object-based storage de-
vices. It requires us to run a dedicated file system instance
on the source OSD to manage the data stored. If the archiv-
ing device is a tape device exposing its native SCSI Stream-
ing Command (SSC) interface, the source OSD then needs
to have corresponding tape management software. In ad-
dition, multiple higher-level OSD devices cannot correctly
share the same tape device using a block or streaming inter-
face if they do not coordinate with each other. A NAS inter-
face is incompatible with the object interface and lacks ef-
ficient support for object attributes. Using a NAS device as
the archiving device also requires the higher-level OSD de-
vices to run additional NAS clients. More important, NAS
runs security methods that are incompatible with OSD, so
as objects are archived to NAS devices, there is no longer
an integrity guarantee for the objects. Any NAS clients can
access and modify the archived data without going through
the security checking of the OSD model. Another limi-
tation of the NAS model relates to support of attributes.
Obiject attributes are essential information to describe the
features of objects and are helpful in searching for them.
Therefore, object attributes should always go along with
the object data into archival storage. A NAS storage de-
vice relies on its local file system to provide support for file
attributes.

The focus of our research is to investigate the possible
extensions to the OSD T10 interface to support tape devices
and to identify and propose solutions to make integration of
tape devices into an object storage ecosystem simple and
efficient. Some of the challenges that we have identified
include,

Challenge 1: Extensions to OSD Standard

Many of the existing data manipulation commands in ex-
isting object storage interfaces are neither suitable for the
sequential-access characteristic of tape devices, nor neces-
sary for the dedicated application of our Object Archive
Tape Device, i.e., archive/restore. For example, SNIA OSD
and Lustre OST both have CREATE, READ, and WRITE
commands to allow clients to create an object and write
data into or read data from the object at any offset of the
object at any time. If such commands are issued to the Ob-
ject Archive Tape Devices, the result would be frustrating
at best. The random small read commands will cause fre-
quent slow repositioning of the tape while the write com-
mands, in addition to positioning tape, may cause data loss
if it is over-writing existing data instead of appending at
the end of data. The data loss is due to a special feature of
tape drives where every write command puts an end of data
(EOD) mark on the tape following the written data, and any
data past the EOD mark on tapes becomes inaccessible.

High-level object storage devices directly communicate

with the Object Archive Tape Device to archive or restore
objects. Since one Object Archive Tape Device can be
shared by multiple high-level object storage devices, the
archive/restore operations cannot be a simple sequence of
object WRITE/READ commands, which could cause com-
petition for the limited number of tape drives. If we make
tape device implement and expose the OSD T10 inter-
face directly, movement of objects between disks and tapes
would be simple migration tasks. However, the limitation
here is that a tape device could be shared amongst multiple
devices, and hence, if each device does random requests to
the tape, performance would degrade.

In addition, object attributes should also be
archived/restored as part of the object. Therefore, in
order to archive an object from a high-level object storage
device to an Object Archive Tape Device, the CREATE
command, SET ATTRIBUTE commands, and WRITE
commands should be executed as one transaction. Tape
drives are assigned to one archive session exclusively so
that object attribute lists and data are stored continuously
on the tape. Similarly, the sequence of commands to
restore objects from an Object Archive Tape Device to a
high-level object device should also be executed as one
transaction and use the assigned tape drive exclusively to
maximize retrieval speed. The key challenge here is to
design an efficient means to ensure transactional control at
the level of archive and restore operations.

Challenge 2: Addressing the Bandwidth Mismatch

In the object-based storage ecosystem, the number and
type of OSDs can vary greatly across deployment. At one
end, we have each disk exposing an OSD interface, in
which case the ecosystem could be made up of millions
of OSD devices. At the other end, we have disk arrays
exposing an OSD interface, in which case the number of
OSD:s is relatively smaller. In either case it is highly likely
that multiple OSDs share a tape library due to data consol-
idation needs. In such cases, to ease the process of sharing
and for availability reasons, a tape library should facilitate
direct connection to a network. The main problem with
this approach is that this creates a mismatch between the
network bandwidth and the tape drive bandwidth. Also,
advanced disk subsystems typically use RAID technology
to multiply their data transfer rates so that they may supply
data at a rate faster than a tape drive. When the data
transfer rate of an archive/restore session is faster than
that of the tape drive, the tape data transfer rate becomes
the bottleneck. On the other hand, building RAID over
tape drives [6][7] has been shown to be detrimental in the
presence of concurrent users due to the small number of
drives in tertiary libraries [8].

These mismatches lead to a problem called tape itch, or
tape repositions. Tapes work best in streaming mode. If a
host can supply data at a rate greater than or equal to the
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bandwidth of the tape drive, maximum utilization can be
achieved. However, if a host cannot supply data at a rate
greater than tape bandwidth, data underrun occurs and the
tape drive has to reposition. Once the drive begins to repo-
sition the tape, the drive controller can receive data from
the host into its buffer, but it cannot supply data to the tape
drive until the drive completes its reposition. During read-
ing, repositioning can also occur if the host system cannot
extract data from the controller buffer quickly enough. This
reposition time may vary from several milliseconds to a few
seconds depending on the technology of the drive. Fre-
quent repositioning can significantly slow the overall per-
formance of a tape drive from its rated speed. Moreover,
repositioning can cause wear to the tape media and drive
head, thus affecting the lifetime of tapes and tape drives.
Challenge 3: Making Tapes Truly Portable

In enterprise storage solutions, due to the enormous vol-
ume of data, often data is moved from one place to the
other using various HSM (Hierarchical Storage Manage-
ment) solutions. In the long run data archived from one
storage device might need to be restored onto a totally dif-
ferent storage device. In such scenarios, the tape cartridges
used to archive data need to be autonomous. Specifically, if
all the necessary metadata needed to interpret the data is not
available on the tape, the tape cartridge could prove to be
useless. In addition, if one inserts a tape cartridge contain-
ing archival data from some other storage device into an
existing system, we need mechanisms by which this new
tape metadata can be combined with the global metadata of
the overall system. This is especially important from the
point of indexing and lookup operations that are used to
catalog contents of the system for efficient access. In sum-
mary, the main challenge here is the mechanism of making
tape cartridges autonomous or self-identifying.

In this work we first propose extensions to the OSD T10
Standard to efficiently support archive and restore opera-
tions. Next, we propose an intelligent disk based buffer-
ing scheme to help minimize the impact of mismatch in
bandwidths on the performance of archival solutions. Last,
we propose mechanisms to make tape cartridges more au-
tonomous in an object storage ecosystem. The rest of the
paper is organized as follows: Section 3 discusses the lim-
itations of the current tape libraries. Section 4 highlights
our proposed extensions to enable efficient archival opera-
tions. Section 5 presents our proposed intelligent buffering
scheme. Section 6 describes the proposed mechanism for
self-identifying tapes. Section 7 describes the performance
results, and our conclusions are presented in Section 8.

