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Abstract

Mariner is an iSCSI-based storage system that is de-
signed to provide comprehensive data protection on com-
modity ATA disk and Gigabit Ethernet technologies while
offering the same performance as those without any such
protection. In particular, Mariner supports continuous
data protection (CDP) that allows every disk update within
a time window to be undoable, and local/remote mirroring
to guard data against machine/site failures. To minimize
the performance overhead associated with CDP, Mariner
employs a modified track-based logging technique that uni-
fies the long-term logging required for CDP and short-term
logging for low-latency disk writes. This new logging tech-
nique strikes an optimal balance among log space utiliza-
tion, disk write latency, and ease of historical data access.
To reduce the performance penalty of physical data repli-
cation used in local/remote mirroring, Mariner features a
modified two-phase commit protocol that in turn is built on
top of a novel transparent reliable multicast (TRM) mecha-
nism specifically designed for Ethernet-based storage area
networks. Without flooding the network, TRM is able to
keep the network traffic load of reliable N-way replication
roughly at the same level as the no-replication case, re-
gardless of the value of N. Empirical performance mea-
surements on the first Mariner prototype, which is built
from Gigabit Ethernet and ATA disks, shows that the av-
erage end-to-end latency for a 4KByte iSCSI write is under
1.2msec when data logging and replication are both turned
on.

1. Introduction

As modern enterprises increasingly rely on digital data
for continuous and effective operation, data integrity and
availability become the critical requirements for enterprise

storage systems. Replication is a standard technique to
improve data integrity and availability, but typically in-
curs a performance overhead that is often unacceptable in
practice. This paper describes the design, implementation
and evaluation of an iSCSI-based storage system called
Mariner, which aims to support comprehensive data pro-
tection while reducing the associated performance over-
head to a minimum. More specifically, Mariner uses lo-
cal mirroring to protect data from disk and server failures,
and remote replication to protect data from site failures. In
addition, Mariner keeps the before image of every disk up-
date to protect data from software failures, human errors or
malicious attacks.

A Mariner client, for example a file or a DBMS server,
interacts with three iSCSI storage servers: a master storage
server, a local mirror storage server and a logging server.
When a Mariner client writes a data block, the write re-
quest is sent to these three servers. The data block is
synchronously committed on the logging server, and then
asynchronously committed on the master server and the
local mirror server. In addition, the logging server is re-
sponsible for remote replication, which is also done asyn-
chronously. When a Mariner client reads a data block, the
read request is only sent to the master server, which ser-
vices the request on its own.

Mariner supports block-level continuous data protection
(CDP), which creates a new version for every disk write re-
quest and thus allows roll-back to any point in time. As
more and more data corruption is caused by software bugs,
human errors and malicious attacks, CDP provides a pow-
erful primitive for system administrators to correct the cor-
rupted data. Mariner’s logging server is responsible for
archiving the before image of every disk write within a pe-
riod of time (called the protection window) so that it can
undo the side effects of any disk write in the protection
window.
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To reduce the performance penalty associated with CDP
and data replication, Mariner modifies the track-based log-
ging (Trail) technique [1]. Trail was originally designed
to reduce the write latency of locally attached disks and
adapts the idea to the network storage environment where
Mariner operates. The original Trail requires a log disk in
addition to a normal disk, which hosts a write-optimized
file system. By ensuring that the log disk’s head is always
on a free track, Trail could write the payload of a disk write
request to wherever on the track the disk head happens to
be. Once this write is completed, Trail returns a completion
signal so that the high level software can proceed. There-
fore, the latency of a synchronous disk write is reduced to
only the sum of the controller processing time and the data
transfer delay. However, the original Trail design is inade-
quate for Mariner for two reasons. First, the disk utilization
efficiency of the design is too low to meet CDP’s demand-
ing log space requirement. Second, the design switches a
disk’s head to the next free track after servicing a request
and thus incurs substantial disk switching costs. To address
these problems, Mariner makes four modifications to Trail.
First, after the payload of a logical disk write (W1) is writ-
ten to a log disk, the payload is kept for a sufficiently long
period of time so that the following write (W2) against the
same data block can be undone T days after W2 is per-
formed. Here T is the length of the protection window, and
the payload of W1 is the before image of W2. Second,
Mariner batches multiple logical disk write requests that
arrive within an interval as much as possible into a phys-
ical disk write in order to amortize the fixed overhead as-
sociated with each physical disk write, and allows multiple
physical disk writes to be written to a track until the track’s
utilization efficiency exceeds a certain threshold. Third,
Mariner exploits an array of log disks to amplify both the
log capacity and the effective logging throughput in terms
of physical I/O rates. Finally, Mariner uses a modified ver-
sion of two-phase commit protocol to propagate the effect
of each logical disk write consistently to all replicas while
minimizing the write latency visible to the software.

In addition to involving more servers, N-way data repli-
cation also introduces N times as much load on the stor-
age client’s CPU, memory and network interface. It is
possible to move this load to the storage area network us-
ing special hardware such as SANTap [2], which repli-
cates a disk write request coming into a SAN switch
across multiple predefined ports in a way transparent to
the storage client. However, this approach requires spe-
cial and proprietary hardware support. Mariner uses a
software-only approach called Transparent Reliable link-
layer Multicast (TRM) to approximate the hardware-based
in-network replication supported by SANTap. More specif-
ically, TRM achieves in-network replication by exploiting

link-layer tree-based multicast available in modern com-
modity Ethernet switches.