2. Related Work

One of the major limitations of tapes is their access la-
tency. While the seek time of disks is around 3-10 millisec-
onds, the average tape seek time can reach over a minute
depending on the length of the tape. If the requested tape

is not already mounted on a tape drive, additional switch
time of tens of seconds is needed. This feature limits the
effective use of tape devices to sequential applications in-
cluding archiving. Any attempt to use tapes in a random
access way will result in frustratingly slow performance.
There have been many studies on how to align objects on
the tape media to minimize the access latency [9][10]. In
addition, how to schedule access requests in order to opti-
mize the usage of sequential-access tapes and the limited
number of tape drives is also covered by previous research
[10][11][22][13]. Our OATD (Object Archive Tape De-
vice) adopts some of these schemes for optimizing access
latency, so these issues are not our research focuses in this
study. There are two existing mechanisms often adopted to
compensate for the mismatch of data transfer rates between
the network and the tape drives. The first one is interleav-
ing (also known as multiplexing or multi-streaming), which
combines the streams of data from multiple sources into
the single data stream written to the tape drive [14]. While
this approach is successful for improving archive perfor-
mance in cases with a sufficient number of concurrent slow
archive sessions, the potential failures and overhead for re-
store operations become a major concern. Depending on
the amount of data and number of archive sessions inter-
leaved into a single stream, restoring the data for a single
object could require reading much more data. For archive
sessions with a faster network data transfer rate than the
tape drive, interleaving with other concurrent sessions is
not beneficial at all. The second approach is disk stag-
ing. When archiving objects, the actual data streams are
written to a disk volume instead of tape. Then, the staged
archives are copied onto tape media. This mechanism is
not adaptive, hence it will stage data in cases where there
is no significant mismatch between bandwidths, leading to
sub-optimal performance.

3. Limitations of Current Tape Libraries

The main problem in attaching a tape device directly to
the network is that the network bandwidth and tape drive
bandwidth often do not match. The network bandwidth
(Bnet) dictates the rate at which data is received by the tape
device and the rate at which it is available for writing to
tape. The tape drive bandwidth (Btape) dictates the rate at
which data can be written onto a tape cartridge. Figures 1, 2
and 3 illustrate the problem of mismatch between B¢ and
Btape for an archive operation. A similar effect can be seen
with restore operations. The slope of the line indicates the
bandwidth. For performance reasons, usually a fixed-size
double buffer is used as a level of indirection between the
network interface and the tape drive. The incoming data is
written to buffer B; and once it is full, the tape starts writ-
ing this buffer to the tape cartridge. In the meantime all the
new incoming data is stored in buffer B,. Once the tape
drive finishes writing By to tape, it checks to see if buffer
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B, is ready/full. If not, the tape drive goes into reposition-
ing in order to ensure contiguity of written data. Thus the
tape and network toggle between the two buffers. Based
on the values of Btape and Bnet, multiple scenarios come to
light. Figure 1 shows the case with Btape > Bret. The data

Network Bandwidth

Tape Bandwidth

Received Data(for Archivaly—

Time — =

Figure 1. Btape > Bnet

for an archive session starts arriving at time T,. The first
buffer unit is filled and sent to tape for writing at time T».
Here, the time taken by the tape drive to write the buffer
unit to tape is less than the time taken by arriving data to
fill up the next buffer unit. Hence, the tape drive is forced to
reposition at time T3. Once a tape drive starts repositioning,
even if data becomes available, the system has to wait for a
certain amount of time. This tape drive reposition time dif-
fers across products, but it is usually on the order of a few
milliseconds. At time T4, the data buffer becomes available
and, assuming that repositioning is complete, the tape can
again start writing data.

Figure 2 shows the case with Brape < Bnet. Here, an in-
finite buffer is assumed. At time T, data for an archive ses-
sion starts arriving. At time Ty, the buffer unit is full and
the tape drive starts writing this data into the tape cartridge.
Since the tape drive does not finish writing the buffer be-
fore the arriving data fills up the other buffer, the buffer size
continues to grow with new incoming data. Based on the
difference in Bpet and Bape, the maximum buffer size (ap-
proximate) required to buffer all incoming data is given by
the relation,

; . . Bnet — B
Buf fer_Sizemax = Sizeof (object) * % 1)
net

Based on the size of object and extent of the disparity

Tape Bandwidth

Received Data (for Archival)y—>

Time — =

Figure 2. Bape < Bpet With unlimited buffer

between the bandwidths, the amount of memory required
varies, and the worst case space requirement is not bound.

Figure 3 shows the case Brape < Bpet, but with limited
buffering. The buffer size is fixed and a feedback is created
between buffer usage and data arrival rate. If the buffer is
full, the archival application is asked to slow down. This
approach is very common but has several limitations. First,
the overhead for communicating the buffer usage informa-
tion is high. Second, this leads to a longer archival time
perceived by the initiating storage device.

Tape Bandwidth

Received Data(for Archival)—»

Time —=

Figure 3. Btape < Bnet With limited buffer

In order to mitigate the effects of mismatch mentioned
above, two techniques are commonly used, namely Inter-
leaving and Disk Staging. Interleaving involves multiplex-
ing or combining multiple streams of data from different
sources into a single stream and writing it to tape [14].
When a large number of slow concurrent archival sessions
exist in the system, interleaving helps achieve good archival
performance. However, due interleaving, any session’s data
is no longer contiguous on tape. Hence, restoring a single
object might necessitate reading a lot more unwanted data
which adversely impacts restore times.

Disk Staging involves reading or writing from/to disk
volumes in front of the tape drive. The staged data from
these disk volumes is later copied to tape for archiving or
over the network for restore. This is a very static scheme
and does not perform well across different workloads. If
the large number of concurrent slow sessions is in progress,
disk staging can give a substantial increase in performance.
However, if the disparity between tape and network band-
width is very small, disk staging adds an unwanted penalty
to the system. In essence, it amounts to performing two
archive/restore calls for each call, leading to longer re-
sponse times.

4. Design of Archive/Restore Functionality

Figure 4 depicts the system environment of an object-
based cluster file system that uses an Object Archive Tape
Device as archiving storage. The Object Archive Tape De-
vice exposes a high-level object interface to the outside and
performs the space management internally. However, both
the object interface and the space management of the Ob-
ject Archive Tape Devices are different from any existing
object storage interface, which are all based on disk stor-
age.

This object interface is provided by a front-end host
that we have implemented in our design. We assume this
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Figure 4. Object Storage Ecosystem
front-end host has multiple disk drives to be used as disk
buffers and to store management information, which will
be elaborated in following sections. There are one or more
tape drives attached to the front-end host. The commu-
nication protocol between the front-end host and the tape
drives is the SCSI Stream Command (SSC) set. It is the
front-end host that translates object commands to stream-
ing commands. In addition, the front-end host also controls
the auto-loader, which uses the SCSI Media Changer Com-
mand (SMC) set to transfer tapes between tape drives and
the cells holding inactive tapes. Considering the size of a
typical tape library, it is reasonable to assume that the front-
end host can be built into the library.

The ARCHIVE and RESTORE commands are ini-
tiated by some archive/backup application sitting in-
side an object-based storage target. This in effect acts
like a distributed Hierarchical Storage Manager which
sends ARCHIVE or RESTORE commands to the Object
Archive Tape Devices. It is also quite possible that the
archive/backup application is running on a node other than
the object storage device. In this case, the node will send
a simple control message to the higher-level object stor-
age device to initiate the archive or restore operation. This
ARCHIVE/RESTORE interface of object storage greatly
simplifies the archive/backup applications. This simplifica-
tion helps such applications only focus on policy definition.

Both ARCHIVE and RESTORE protocols involve mul-
tiple rounds of message exchange between the higher-level
object device and the Object Archive Tape Device. We de-
sign the protocol based on the T10 OSD standard and ex-
tend the message format defined in the standard [4]. In the
following description of the protocols, we only point out
the extensions we propose. For the parts that are inherited
from the T10 OSD standard, the reader should refer to the
standard document [4] for explanations.

4.1. ARCHIVE Protocol

For the purpose of archival operation, the higher-level
disk-based OSD acts as the initiator and the object-based
tape device acts as the target. Any client or dedicated
archival client can issue an archive command to the source
disk-based OSD. The arguments for this command are the
partition and object identifiers of the user object. On re-

ceiving an archival request from any client, the disk-based
OSD performs the following actions:

e Lock the user object for the purpose of concurrency
control.

e Retrieve all attributes that belong to the user object
and format them into an attribute list.

e Construct and send to OSD tape device an OSD
ARCHIVE CDB (Command Descriptor Block) with
the source object identification, length of attribute list,
and length of data object. (No actual data is sent in
this step.)

Upon receiving an OSD ARCHIVE command, the tape de-
vice first checks to see if enough space is available on the
mounted tape cartridge. If not, it unloads the cartridge,
loads an empty cartridge, and locks the tape to prevent
other sessions from accessing the tape at the same time.
Once ready with a new or empty tape, the tape device per-
forms the following tasks:

e Assign a Task Tag for this request and create data
structures to record parameters like attribute list
length, data length, and Task Tag.

o Create a response message with the Task Tag and send
it to the OSD disk device. To uniquely identify the
task, this same Task Tag is used for all future data
packets sent by the source that belong to this object.

After the source OSD receives the reply message of
the OSD ARCHIVE command, it starts a multi-round data
transfer process to send the attribute list plus data to the
Object Archive Tape Device. For each round, an OSD
ARCHIVE APPEND command is used to transfer a block
of the attribute list or data.

The sender Offset parameter indicates the offset of the
first byte of the current block in the entire object byte
stream: attribute list concatenated with data. The Task
Tag is the one received from the reply message of the
OSD ARCHIVE command. When receiving such an OSD
ARCHIVE APPEND command, the Object Archive Tape
Device uses the Task Tag parameter to locate the archive
task. The content of the Data-in buffer is copied to the task
buffer queue for dumping to the tape asynchronously. A
counter in the task data structure used to keep track of the
number of received bytes, recvOffset, is updated. The tape
device replies with the recvOffset and the taskTag. The
recvOffset and the sendOffset are used together as a se-
guencing mechanism to verify that no message is missing.

The last round of the OSD ARCHIVE APPEND com-
mand causes the Object Archive Tape Device to flush all
buffered data to the tape, update the tape metadata to indi-
cate a new object, and update the tape library catalog in-
formation so the object can be located in the future. After
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this step, the archive task at Object Archive Tape Device is
done, the task can be destroyed, and its associated resource
can be released, including unlocking the tape drive so that
other requests can proceed.

After the source OSD receives the reply for the last OSD
ARCHIVE APPEND command, it can also reply to the
archive application that initiated this entire archive process.
The address of the Object Archive Tape Device is contained
in the reply message. It is up to the archive application as to
how to use this information. Typically, these numbers will
be recorded somewhere with a mapping to the source ob-
ject identifier. With such mapping information, when there
are requests for the source object, a restore process can be
automatically initiated. An easy way of achieving this map-
ping or indirection is by causing the successful completion
of archive operation to update a metadata attribute of the
object in the MDS to indicate the position in the storage
hierarchy. This would in effect achieve DMAPI like func-
tionality without much overhead.

4.2. RESTORE Protocol

A restore operation is usually invoked when a client tries
to access an object that is in archival storage. This causes
a trap to the archival application, which uses the partition
and user object information to map to the corresponding
object identifier on archival storage. The archival appli-
cation passes this information to the disk-based OSD. On
receiving such a notification from the archival application,
the disk-based OSD performs the following tasks:

e Create an empty object with the object identifier pro-
vided by the archival application. This object is cre-
ated in the partition indicated by the application ob-
ject. It also creates a temporary container to receive
the attribute list.

e Construct an OSD RESTORE command with the ob-
ject identifier and partition information, and dispatch
it to the tape device.

Upon receiving an OSD RESTORE command, the object
tape device performs the following tasks:

e Using the object identifier, locate the tape cartridge
using the index structure, which is maintained in fast-
access primary memory.

e After locating the tape cartridge, load the the cartridge
into any available tape drive and lock it to ensure ex-
clusive access.

e A unique Task Tag is created just as in the archival
case, but the metadata now comes from the object
metadata on the tape cartridge itself. Record the send-
ing offset, and reply to the disk-based OSD with the
Task Tag, attribute list length, and data length.

Upon receiving the response for the OSD RESTORE com-
mand, the disk OSD starts a multi-round data transfer pro-
cess using the OSD RESTORE READ command. Again,
as in the archival process, the send offset and receive offset
are used as a sequencing mechanism. The last round of the
OSD RESTORE READ command causes the tape device
to destroy the restore task and release its corresponding re-
sources, which, among other things, involves releasing the
lock on the tape cartridge. The disk OSD, on receiving the
data from the last OSD RESTORE READ command, for-
mats the attributes accordingly and sends a notification to
the archival application that initiated the restore operation.

4.3. Error Recovery

The data transfer protocols described above, if imple-
mented by themselves, are very susceptible to error con-
ditions. Errors could happen during the execution of an
archive/restore process due to several factors; chief among
them are failure of disk-based OSD, failure of tape device,
and network failure. Any error recovery mechanism to ad-
dress these failure conditions has to satisfy the following
requirements: Consistency — metadata should be consis-
tent with the data. If an object is only partially archived
or restored before it is interrupted due to some failure, the
metadata should also reflect this failure. Checkpointing —
if any object restore/archive operation is interrupted due to
some failure, the system should restart the operation from
the nearest completed checkpoint and not from the begin-
ning of the transfer.

For the archival process, we propose using the OSD
ARCHIVE APPEND command with certain special argu-
ments as a checkpoint command (length field set to all 1’s).
The periodicity of checkpoints is currently hard coded.
Upon receiving such a checkpoint packet, the tape device
flushes all data/attribute information for that particular Task
Tag to tape and sends an acknowledgment with the last
flushed offset to the source. If an error occurs, the source
can restart the archival process from the offset in the last ac-
knowledged checkpoint instead of doing a complete restart.
Along similar lines, the OSD RESTORE READ command
can be used for checkpointing restore operations.

In summary, the proposed additional commands provide
several advantages, namely - Fine grained control over mi-
gration task (at an object level), concurrency control, trans-
actional behavior and improvement in tape drive utilization
by avoiding random seek behavior.