Modified Trail and TRM together enables Mariner to
provide comprehensive data protection at a performance
cost that is almost negligible when compared with vanilla
iSCSI storage servers without any protection. In Section 2,
we review the previous work on related logging and repli-
cation technologies in the context of network storage sys-
tems. Section 3 gives an overview of Mariner’s system
architecture. In Section 4, 5 and 6, we describe the design
and implementation of track-based logging, modified two-
phase commit and TRM, respectively. In Section 7, we
present the evaluation methodology together with experi-
ment result and analysis. Finally, we summarize this paper
with the main research contributions in Section 8.

2. Related Work

Continuous Data Protection (CDP) backups the data on-
the-fly as it is written to the disk. Therefore, every update is
undoable. Traditional data protection system relies on file
system backup, which is performed in a much coarser gran-
ularity than CDP. Using a CDP based solution in network
storage could result in an increase in network and individ-
ual server resource load since all the data written to master
storage node have to be backed up to the local mirror stor-
age nodes at the same time.

Parallax [3] also adopts block-level Copy On
Write(COW) semantics to minimize data copies be-
tween different Virtual Disk Image(VDI)s in large-scale
distributed environments. It focuses on the management
of a large number of Virtual Machine(VM)s and does not
consider preserving data over a long term. It employs a
radix tree to provide ready access to one historical image
and a group of radix trees are organized in a separate data
structure. In contrast, Mariner uses an External B-Tree
to preserve the full mapping of the logical address plus a
timestamp to the physical address.

The idea of the disk head prediction used in Trail is not
new. One example is the Free block scheduling [4, 5]. The
objective of Free block scheduling is to piggy-back back-
ground media transfer with normal workload activity with
little-to-no overhead by utilizing the rotational and seek la-
tency of the requests belonging to the normal workload. A
freeblock scheduler predicts the amount of the rotational la-
tency before the next foreground media transfer and inserts
background media transfer within the anticipated latency
to minimize the impact on the foreground media transfer.
The key point for the feasibility of free block scheduling is
that the ordering of requests for background disk activities
is not mandatory for background activities.

In the original Trail architecture [1], there is a normal
disk, which holds the user data, and a log disk, which
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provides a fast staging buffer for disk writes. Given a
disk write request, Trail first writes its payload to the log
disk, and then completes the write to the normal disk asyn-
chronously. Because Trail ensures that the disk head is al-
ways on an empty track and could accurately estimate the
disk heads position in real time, it can write a piece of data
to the log disk where the disk head happens to be at that in-
stant. Consequently, each write operation incurs very little
rotational latency and zero seek delay.

Fibre Channel (FC) is the predominant storage area net-
working technology. It evolved as an alternative data trans-
fer technology to the low performance 10 Mbps Ethernet
technology. With the advent of Gigabit Ethernet, the ini-
tial concerns of bandwidth and latency requirements of
SANs no longer remain a core issue. The ultimate en-
abler of Ethernet-based SAN is the iSCSI [6] protocol,
which defines semantics for block level SCSI I/O over
any IP network. iSCSI is the FCP counterpart on Eth-
ernet networks that maps the SCSI command set to the
TCP/IP stack. The increase in the momentum of iSCSI is
evident from its availability through several major operat-
ing system vendors and the availability of iSCSI enabled
HBAs from major hardware vendors. Although it is debat-
able whether iSCSI/Ethernet will completely replace Fibre
Channel SAN or not, the increasing momentum of Ethernet
based SANs is undeniable.

The memory to memory approach has been widely ap-
plied to avoid data copy [7] [8] [9]. Remote Direct Mem-
ory Access(RDMA) is a zero-copy networking technique,
permitting data to be transferred directly from application
memory of one machine to that of another machine with-
out involvement of host CPU processing, caches and con-
text switches of host Operating Systems. These features are
especially important in highly parallel networking systems
such as clustered computing [10]. Although technically su-
perior to other alternatives, RDMA is not widely advocated
in network storage systems because its most common un-
derlying infrastructure is InfiniBand [11], a point-to-point
switch fabric interconnect technology not widely used. In
contrast, iSCSI operates seamlessly on Ethernet networks,
which is the most widespread LAN technology in use till
now.

Payload caching [12] and Network-centric buffer
caching [13] share similarity with RDMA in the sense
that they all aim to minimize the data copying. Payload
caching caches payload in Network Interface Card (NIC)
and reduces data traffic through host I/O bus. Network-
centric buffer caching keeps a network friendly format in
page/buffer cache to avoid data content copying and trans-
formation overhead. As TRM aims to minimize traffic load
on Ethernet network, these techniques are orthogonal with
TRM. Compared with these techniques, TRM is much more
favorable for applications that requires data replications.