5. Network Adaptive Tape Device
5.1. Pipelined Archive/Restore

In our design of the object tape device, we do not make
any assumptions about network and tape drive bandwidths.
The goals of our approach are to keep the tape in stream-
ing mode as much as possible, to minimize the number of
repositions, to maximize utilization of the tape drives, to
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minimize response time for archive/restore operations and
to maintain contiguity of data (no interleaving).

Our proposed system uses a combination of main mem-
ory buffer and disk-based buffer placed in the front-end
of the tape device. The adaptiveness comes from the fact
that the tape device monitors the network data rate for
each archive/restore session and determines dynamically if
a session’s data flows directly between the network inter-
face and the tape drive through the main memory buffer or
gets temporarily staged in the disk buffer in the front-end of
the tape device. Our approach differs fundamentally from
disk staging systems as our system does not store and for-
ward objects irrespective of whether disparity exists in the
bandwidths. Our approach dynamically adapts to changes
in network conditions by selectively using disk buffer in
combination with main memory buffers. In our scheme,
some, or even all, of the data may never go through the
disk, i.e., disk buffers are not always used. If the size of
the requested object is small, or the difference between the
session network bandwidth and the tape drive bandwidth is
not too large, it is likely that the session outstanding main
memory buffer does not ever reach the buffer limit, which
we set to 40MB in our experiments. Also, our disk buffer is
designed to work in parallel or pipelined mode supporting
multiple concurrent archive/restore sessions, whereas disk
staging usually works in sequential mode, i.e., first stage
the entire object in a disk volume and then forward it to
either tape (archive) or the network interface (restore) in a
session by session fashion.

We propose to use the disk in the front-end host of the
OATD as an extension of the main memory buffer only
when necessary. Each archive/restore session has an up-
per limit on the main memory buffer that can be assigned
to it. Initially, the data is buffered in main memory and at
the same time consumed by either being written onto tape
media for archiving or being sent over the network through
the object interface for restore.

Network Interface .
I Session Wain Memory Buffer Tape Drive Interface
Buffer Limit

Figure 5. Pipelined Restore with Biape > Bnet

For an archive session with Bpet > Btape, Or for a re-
store session with Brape > Bnet, @ session could reach the
limit of its main memory buffer depending on the size of
the requested object and the difference between the net-

work bandwidth and the tape drive bandwidth. When this
happens, new data starts to be buffered into disk instead
of main memory. At the same time, data in the session’s
main memory buffer is consumed. When the data left in
the session’s main memory buffer decreases to a low wa-
termark, more data is moved from the disk buffer to the
main memory until either no data is left in the disk buffer
or the limit of the main memory buffer is reached again.
Figure 5 shows the three stages in a pipelined restore ses-
sion with Btape > Bnet. By switching the role of tape drive
and network interface in the figure, similar stages of an
archive session with Brape < Bnet Can be visualized. In or-
der for the disk buffer not to slow down either the tape or
the network, the disk data transfer rate should be larger than
the sum of the session’s network bandwidth and the tape
drive bandwidth. With fast storage networks and fast tape
drives, multiple disks working as RAID-0 may be needed.
The session’s network bandwidth B is specified as a QoS
(Quality of Service) parameter when the session is created.
The tape drive bandwidth Btape is measured offline and pro-
vided to the scheduler since it is a static parameter. De-
pending on the session’s Bpet and Brape, the type of the ses-
sion, and the availability of the tape drive, the scheduler
decides how to proceed as follows: For an Archival Ses-
sion, if

® Biape < Bnet and Tape Drive Available: Pipelined
Archive.

o Biape > Bnet: Stage entire object to disk and copy onto
tape when it becomes available.

e Tape Drive Unavailable: Stage entire object to disk
and copy onto tape when it becomes available.

For a Restore Session, if
® Biape > Bnet: Pipelined Restore.

® Biape < Bnet: Directly copy from tape to network in-
terface through memory buffer.

5.2. Disk Buffer Management

In the proposed solution, the disk buffer is a resource
shared by multiple concurrent archive/retrieve sessions. As
discussed earlier, each session may have a different net-
work data transfer rate specified by the QoS requirement of
the associated stream. Therefore, assigning the disk buffer
1/0 resource evenly among them is typically not the most
efficient way to maximize network utilization and mem-
ory buffer utilization. In addition, enough disk buffer I/O
bandwidth should be guaranteed to transfer data from or to
the tape drives so the tape drives can work efficiently and
reliably in streaming mode. In our proposed disk buffer
manager, we treat archive/restore sessions differently based
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on the network data rates. For simplicity, we describe
our scheme with concurrent retrieve sessions from multi-
ple tape drives. A mix of archive and retrieve sessions is
a straightforward extension of the all-retrieve case. In ad-
dition, due to the burst features of archive and retrieve ap-
plications, their mixture is not typical. Our goal here is
to provide QoS for different data streams to and from the
disk buffer. This requires QoS specification and QoS en-
forcement mechanisms. Since the data streams of the re-
trieve sessions alone do not have any QoS specifications,
our scheme provides them in terms of an 1/0O request dead-
line and release time with the objectives of minimizing tape
drive repositioning, i.e., keeping the tape drive in streaming
mode, maximizing network bandwidth utilization, and lim-
iting the buffer usage of restore sessions. The first and third
objectives require that buffer units in the tape buffer queue
be written to disk buffer in time. The second objective re-
quires that the data is read from disk buffer and queued
at the network interface in time. Our approach to achieve
these objectives is to specify the release time and deadline
for a disk buffer 1/0 request depending on the hints from
the buffer queue length. In addition, our disk buffer 1/O
scheduler performs scheduling based on the release time
and deadline of 1/0 requests.

The disk buffer is assumed to be made up of D disks.
The buffer is striped across these disks to achieve a high
degree of parallelism. If sgyripe is the stripe size per disk,
then Sstripe = D * Stripe IS the size of a logical stripe and is
used as the basic scheduling unit.

1/0 Queuing Model

For each restore session, we maintain two request queues:
the Read 1/0 Queue (RIOQ) and the Write 1/0 Queue
(WIOQ). The queues are made up of requests of size Setripe.
In the case of a restore session, the RIOQ contains 1/O re-
quests for reading the data from the disk and writing it into
the session’s network interface buffer. The WIOQ con-
tains requests for reading data from the session’s tape drive
buffer and writing it onto the disk. At any instant, there
is only one read 1/O request in the RIOQ, and a new re-
quest is added only when the current one is finished. The
1/0 scheduler works at the granularity of read or write 1/0s
of size Sgripe. These requests get split up into multiple
reads/writes of size ssripe and get queued at their corre-
sponding disks. The service order of these disk requests
of size Sgripe in the disk queue is dictated by the disk
scheduling algorithms implemented in disk firmware. Fig-
ure 6 shows three concurrent restore sessions rq, ro, and
rs. ri(a), ri(b), and ry(c) are three 1/O requests of size
Sstripe for session ri. These requests get split into smaller
requests of size Sgripe and get queued at the disk. Here,
the disk set is made up of four disks and hence ry(a) gets
splitintori(ag), ri(az), ri(as), and ri(as). The scheduling
order for requests in a disk 1/0 queue is not controlled by

Concurrent Restore Sessions

D Ll I '
I RIOQ wioQ | 1 RIOQ WIOQ | | RIOQ WwioQ |

1/0 Scheduler

dy
G Disk Queues
¢
.

Figure 6. 1/0 Request Queuing Model
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Figure 7. Buffer Queuing Model

our scheduler. The disk is free to schedule requests in any
way it wants, as it has more knowledge about the physical
geometry and current position of the disk head.
Session-based Network & Tape Buffers

For each restore session, we maintain two in-memory
buffers: the Network Buffer and the Tape Buffer, as shown
in Figure 7. The network buffer is used to queue data ob-
jects that are destined to leave the system through the net-
work interface. The tape buffer is used to queue data ob-
jects that are read from tape and are waiting to be written to
disk or sent to the network interface. In direct flow mode,
data objects read from tape are copied into the tape buffer
and later moved to the network buffer directly for transmis-
sion across the network. In pipelined mode, data objects
read from tape are copied into tape buffer and later moved
to the disk for temporary staging before being moved from
disk to the network buffer for transmission across the net-
work. Every restore session first starts in direct flow mode
and switches to pipelined mode when the size of the tape
buffer reaches Byimit. For the network buffer, we maintain
a low watermark (Lwm) and a high watermark (Hym). Both
Lwm and Hym are used to determine the release time and
deadline for Disk Read 1/0 requests for this session. For
the tape buffer, we maintain a threshold value (Ty) which
determines the maximum number of buffer units allowed
to be waiting in this buffer queue at any instant. This Ty, is
used to determine the deadline of Disk Write /O requests
for this session.

1/0 Scheduler

The job of the 1/0 scheduler is to decide when to schedule
different read and write requests to the disk buffer volume.
In the case of a restore operation, the scheduler has to deal
with write 1/0 requests in the WIOQ for writing data that
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was read from the tape drive and is currently buffered in
the tape buffer. In this case, the scheduler also has to han-
dle read 1/O requests in the RIOQ for reading data from
the disk volume into the network buffer. The problem is
that scheduling is difficult because the scheduler has to deal
with multiple RIOQs and WIOQs, one for each active ses-
sion. In our proposed solution, we try to determine the
deadline and release time per request to serve as schedul-
ing criteria.

Write 1/0 Scheduling

When an object is read from tape into the tape buffer queue
of a session, a write 1/0 request is added to the WIOQ of
that session. Let this request be the it in the queue. The
deadline for this write 1/0 request is the latest time when
this 1/0 should be dispatched to the constituent disks so
that it can be completed before the (i + T,)™" buffer unit ar-
rives at the tape buffer queue for that session. If the request
cannot be completed before the deadline, the tape buffer for
the session increases beyond the threshold and overflow oc-
curs. In such cases, the tape drive needs to be told to slow
down, which in essence causes the tape to reposition. The
period between arrival of the iy, request and the (i + Tp)in
request with tape bandwidth of Tiape is given by,

o Th * Sstripe
pt, = —

2
Ttape ( )
Now, the time needed to execute the I/O request of size
Sstripe DY is given by,

Serei
Pdisk = taw + (tseek + trotation) + ﬁ 3
disk
where tg,, is the estimated wait time at the disk due to other
pending 1/0Os and Tyisk is the disk transfer rate. The dead-
line of the write 1/0 request is given by,

tdeadline = feurrent + PT,, — Pdisk (4)

Read 1/0 Scheduling

When the network buffer is below the low watermark, data
units need to be read from the disk buffer into the network
buffer to ensure maximum utilization of the network. The
rate at which the network buffer is emptied indicates the
available bandwidth of the network interface. Since this
rate, or network bandwidth, fluctuates over the lifetime of
the session, we use a exponential decay function,

Toet(i) = Thet (i), =0
net TM () s h+Toee(i—1)%(1—1),i>0
©)
Here, I controls the rate of decay, and Tt is the bandwidth
of the network interface for the session, or rate at which the
network buffer gets emptied. For a session there can be at

most one read 1/0 request scheduled or waiting to be sched-
uled; a new request is generated only on completion of the
previous request. Generation of read 1/O requests starts
only when a session is switched from direct-flow mode to
pipelined mode. For the purpose of scheduling, if there are
K units of data in the network buffer for a session, based on
the value of K, one of the following three distinct scenar-
ios could occur. First, when 0 < K < Lym: Network buffer
is below the low watermark leading to under utilization of
network bandwidth. The solution is to set tgeadiine = tcurrent
for any queued read 1/0 requests in order to ensure that net-
work buffer is brought back above the low watermark.
Second, when Lym < K < Hym: Network buffer is between
low and high watermarks, i.e., safe state. The solution is
to set the deadlines for queued read 1/0 requests such that
it should be completed before network buffer drops below
low watermark. The period before network buffer drops
below low watermark is given by,

(K - me) * Sstripe

pu— 6
Plym To (6)

The deadline for the read 1/0 request is given by,

tdeadline = teurrent + Plym — Pdisk (7

Thet is recalculated and K is decremented by one every time
the buffer unit at the head of the network buffer queue is
serviced. If the I/O request is still waiting to be serviced,
its deadline is reevaluated with the new K and Tpet.

Third, when K > Hym: Network Buffer is above high wa-
termark. The solution is to not schedule this read 1/0 re-
quest. It is marked as un-realizable with a future release
time. When the buffer unit at the head of the queue is ser-
viced, K is decremented by one and realizability, and hence
the deadline, is reevaluated with the new K value.

Our 1/O scheduler uses an Earliest Deadline First
scheduling algorithm to dispatch realizable 1/0 requests be-
longing to all RIOQs and WIOQs of all active sessions.
When any 1/0 request is selected for scheduling, it is bro-
ken down into D smaller requests of size Ssripe and dis-
patched to all disks that form the buffer disk volume. Our
scheduler is invoked when an 1/O request is generated by
any active session or when an 1/O is completed by the disks,
or when realizability or deadline of a pending I/O request
is updated by its owner session.

Once invoked the scheduler tries to schedule all requests
that are realizable until the disk queues become full (disks
have a fixed size queue, the size of which is fixed by the
disk manufacturer to suit the performance characteristics
of the disk drive).

6. Autonomous Tape Cartridges

In object storage devices, since we now store metadata
along with simple blocks as objects, data has been rendered
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more autonomous, or self-describing. Now, when objects
are being backed up to tape media, we also need to account
for backup of metadata or attribute information. We need a
way of organizing metadata of objects on tape media so that
all high-level software that relies on object metadata infor-
mation for accessing objects can work efficiently. More-
over, tape cartridges are portable devices. Cartridges can
be removed from one object-based ecosystem and inserted
into another. In such cases, the tape cartridges should pos-
sess enough information about the data that they store such
that they can be integrated into the new ecosystem. In this
section we describe our approach to making tapes more au-
tonomous. Specifically, we propose an on-tape metadata
layout and an indexing/cataloging scheme.