Cisco SANTap [14] is a protocol that sits between the
MDS switch and a storage application appliance. The
SANTap service registers as both an initiator (host) and
a target device (storage array) in the Fibre Channel name
server. It allows the storage appliance to get a copy of the
I/O exchange between the server and storage without com-
promising the primary I/O. The appliance is no longer in
the data path. In addition, SANTap also needs to provide
error recovery services to permit recovery in the event of
appliance or port failure. However, special hardware sup-
port is required to use the SANTap approach. Our TRM ap-
proach achieves similar functionality on Ethernet switches
and leverages TCP to make sure of reliable data replication.

The Viking project [15] revisits architecture features of
Ethernet technology when Ethernet is applied to network
storage and large scale Metropolitan Area Network(MAN).
Viking overcomes one efficiency weakness of Ethernet
technology by extending a single spanning tree to multi-
ple spanning trees in forwarding routed data packets by
leveraging on standard Virtual LAN technology. Viking
improves the efficiency of underlying Ethernet-based net-
work by making a better use of underlying data link ca-
pacities and reducing the down time of link failures . In
contrast, TRM targets at minimizing network traffic passing
through NICs and therefore gains better network efficiency.

Link-layer multicast could be implemented by exploit-
ing IGMP snooping [16]. Traditionally, Ethernet switches
treated link-layer multicast packets as broadcast packets.
Network performance suffers as unnecessary packets are
forwarded through the network. Fortunately, most modern
Ethernet switches, particularly Gigabit switches, support
a feature called IGMP snooping, which was designed to
support IP multicast without using link-layer broadcasting.
TRM makes a novel use of IGMP snooping to implement
the link-layer multicast.

3. System Architecture

As shown in Figure 1, a Mariner storage system con-
sists of six types of storage nodes. A client node, which
could be a file or database server, accesses data in a virtual
storage device through the iSCSI protocol. The current data
of a virtual storage device is stored on a master storage
node, and replicated on a local mirror storage node. The
virtual storage device’s historical versions are maintained
on a logging node (called Trail node from this point on),
which also serves as a control gateway for remote repli-
cation. Data writes are first committed to remote logging
nodes and then propagated to remote storage nodes. Man-
ager node is used for system configuration, administration,
monitoring and failure recovery. A typical Mariner system
contains multiple client nodes, storage nodes, Trail nodes,
remote logging nodes and remote storage nodes, but only
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Figure 1: Mariner consists of six types of nodes: client node where end users operate, manager node for
system configuration and administration, storage node for local replicas of current data and Trail node for
historical data, and remote logging/storage nodes for remote replication.

• Transparent reliable link-layer multicasting exploits the VLAN support in modern Ethernet switches
to perform in-network packet duplication and remove the bandwidth/latency penalty associated with
local mirroring and remote replication.

• A user-level versioning file system architecture provides end users the ability to navigate through file
versions on a repairable storage server using the standard OS-supported file system interface.

• An asynchronous batched remote replication scheme that can aggregate writes to the same blocks to
decrease the WAN bandwidth consumption, and at the same time guarantee strong data consistency
across site failures.

In the following sections, we first describe the overall system architecture of Mariner and then each of
the above features in more detail.

2 System Architecture

As shown in Figure 1, a Mariner system consists of six different types of nodes. A client node, which could
be a file or database server, accesses data stored on storage nodes and Trail nodes through the iSCSI protocol.
Storage nodes contain only current data and possibly one or multiple local replicas. Trail nodes maintain
historical data as well as control the remote replication process. Data updates are first committed to remote
logging nodes and then propagated to remote storage nodes. Manager node is used for system configuration,
administration, monitoring and failure recovery. A typical Mariner system contains multiple client nodes,
storage nodes, Trail nodes, remote logging nodes and remote storage nodes, but only one manager node.

With continuous snapshotting, Mariner could provide users the storage snapshot corresponding to any
point in time within the protection window1. Users can only read and write to the current snapshot, but can
only read a historical snapshot. That is, Mariner does not support version branching. However, to maintain

1A protection window is the time period in which any update is undoable. Beyond the protection window, the before images of
some updates may be lost forever.

2

Figure 1. A Mariner storage system consists of six types
of nodes: client nodes that issue data access requests, man-
ager nodes for system configuration and administration,
storage nodes that hold local replicas of current data, Trail
or logging nodes that maintain historical data and serve as a
gateway for remote replication, and remote logging/storage
nodes that keep a remote copy of current data.

one manager node. A Trail node can be shared by multiple
master and mirror nodes.

With CDP, Mariner allows users to roll back a virtual
storage device to any point within the protection window.
Users can only read and write the current or read any his-
torical snapshot of a virtual storage device. To maintain the
file system consistency for a particular point-in-time stor-
age snapshot, Mariner may need to perform a fsck-like re-
covery procedure on the snapshot to return a storage view
with consistent file system metadata. This recovery proce-
dure needs to modify a historical storage snapshot, but the
associated disk writes are held in a temporary buffer and
are thrown away when the snapshot is no longer needed.

Read requests for the current data on a virtual storage
device are serviced by its associated storage nodes. Write
requests for the current data on a virtual storage device are
serviced by its associated Trail node and storage nodes.
More specifically, a logical disk write request is first sent
to the corresponding Trail node, which logs it to disk and
returns an OK reply to the requesting client. Then the client
writes it to one or multiple storage nodes, depending on the
degree of local mirroring supported. As far as a Mariner
client is concerned, a disk write is completed when it re-
ceives an OK reply from the Trail node. Because of track-
based logging, Mariner clients experience very low disk
write latency. To reduce the performance penalty associ-
ated with sending a disk write’s payload to multiple nodes,
Mariner uses TRM to duplicate the payload packet in the
network.