6.1. Metadata layout

When designing any layout on tape media, a couple of
key characteristics of tapes play a key role. Rewritable or
updatable structures are not supported. Tape is a sequen-
tial access medium that does not support update-in-place
operations. If one tries to overwrite data at some specific
location on tape, any previously written data past the new
end of data mark on tape becomes inaccessible. Tapes sup-
port search operations using File Marks. A file mark is a
universal file separator for tape systems. It is a unique bit
pattern created by a specialized write command that is dis-
tinguishable from all user data. Tape drives allow the user
to locate a file mark without having to read intervening por-
tions of the tape cartridge.

There are three potential strategies to store object meta-
data. The first option is to have metadata at the beginning
of the tape cartridge. Even if enough free space is reserved
at the beginning of the tape for object metadata, new object
metadata cannot be added at a later point in time as tapes do
not support in-place update or rewrite of data. The second
option is to have the metadata scattered along with objects.
If metadata is scattered in between data objects, a tape scan
to retrieve all metadata takes a long time. This latency can
get quite large with high capacity tapes. The last option is
to have metadata following the last object. Using the search
facility provided by the tape drives, efficient metadata ac-
cess is made possible if all metadata is at the end of last
object. However, all metadata needs to be rewritten every
time a new object is added to the tape. In order to make
this process more efficient, systems generally maintain this
metadata in memory and write it back at the end of the
tape when it is unmounted. If the system crashes before the
write back of this metadata, the tape is rendered useless.

We propose a hybrid tape data layout which is a com-
bination of scattering metadata between data objects and
following the last object, as shown in Figure 8. Our lay-
out stores copies of incremental metadata information scat-
tered among data objects to facilitate maximum metadata
recovery. The metadata copy at the end of the last object

File Marker
Tape Header pata objects

Metadata Unit

Latest Metadata Unit

Figure 8. OSD Tape Layout
is the most updated copy with metadata information about

all data objects in the tape cartridge. In order to read the
latest metadata, one can use the search facility provided
by the tape to reach the last file mark which is where the
metadata starts. The first unit on the tape is the tape header
unit that contains a fixed tape header data structure. This
structure includes a magic number to indicate that it is a
tape for an Object Archive Tape Device, a version number
of the OSD standard that this tape is compliant with, the
data block size used by the tape, the partition identifier of
the tape, and other device-specific information.Following
the tape header unit are object units and metadata units. In
our proposed layout, old metadata units are not overwrit-
ten (they are left untouched) when appending new objects.
This provides a quick way to recover object metadata in-
formation in cases where the latest metadata set is lost due
to errors.

6.2. Cataloging and Indexing

Due to the large number of objects within a large-scale
object storage system and the dynamic migrations of ob-
jects between object storage devices, there is a need for an
systematical way to keep track of the location of objects.
Object Archive Tape Devices further complicate this task
since they allow an entire tape cartridge containing many
objects to be added into or removed from the system.

6.2.1. Globally Unique Object Identifiers Our first
design decision is to keep the object identifier of each ob-
ject unique within the entire system. This is achieved by
letting the MDS (Metadata Server) choose the object iden-
tifier for each newly created object. The MDS sends an ob-
ject creation command along with the chosen object identi-
fier to an object storage device. In addition, since portable
tapes can introduce objects created in other systems, we
make an assumption that each object storage system will
be assigned a unique 16-bit system identifier that will be
used as the first 16-bit portion of the 64-bit object iden-
tifiers. This leaves every object storage system with 248
object identifiers (more than enough for the foreseeable fu-
ture).

6.2.2. Translations in Hierarchical Storage In order
to access an object given its object identifier, the first step
is to locate the object storage device that is storing the ob-
ject. In object-based cluster file systems, the MDS man-
ages the file system namespace and maps file pathnames of
regular files to object identifiers. In the Lustre file system
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Figure 9. Filename -> (Object ID, OSD ID)

[3] implementation, the MDS also maps file pathnames di-
rectly to an object storage device identifier. Nevertheless,
this choice makes it inconvenient to migrate or replicate ob-
jects to other object storage devices since these operations
need to locate and update the file system inode information.
In addition, when an object tape containing many objects
are unloaded from an object archive tape device or loaded
into one, many file system inodes have to be modified. In
order to handle these operations efficiently, we propose to
manage the object identifier resolution in the MDS, as illus-
trated in Figure 9. The OSD client file system component
queries the MDS to resolve the hierarchical filename to Ob-
ject ID and OSD ID mapping (a variation of this scheme is
also possible with the client itself mapping hierarchical file-
name to Object ID and querying the MDS to resolve Object
ID into OSD ID mappings). We introduce another level of
indirection, i.e., partition, to efficiently handle portability
of object tapes. As we mentioned previously, each object
tape contains one partition with an unique partition iden-
tifier. The MDS maintains an index data structure to map
every object identifier to a linked list of partition identi-
fiers. Each node in this linked list has a partition number.
Using a linked list of partition IDs allows us to have multi-
ple copies of the same object. When an object is requested
any one of the online partitions could be used to retrieve
the object based on policy decisions.

Furthermore, the MDS maintains another index data
structure to map partition identifiers to object storage ad-
dresses. With the indirection provided by the partition, the
load and unload of object tapes only incurs the update of the
mapping from the object tapes’ partition identifiers to the
object storage device addresses. When a tape is about to be
unloaded from an Object Archive Tape Device, it sends the
partition identifier of the unloading tape to the MDS. The
MDS only needs to update the index of that partition iden-
tifier to indicate it is offline. On the other hand, when a tape
is loaded into an Object Archive Tape Device, it mounts the
tape, verifies the tape is valid, and tells the metadata server
the partition identifier extracted from the tape header. If the

Table 1. OSD Configurations

OSD A Config OSD B Config
0os Redhat 9 Kernel 2.4.20 Redhat 9 Kernel 2.4.20
CPU 2 Intel Xeons 2.0GHz Pentium 111 1GHz
Memory 1024 MB DDR DIMM 512 MB SDRAM DIMM
HDD Interface SCSI Ultral60 SCSI ATA/133
HDD Spend 10000 RPM 7200 RPM
Avg. Seek Time 4.7ms 8.5ms
Network Interface Intel Pro/1000MF 3com 3¢905¢-TX/TX-M 10/100

partition previously belonged to the system, only the index
entry of the partition identifier needs to be updated with the
new object storage device address. Otherwise, if the tape
is totally new to the system, the Object Archive Tape De-
vice reads out the tape metadata from the last unit of the
tape and sends the list of object identifiers to the MDS. The
MDS creates indices for the object identifiers in addition to
the partition identifier.

The hierarchical storage structure is handled by the
partition index entries. Each entry has a flag to indi-
cate whether the partition corresponds to online storage
or archival storage. When an object is requested, the ob-
ject identifier is resolved to one or more partitions. If any
of these partitions is in online storage, the request will be
served from there by returning the object storage address
of that online storage device. Otherwise, if all of the parti-
tions belong to archival storage, the MDS selects an online
object storage device as the restore target and returns the
addresses of the restore target object storage device and the
archive object storage device. The client will send an ac-
cess request for the object along with the address of the
archival object storage device to the restore target OSD,
which will then initiate an object restore procedure to re-
call the object.