The Trail node of a virtual storage device services all
read and write requests for that device’s historical data, and
batches multiple disk writes to replicate them to a remote

site more efficiently. Because of space constraints, the de-
tails of remote replication are omitted in this paper.

4. Low-Latency Disk Array Logging

The original Trail design [1] moves the log disk’s head
to the next track after each write operation to ensure that
the disk head is always on an empty track. Therefore, the
log records are contiguous on a track-by-track rather than
byte-by-byte basis, hence the name track-based logging.
This per-write disk head movement incurs a track-to-track
seek delay for every write operation, and results in low disk
space utilization. The modified Trail design allows multi-
ple physical writes per track and uses an array of log disks
to further mask track-to-track seek delays.

Mariner maintains a disk request queue for each log
disk. At any point in time, one of the log disks serves as the
active disk. In the beginning, Mariner randomly chooses
one of the log disks as the active disk. Once a log disk
becomes the active disk, it remains as the active disk un-
til the waiting time of the oldest pending request exceeds a
threshold, Twait . Whenever a new logical disk write request
arrives at a Trail node, Mariner inserts the request to the
active disk’s queue as long as the waiting time of its oldest
pending request is smaller than Twait and there is enough
free space in the current track to accommodate the new re-
quest; otherwise Mariner dispatches the request batch in
the active disk’s queue, and chooses another log disk as the
active disk and inserts the request to its queue.

To choose a new active disk for an incoming write re-
quest, Mariner computes the time at which the write re-
quest could be written to each log disk, and selects the one
that can write the request to disk at the earliest. When com-
puting an incoming disk write request’s write time on a log
disk, Mariner takes into account the current position of the
log disk’s head and the possibility of batching the request
with others already in the disk’s queue. For those log disks
that are currently idle, Mariner only needs to consider the
delay due to batching.

A key design decision in Mariner is to encourage batch-
ing of multiple logical disk writes into one physical disk
by dispatching a new write request to the active disk, rather
than to the disk with the earliest write time for that request.
As we will show in Section 7, this design choice signifi-
cantly increases Mariner’s batching efficiency and thus ef-
fective throughput.

For every logical disk write, Mariner creates a log
record that contains the write’s Logical Block Address
(LBA), timestamp and payload, and writes it to the log
disk chosen for the request. To facilitate accesses to his-
torical data, Mariner maintains an index structure to map a
disk block’s logical block number and a timestamp to the
physical block number of the corresponding historical ver-
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Figure 2. The software architecture of Mariner’s Trail
node. The Trail module, which sits between the file system
and the physical disk driver, manages a disk block buffer
cache, a B-tree cache, and a set of disk request queues, one
for each log disk. The user-level B-tree daemon maintains
the index tree for mapping a disk block’s LBA and times-
tamp to its corresponding physical block.

sion. This index data structure is maintained by a user-level
daemon and organized as a B-tree residing on a different
disk, and contains only the log records of those logical disk
writes in the protection window. Because the log record
of each logical disk write is self-contained, Mariner can
reconstruct the index tree by scanning the log disks. There-
fore, Mariner can afford to batch updates to the index tree
due to disk writes and perform them asynchronously.

Trail is currently implemented under the Linux 2.6 ker-
nel as a virtual device driver between the file system and
the physical disk driver, as shown in Figure 2. It dis-
patches logical disk write requests to the per-log-disk re-
quest queues, maintains a disk block buffer cache to fa-
cilitate the service of current data accesses, and a B-tree
cache to facilitate the look-up of historical versions of disk
blocks. To implement track-based logging, Mariner stati-
cally extracts the physical disk geometry information from
every log disk, and then uses a disk head position estima-
tion algorithm to predict each log disk’s disk head position
at run time. More concretely, after a physical disk write
is completed, Mariner records the LBA of its last sector,
LBA0, and its completion timestamp T0. Assuming the disk
head stays in the same track, when the next write arrives
at T1, Mariner estimates the disk head’s current position
CurrentLBA using the following formula:

CurrentLBA = SPT · (T1 −T0) mod RoTime
RoTime

+LBA0 (1)

where SPT is the number of sectors in the current track,
RoTime is the disk’s full rotation time. The final predicted
position, DestinationLBA, is CurrentLBA + Lookahead to
account for such delay as the controller delay. Lookahead
is an empirical value chosen to avoid a full rotation. For
the IBM Deskstar DTLA-307030 disk, this value is set
to be 22 sectors. The accuracy of the above disk head
position estimation algorithm decreases with the value of
T1 −T0. To ensure the algorithm’s accuracy is always ade-
quate, Mariner issues additional dummy disk reads to guar-
antee that T1 −T0 is always below a threshold, Tidle, even
when the input load is low.

To satisfy CDP’s log space requirement, Mariner allows
multiple physical writes to go to the same track in order to
use the log disks’ space more efficiently. However, higher
log disk space utilization efficiency means longer rotation
latency because it is less likely that when a new write re-
quest arrives at a log disk’s queue, the disk’s head happens
to be on a sufficiently large free region that can hold it. To
determine when to switch a log disk’s head to the next free
track, Mariner uses the following metric to gauge the de-
gree of fragmentation of the current track:

F =
ServicedReqNum

10 · (1−Utilization)
(2)

where ServiceReqNum is the number of write requests al-
ready written to the current track and Utilization is the per-
centage of the current track that is already occupied. The
larger the values of ServiceReqNum and Utilization, the
more fragmented the current track. As Mariner can self-
describe its data logging, ServiceReqNum can be extracted
from the hard drive in case of crashes. After a log disk ser-
vices a physical write request, Mariner computes its cur-
rent track’s fragmentation metric. If the metric’s value ex-
ceeds a pre-defined threshold, Tswitch, and its request queue
is empty, Mariner issues a seek command to move the
disk’s head to the next track. To minimize the delay of the
track-to-track seek, the destination LBA of the seek com-
mand (which is a write command for IDE drives because
IDE drives only support two operations, read and write)
is set to CurrentLBA+CurrentSPT , where CurrentSPT is
SPT of the current track.

5. Trail-based Asynchronous Replication

Mariner leverages Trail’s low-latency disk write capa-
bility and a modified two-phase commit protocol to repli-
cate data asynchronously without compromising data in-
tegrity. Figure 3 shows the message sequence used in this
modified two-phase commit protocol. The Mariner client
issuing a logical disk write request serves as the coordi-
nator, and the Trail, master and local mirror nodes are the
participants. The client first sends the write request to the
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Figure 3. The message sequence used in the modified
two-phase commit protocol when there is no device failure.

Trail, master and local mirror nodes of its virtual storage
device. Upon receiving this request, the Trail node im-
mediately commits the request to its log disk and sends
an ACK back to the client after it is done, but the master
and local mirror nodes simply buffer this request, waiting
for further instruction. When the client receives the Trail
node’s ACK, it notifies the master and local mirror nodes to
commit the buffered write request, and resumes the thread
that issues the write request by invoking the associated call-
back function. The master (local mirror) node sends back
an ACK after completing the write request to disk. Finally,
the client asynchronously informs the Trail node about each
write request’s completion status on the master and local
mirror nodes, so that the Trail node can keep track of their
progress. Whenever possible, the messages of this modi-
fied two-phase commit protocol are piggy-backed with nor-
mal iSCSI command packets. In addition, the protocol has
built in extensive retry mechanisms to deal with such fail-
ures as packet loss, message corruption, TCP connection
time-out and iSCSI connection time-out.

This modified two-phase commit protocol is different
from the standard two-phase commit protocol because its
goal is to commit a write request on as many participant
nodes as possible, rather than to achieve all-or-nothing con-
sistency among participants. Therefore, the coordinator
does not need to collect ACKs from all participants before
committing a write request. Instead, it keeps a record of
who has committed which requests so that after a failed

node recovers, the system knows how to replay which write
requests to bring it to synchronization with others. As the
client informs the Trail node about the other two nodes’
write progress, the other two nodes snoop the network and
also each keep a local write progress log about others.
When the Trail node is alive, it is the Trail node’s write
progress log that serves as the ground truth. When the Trail
node is dead, it is master node’s write progress log that
serves as the ground truth.

When the master node dies, the local mirror node be-
comes the master node, and each write request is sent to
the new master node and the Trail node; after the old mas-
ter node recovers, it contacts the Trail node, which keeps
track of each node’s write progress, to replay missing write
requests, and becomes the local mirror node. When the lo-
cal mirror node dies, each write request is sent to the master
node and the Trail node; after the local mirror node recov-
ers, it contacts the Trail node to replay missing write re-
quests, and continues to be the local mirror node. When
the Trail node dies, CDP and remote replication cease to
function, and each write request is sent to the master and
local mirror nodes; after the Trail node recovers, it contacts
the master node for synchronization and continues to act as
a logging disk.

6. Transparent Reliable Multicast (TRM)

When a Mariner client sends a write request to the Trail,
master and local mirror nodes in the modified two-phase
commit protocol, it uses TRM to reliably multicast the
write request and achieve almost the same network effi-
ciency as the no-replication case.

6.1. Multicast Transmission of Common Pay-
loads

Logically, TRM is a software layer residing below the
TCP/IP stack that constantly monitors the contents of out-
going TCP connections to look for common bytes. When
packets from a set of TCP connections share common
bytes, TRM sends only one of them as an Ethernet multi-
cast packet to the destination nodes associated with these
connections. The software architecture of iSCSI-based
TRM is shown in Figure 4. There are two key compo-
nents in TRM: (a) the client side component monitoring
TCP connections for common data payload and construct-
ing multicast packets that carry these common payload, and
(b) the server side component reconstructing the original
TCP streams based on the payloads and headers received.