7. Prototype Evaluation

A variety of performance tests were run to evaluate the
performance of OATD under different workloads. In or-
der to demonstrate the effectiveness of the network-aware
adaptive scheduling scheme, we have set up different con-
figurations that have the session network bandwidth slower
and faster than the tape drive bandwidth. Under each pos-
sible combination of the session network bandwidth and
the tape drive bandwidth, we measured the data access of
the tape drive to verify that it works in streaming mode.
We also measured the archive or restore rate or bandwidth
observed from the initiating OSD to demonstrate the effec-
tiveness of the pipelining mechanism when it is function-
ing. In our setup, the OATD node and the OSD A node are
connected on the same Cisco Catalyst 4000 Series Giga-
bit Ethernet switch. The archive/restore session bandwidth
between OSD A and OATD is faster than the tape drive
bandwidth. The OSD B node is not directly connected on
the same gigabit Ethernet switch. Instead, it is connected
on a Cisco Catalyst 3500 series XL 10/100 Ethernet switch,
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Table 2. Tape Write & Read Bandwidths with
Block Size:256KB

Write Operation | Read Operation
Average Bandwidth (MBps) 12.8054 17.5764
Standard Deviation 0.000548 0.025026

Table 3. Archive and Restore Session Net-
work Bandwidths

OSDA | OSDB

Mean Archival Bandwidth (MBps) 18.994 6.809
Standard Deviation of Archival Bandwidth 0.462 0.04
Mean Restore Bandwidth (MBps) 19.777 6.226
Standard Deviation of Restore Bandwidth 0.336 0.432

which is connected to the gigabit Ethernet switch. The ses-
sion bandwidth between OSD B and the OATD device is
slower than the tape drive bandwidth. The configurations
of the hosts of OSD A and OSD B are listed in Table 1. The
OATD?’s front-end host connects to a StorageTek Timber-
Wolf 9738 tape library on its SCSI HBA (Host Bus Adap-
tor). The tape library has one StorageTek T9840A tape
drive installed with 10MBps native data transfer rate. We
first test the tape drive bandwidth using the standard Unix
tool dd. With compression turned on, the tape drive can
achieve a higher data transfer rate. The actual data com-
pression rate mainly depends on the compressibility of the
data. In order to measure the maximum tape drive data
transfer rate on our setup, we use data with all zeros that
has high compressibility. From the front- end host of the
OATD node, we write/read an object of 2GB with 256KB
block size each time. Table 2 shows the average data trans-
fer rate and standard deviation collected from five runs.

We then measure the maximum achievable
archive/restore session data transfer rate from OSD A
and OSD B to/from the OATD node, respectively. Since
we are interested in how fast data can be sent to or
extracted from the memory buffer of the OATD node
(maximums), we run an OSD target using a ramdisk device
on the OATD node in this testing in order to eliminate tape
latencies. A ramdisk device emulates disk drives using
main memory. We use a testing tool called 1cmd on OSD
A and OSD B to measure object read and write bandwidth.
An object of size 8MB is written to and read from the OSD
target running on the OATD node. Table 3 summarizes
the results. In comparison to the numbers in Table 2, we
can see that the tape drive data transfer rate is between
the session network data transfer rates of the OSD A and
OSD B. All the results described below are averaged over
four separate trials and the graphs also indicate the 95%
confidence interval about the mean.

7.1. Performance of Pipelined Archive

The archival operation of interest is from OSD A onto
the OATD. In our test bench, the network bandwidth be-

tween OSD A and the OATD is more than that of the
tape drive. In this scenario, the scheduler chooses to use
the pipelining archive method. This amounts to staging
on the disk and subsequently streaming to tape. In our
implementation, the buffer unit size is 5MB, i.e., data is
sent to tape for writing when a buffer unit of 5MB has
been filled up unless there is no more data in the ses-
sion. Each session has an upper limit of eight outstand-
ing buffer units in its buffer queue. In this set of tests,
as data is received from the network faster than the con-
sumption rate of the tape drive, the buffer queue grows
up to eight units and then data starts to be written to the
disk buffer. A naive blocking scheme would instead stop
accepting network data until more space was available in
the buffer queue. Bandwidth estimation is done by mon-
itoring the time required a fill a fixed size buffer. Figure
10 shows the results for archive operation from OSD A
onto the OATD. Figure 10(a) shows a comparison of the
perceived archive times for the pipelined/adaptive scheme
and a naive blocking scheme. Here, perceived archive time
refers to the archival time as seen by the archive initiator,
which in this case is OSD A. This metric summarizes the
latency of the network, the latency of the tape device, and
that of the destage operation (only for pipelined scheme).
It is clear from the figure that our adaptive approach re-
sults in shorter perceived archival times or faster response
times. The difference is not that significant in the case of
small objects as the buffer used in our implementation itself
accounts for 40MB of data. As object size increases, how-
ever, the difference in archival time becomes more promi-
nent. For instance, archiving a 1GB object using the block-
ing scheme takes about 90 seconds where using our adap-
tive approach takes about 59 seconds. This amounts to a
reduction of at least 35% in the archival time for objects of
size greater than a gigabyte. Figure 10(b) shows the com-
parison of perceived archival bandwidth for the same two
schemes. Clearly, our adaptive approach helps achieve a
higher archival bandwidth than the blocking scheme. Per-
ceived bandwidth for larger objects (128-1024MB) is al-
most constant. This constant value turns out to be the disk
buffer saturation point, and hence an indirect reflection of
the maximum tape drive bandwidth. This clearly shows
that the tape drive is working in streaming mode. However,
for smaller objects (8-64MB), the perceived bandwidth ap-
pears to be higher as the disk buffer capacity limits are
not reached, and hence all the data is getting buffered in
disk first before it is dispatched to the tape, which amounts
to naive staging. Also, the tape drive bandwidth for both
the schemes was found to be constant (about 17MBps) and
hence not shown here. This is expected because in both the
schemes, data is always ready to be written to tape, either
from the disk (pipelined) or from the network itself (block-

ing).

IEE l-i

COMPUTER
SOCIETY

24th |IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:27 UTC from IEEE Xplore. Restrictions apply.