The client-side TRM component of the current Mariner
prototype includes an iSCSI parser that tracks iSCSI com-
mands in iSCSI-carrying TCP connections. Once detect-
ing common write payloads among the three iSCSI con-
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Figure 6: Architectural decomposition of iSCSI-based TRM. An iSCSI protocol parser keeps track of each
TCP connection corresponding to different iSCSI sessions. The parser provides the description of each
packet to the TRM multiplexer, which splits each TCP stream into multicast and unicast substreams. Each
storage node and Trail node in Mariner is augmented with a TRM de-multiplexer that reconstructs the TCP
stream from the received unicast data and multicast data.

the common write payload among multiple iSCSI sessions on a Mariner client is identified, this data is
sent separately as multicast data to all storage/Trail nodes. However, this activity should be carried out in
a way transparent to the TCP streams whose packets are being merged. To be transparent to the TCP/IP
stack, TRM has to send adequate information to each receiver, so that the reconstruction logic at the receiver
reproduces the TCP stream from the received multicast data and metadata. Thus the receiver should also
receive the TCP headers and iSCSI request headers that are required to reconstruct the original TCP packets.
However, the TCP headers and iSCSI headers carry connection specific information that should be sent to
specific storage/Trail nodes rather than all nodes.

Differentiating between common data and connection specific payload requires TRM to parse each
packet for identifying the different portions of TCP payload. The parsing logic needs to identify the common
write payload across all related connections. For this purpose, iSCSI-based TRM employs an iSCSI
parser which keeps track of each TCP connection corresponding to different iSCSI sessions. The parser is
responsible for examining each TCP packet for its payload and identifying precisely which portion of each
packet corresponds to write payload that can be subsequently merged and sent as multicast packets. After
examining each packet, the iSCSI parser passes on the packet to a TRM multiplexer along with a description
of the packet. Based on this description, the TRM MUX merges the common data and sends it over to the
storage/Trail nodes using a single multicast packet. The connection specific payload portion of each packet
is sent as a unicast packet to each peer of the TCP connection. Reconstruction of each TCP stream is fairly
straightforward. The storage/Trail nodes are augmented with a TRM deMux layer, which is responsible for
receiving the multicast data and the connection specific unicast data. Using the information embedded in
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Figure 4. Data flow of an iSCSI-based TRM system
supporting 2-way replication. An iSCSI protocol parser
keeps track of contents in TCP connections correspond-
ing to the two iSCSI sessions involved in data replication.
The first iSCSI copy associated with each SCSI write re-
quest is sent as multicast packets, whereas the headers of
the second copy are merged and sent as a unicast packet.
The TRM layer at the receivers reconstructs each individ-
ual TCP stream based on the received unicast and multicast
data.

nections to a virtual storage device’s Trail, master and lo-
cal mirror nodes, it asynchronously merges the three write
requests sharing the same payload by sending the earliest-
arriving copy of each iSCSI write request using multicast
and the headers of the other two copies as unicast pack-
ets to their corresponding nodes. Asynchronous merging
does not require the three TCP connections involved in data
replication to be strictly synchronized.

The server-side TRM component reconstructs the in-
dividual TCP streams by taking the common payloads,
which are received as multicast packets, and headers, which
are received as unicast packets, putting them together into
original unicast TCP packets, and passing them up to the
TCP/IP stack for further processing.

When there is packet lost, TRM relies on TCP to re-
transmit the lost packets and therefore does not require any
additional machinery to support reliable transmission. Re-
transmitted packets are always transmitted as unicast pack-
ets. As a result, packet retransmission may cause the TCP
connections being merged to become de-synchronized.

6.2. Common Payload Detection

A Mariner client sends each iSCSI read request only to
the master node, but sends each iSCSI write request to the
Trail, master and local mirror nodes. Therefore, the TCP
connection associated with the master storage node con-
tains more iSCSI commands than the two TCP connections
associated with the local mirror and Trail node. Because
TCP is a stream protocol and does not preserve application-
level packet boundaries, packet-by-packet comparison may
not be able to reliably detect all common payloads among

Monitoring and merging of data can be done at various abstraction levels. The monitoring layer can
buffer the packets sent over multiple TCP connections and perform a byte-by-byte comparison among them.
Once a significant chunk of common data is found in all the connections, a multicast packet can be sent
out for this common data. However, this approach requires expensive computation in the form of memory
comparison and may introduce unnecessary delays in data transmission. An alternative is to carry out
comparison at packet boundaries. The advantage of packet comparison is its simplicity, but the comparison
is possible only if the extent of common data exceeds the average packet size. Generally, this is not a
problem since, in SAN environments, writes are usually buffered and a write burst typically leads to
several duplicate network packets that can be merged together.

TCP is a stream based protocol and it does not preserve packet boundaries. If the amount of data trans-
mitted over different TCP connections is different, the common data shared among these TCP connections
may appear in different locations within the packets containing them. For instance, when multiple TCP con-
nections corresponding to different iSCSI sessions carry write as well as read requests, only write data
need to be duplicated, whereas read requests should be sent over to only one storage server. Therefore,
the set of packets going through the connections to the primary/secondary storage nodes are quite different
from those going through the connection to the Trail node. Owing to this skew, it is impossible to merge all
packets containing common data because common data may appear in very different locations within these
packets. Figure 5 depicts the packet matching problem arising out of inter-packet skew.

iSCSI
write req iSCSI write dataTCP

header
iSCSI

write req iSCSI write dataTCP
header

iSCSI write dataiSCSI
write req

TCP
header

iSCSI
write req

TCP
header

iSCSI
read req iSCSI write data TCP

header
iSCSI

write data

Connection 1 

Connection 2

Figure 5: Skew in location of common data because of dissimilarity in TCP stream contents. Connection 1
write data gets displaced because of interspersed READ requests.

Domain-specific hints can help improve TRM’s performance and effectiveness tremendously. For in-
stance, because of the skew among the TCP connections involved in a data replication session, the packet-
level comparison approach cannot merge TCP packets whose payloads are not identical. However, application-
specific hints can help TRM to focus only on the application-layer payload that corresponds to disk write
payloads, and significantly increases the chance of successful packet merging without requiring complicated
comparison logic. For example, if the monitoring logic is aware of iSCSI protocol format, it is possible to
pin-point the precise location of the payload of a write request by examining the iSCSI request header.
Once the write payload is demarcated in different TCP streams, duplicate data from multiple connections
can be merged together to be sent as multicast packets. Finally, if the TCP connections from a Mariner
client to the main storage node, the mirror storage node and the Trail node are given, TRM can even set up
a spanning tree for the corresponding link-layer multicast connection beforehand.

7.2 iSCSI-based TRM
TRM for iSCSI requires the monitoring logic to be aware of iSCSI protocol format to pin-point the location
of write payloads, which are the main target for merging because local and remote replication. Once
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Figure 5. Because Connection 1 contains both READ
and WRITE commands and Connection 2 contains only
WRITE commands, packet-by-packet comparison between
these two connections cannot detect the payloads of
WRITE commands.

connections, as shown in Figure 5, which calls for a
more expensive byte-by-byte comparison approach to de-
tect common payloads.

To reduce the performance overhead associated with
common payload detection, Mariner exploits protocol-
specific knowledge. More concretely, the current Mariner
prototype parses the iSCSI commands in each of the three
TCP connections and is able to pinpoint the precise location
of the payload portion of each iSCSI write request. From
these locations, the TRM layer can easily detect common
payloads without resorting to expensive byte-by-byte com-
parison.

7. Performance Results and Analysis

7.1. Evaluation Methodology

We first evaluate each component of Mariner, including
Trail, modified two-phase commit, and TRM, and then the
entire system as a whole. We use synthetic workloads to
stress-test each Mariner component and real traces to eval-
uate Mariner’s end-to-end performance. The four traces
used in this study include both file system and database
workload:

1. IO Trace

• Lair62b The original Lair62b is an NFS RPC
trace collected on an NFS server by the SOS
project of Harvard University [22]. This trace
is converted into a block-level disk access trace
through an FFS-like file system simulator, which
models the I-node and data blocks and ignores
other meta-data [23]. The block size is 4KB and
the trace is a one-day long trace with 12631475
requests, 2816401 of which are writes.

• OLTP(On-Line Transaction Processing) OLTP
trace is a database buffer cache access trace col-
lected on an IBM DB2 database running IBM’s
TPCC benchmark of 1,000 warehouses [23].
The trace is featured by a large amount of ran-
dom access. The block size is 4KB.
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• DSS(Decision Support System) DSS trace is an-
other database buffer cache access trace col-
lected on an IBM DB2 database running IBM’s
TPCH benchmark [23]. The trace contains sev-
eral large sequential scan of a big table. The
block size is 4KB.

• Cello99 Cello99 is a low-level disk I/O trace col-
lected from a HP UNIX platform. Since the trace
is filtered by the file system cache, the spatial lo-
cality is quite poor. The block size is 8KB.

• MS-SQL-Large I/O trace MS-SQL-Large trace
is a disk I/O trace collected from a Microsoft
SQL database server running the standard TPC-
C benchmark for two hours. The TPC-C
database consists of 256 warehouses and occu-
pies around 100 GBytes of storage excluding log
disks. The trace is filtered by a 1 GByte SQL
server cache. The block size is 4KB and the trace
has 5390743 requests, 866029 of which are write
ones.

• MS-SQL-Small I/O trace This trace is collected
with the same setup as the previous trace except
that the server cache is 64 MB.

2. File-level Trace

• Postmark Postmark [24] is a file system bench-
mark emulating very heavy small file workload.
The benchmark creates a specified number of
files, performs various file system operations and
finally deletes those files. For all runs, we run
Postmark with 10,000 files, 1000 subdirectories
and 50,000 transactions.

• Lair Trace played by TBBT [25] trace player.
NFS server is the Trail client side. It is the
same trace as Lair62b, the only difference is it
is played at NFS level. It is a one-day trace on
Oct 21, 2001 worth of 2GB data in total.