Archival Process - Archival Time
BW(Net) > BW(Tape)

(a) Comparison of Archival Time

Archival Process - Banawidth
BW(Net) > BW(Tape)

mAdaptive © Blocking

(b) Comparison of Perceived Bandwidth

Figure 10. Archival from OSD A to OATD
7.2.  Performance of Pipelined Restore

The restore operation of interest is the scenario of restor-
ing an object from the OATD onto OSD B. In our test
bench, the network bandwidth between OSD B and the
OATD is less than the tape drive bandwidth. Hence,
the scheduler here chooses to use the pipelined restore
scheme. Figure 11 shows a comparison between the
pipelined/adaptive scheme and the blocking scheme. In
the blocking restore method, when there are eight outstand-
ing buffer units in the restore session’s buffer queue wait-
ing to be transferred, the tape drive stops and waits for an
available slot in the buffer queue. Figure 11(a) shows the
comparison of perceived restore times for both the block-
ing scheme and the adaptive scheme. These results are a
little counter intuitive. One would expect the restore time
to be a little better for the adaptive scheme when compared
to blocking scheme or equal at worst. Two important fac-
tors influence this result. One is the repositioning time of
the tape drive which adds more delay to the restore time in
the case of the blocking scheme. The other factor is that the
operation of copying data first into the disk from the tape
buffers and then copying it back from disk into the network
interface buffers adds more delay to the restore time in the
case of the adaptive approach. The latter factor seems to
outweigh the former; hence, the restore time for adaptive
approach seems to be slightly higher (about 2%) than that
for the blocking scheme. However, the restore time is not
the only focus of the pipelined restore scheme. The main
focus is to use the tape drive in streaming mode so that
the number of repositions is smaller (leading to less degra-

dation of tape) and the active window for any particular
restore operation is as small as possible such that the tape
drive is free to service other requests (mutual exclusion).
For this purpose, we measure the bandwidth of the tape
drive for any particular restore operation. This is an indi-
rect measure of repositions. The higher the tape bandwidth,
the lesser the number of repositions, and vice versa. Fig-
ure 11(b) shows the comparison of tape drive bandwidths
for both adaptive and blocking schemes. It clearly shows
that our adaptive scheme keeps the tape drive streaming
at a constant rate. For small objects (8-64MBs) the dif-
ference between the two schemes in terms of tape band-
width is not significant as in most of these cases the buffers
we use in our implementation (40MBs) absorb all the re-
quests. But for large object sizes the difference is signif-
icant. For instance, for a object of size 1GB, the adap-
tive scheme helps maintain a constant tape drive bandwidth
of about 14.2 MBps compared to about 6MBps with the
blocking scheme. In terms of the tape drive time used by
this restore operation, in the case of the adaptive scheme,
the tape drive is kept busy for about 1024/14 = 73 sec-
onds whereas the blocking scheme kept the tape drive busy
for about 1024 /6 = 170 seconds. Hence, we can conclude
that the adaptive scheme helps achieve the same restores
in about 55-60% less tape drive time when compared to
blocking schemes for objects of size greater than a giga-
byte. Also, the network bandwidth of the perceived restore
bandwidth seems to be constant across methods and hence
it not reported here. This is to be expected as the bottle-
neck is still the network and latency of the whole operation
is determined by the latency of the slowest component. For
more detailed experimental valuation results and simula-
tion evaluation can be found at [15].

8. Conclusion

In this work, we investigated the features and design of
OSD based on tape devices. This study provides the essen-
tial components for constructing large-scale storage hierar-
chies. While there are possibilities to integrate tape devices
using the existing block interface or file interface, we be-
lieve that an object interface gives tape devices the most
smooth and efficient integration with the rest of the sys-
tem. More specifically, the advantages include a consistent
security mechanism, uniform object representation, and ab-
stracted tape details. In this study, we propose extensions
to the object storage interface that address the needs of ob-
ject archiving applications as well as the sequential-access
characteristics of tape devices. The object archive/retrieve
operations cover not only the object data but also object
attributes that are an indispensable part of objects.

Our proposed intelligent buffering scheme consistently
outperforms traditional techniques like disk staging that
have been used before to overcome bandwidth mismatches.
The performance evaluation of the prototype confirms the
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Figure 11. Restore from OATD onto OSD B
same. Our proposed approaches to making tape cartridges
more autonomic are very efficient and easy to implement.
We believe that such mechanisms will be the key to build-
ing next generation storage systems. In conclusion, we
hope that this work serves as a good initial point for tape
system designers of next generation storage solutions.

9. Acknowledgments

We would like to thank all our sponsors - DISC member
companies, Department of Energy’s Los Alamos National
Labs and National Science foundation for their continued
support.

References

[1] G. A. Gibson, D. F. N. amd Khalil Amiri, J. But-
ler, F. W. Chang, H. Gobioff, C. Hardin, E. Riedel,
D. Rochberg, and J. Zelenka, “A cost effective, high
bandwidth storage architecture,” in Proceedings of
ACM SIGPLAN Notices, 1998, pp. 92-103.

[2] M. Mesnier, G. Ganger, and E. Riedel, “Object
based storage,” IEEE Communications Magazine,
vol. 41(80), pp. 84-90, 2003.

[3] Lustre: A Scalable High Performance Cluster File
System, Cluster File systems.

[4] R. O. Weber, “Scsi object based storage device
commands - 2(osd-2),” T10 Working Draft, Tech.
Rep., October 2004. [Online]. Available: http:
[Iwww.t10.0rg/ftp/t10/drafts/osd2/0sd2e00.pdf

[5] “Data storage devices and systems roadmap,” Infor-
mation Storage Industry Consortium, Tech. Rep., Jan-
uary 2005.

[6] A. L. Drapeau and R. H. Katz, “Striping in large tape
libraries,” in Proceedings of Supercomputing.  Port-
land, Oregon: IEEE Computer Society Press, 1993,
pp. 378-387.

[7] A. Drapeau and R. Katz, “Striped tape arrays,” in Pro-
ceedings of Twelth IEEE symposium on Mass Storage
Systems, Monterey, CA, April 1993, pp. 257-265.

[8] L. Golubchik, R. R. Muntz, and R. W. Watson,
“Analysis of striping techniques in robotic storage
libraries,” in Proceedings of 14th IEEE Symposium
on Mass Storage Systems. IEEE Computer Society
Press, 1995, pp. 225-238.

[9] S. Christodoulakis, P. Truantafillou, and F. Zioga,
“Principles of optimally placing data in tertiary stor-
age libraries,” VLDB, pp. 236-245, 1997.

[10] J. Li and S. Prabhakar, “Data placement for tertiary
storage,” in Proceedings of 19th IEEE/10th NASA
Goddard Conference on Mass Storage Systems and
Technologies, April 2002, pp. 193-208.

[11] B. K. Hillyer and A. Silberschatz, “Random i/o
scheduling in online tertiary storage systems,” in Pro-
ceedings of ACM SIGMOD international conference
on Management of data, Newyork, USA, 1996, pp.
195-204.

[12] S. Prabhakar, D. Agarwal, and A. E. Abbadi, “Op-
timal scheduling algorithms for tertiary storage,” in
Distributed Parallel Databases.

[13] M. Lijding, P. G. Jansen, and S. J. Mullender, “An
efficeint real time tertiary storage schedular,” in Pro-
ceedings of 21st IEEE/12th NASA Goddard Confer-
ence on Mass Stoarge Systems and Technologies,
Maryland, April 2004, pp. 245-260.

[14] X. Zhang, D. Du, J. Hughes, and R. Kavuri, “Hptfs: A
high performance tape file system,” in Proceedings of
14th NASA Goddard/23rd IEEE conference on Mass
stoarge System and technologies, College Park, MD,
May 2006, pp. 275-288.

[15] D. He, N. Mandagere, and D. Du, “Implementation
of network aware object based tape device,” Digital
Technology Center, Univ of Minnesota, Tech. Rep.,
2007. [Online]. Available: http://www.dtc.umn.edu/
disc/publications.shtml

IEE l-i

COMPUTER
SOCIETY

24th |IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007 IEEE

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:27 UTC from IEEE Xplore. Restrictions apply.