The testbed used in this study consists of one client
node, a Trail node, a master node and a local mirror node,
all of which are connected by a Netgear GS508T 8-port Gi-
gabit Ethernet switch. The Trail node is a Dell PowerEdge
600SC machine with an Intel 2.4 GHz CPU, 768 MB mem-
ory, a 400 MHz front-side bus, an embedded Gigabit Ether-
net Card, and up to five ATA/IDE hard disks, each of which
is a 80-GB IBM Deskstar DTLA-307030 disk. The master
node, the local mirror node and the client node are Pow-
erEdge SC1425 machines with an Intel 3.8 GHz CPU, 1
GB memory, a 800 MHz front-side bus and four embedded
Gigabit Ethernet Cards. We use UNH iSCSI implemen-
tation (version 1.6.0) [26] on the iSCSI initiator side and
Linux’s iSCSI Enterprise Target (IET) implementation on

the iSCSI target side. Note that in the fileio mode of
the IET implementation, each write request is synchronous
as a sync-like function is called after each write operation.
In terms of performance metrics, we measure the average
write latency and the I/O rate of each test run.

In this study, we first evaluate the basic track-based log-
ging technique as this is the first time this technique is im-
plemented on a commodity IDE/ATA drive. Then we ex-
amine the write latency of a Trail node that uses an array
of log disks and supports multiple writes per track, and im-
pacts of various configuration parameters. Next, we eval-
uate the effectiveness of TRM in terms of its savings in
network load. Finally, we measure the end-to-end write la-
tency of a logical disk write request under Mariner, which
includes the effects of Trail, two-phase commit and TRM.

7.2. Array of Logging Disks

Mariner’s Trail node uses an array of log disks, rather
than a single log disk. This subsection evaluates the ef-
fectiveness of Mariner’s disk request dispatching algo-
rithm in exploiting request batching to improve the I/O
rate without compromising the write latency. In this ex-
periment, there are five log disks and each log disk is a
commodity IDE/ATA hard drive connected via an indepen-
dent ATA/IDE channel from the Promise Ultra100 TX2
IDE controller. We issue additional disk access requests
to guarantee that the maximal time interval between con-
secutive accesses to each disk is at most 50msec. In addi-
tion, the maximum waiting time in the disk request queue
is 0.3msec, Tswitch is set to 6 to achieve reasonable disk
utilization efficiency. Under this setup, a stand-alone Trail
device can deliver 1.8msec write latency and achieve 70%
disk space utilization under an input workload of 12500
writes/sec and 4KB per write request.

Batching of multiple logical writes into a physical write
improves Mariner’s physical write efficiency and thus its
effective throughput. Batching is especially useful in the
face of a burst of write requests. However, batching in-
creases the write latency because it forces those requests
that arrive early to wait even when the disk is idle. To re-
solve this issue, Mariner sets a limit on a request’s wait
time (Twait ) when it batches logical write requests. Table 1
shows the impact of Twait on the log disk array’s write la-
tency. The workload used in this experiment is a synthetic
workload that consists of 4KB write requests with a fixed
inter-request interval, 60usec. When Twait is set to zero,
there is not much room for request batching, and the batch
size, i.e., the average number of logical writes per physi-
cal write, is small, around 3 or 12KB. Smaller batch size
leads to lower I/O rate for the log disk array, and eventually
causes subsequent write requests to queue up and experi-
ence higher latency. On the other hand, when Twait is set
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Wait Time Batch Size Write Latency
Limit (msec) (KB) (msec)

0 12 6.7
0.12 12.7 5.8
0.24 15 3.1
0.36 20 1.9
0.48 22 2.1
0.60 24 2.3
0.72 28 2.4

1 32 3.0

Table 1. Impact of wait time limit on the batching ef-
ficiency and average write latency, where the request
size is 4KB and Tswitch = 6.

to 0.36msec, the resulting batch size is larger, the log disk
array’s I/O rate improves, and the average write latency ac-
tually decreases. This result demonstrates that it is better to
force requests to wait a little bit longer out front in order to
improve the batching efficiency and eventually decrease the
write latency for everybody. However, as Twait is increased
beyond 0.36msec, the write latency starts to increase again,
because each request is likely to wait longer and each phys-
ical write also takes longer to complete.

7.3. Sensitivity Study

In this subsection, we study the performance impact of
each configuration parameter in Mariner’s track-based log-
ging design. There are 4 configuration parameters: (1) the
threshold of the fragmentation metric Tswitch, (2) the disk
head recalibration interval (Tidle), (3) the wait time limit
for batching (Twait ) and the number of log disks in the
array. Unless specified otherwise, the following parame-
ter settings are used by default: Tidle = 50msec,Tswitch =
12,Twait = 0.2msec, and the number of disks is 5.

We use a synthetic workload to feed into Mariner’s Trail
node by varying the inter-request interval until reaching the
maximum throughput of the log disk array. The synthetic
workload contains 20,000 write requests of 4 KBytes and
there is no read request, and the write latency from the de-
vice driver is measured. We use six different inter-request
interval values to generate six different input request rates:
0.08msec, 0.1msec, 0.12msec, 0.14msec, 0.16msec and
0.18msec.

Tswitch determines when to switch a disk’s head to the
next track and thus plays an important role in the trade-
off between disk write latency and disk space utilization
efficiency. Every curve in Figure 6(a) has up to six mea-
surements, which from left to right correspond to the six
inter-request intervals in decreasing order. We stop de-
creasing the inter-request interval as soon as the measured

latency exceeds 2msec. For a given Tswitch, as the input
request rate increases (or inter-request interval decreases),
each physical write batches more logical writes, and the
disk utilization efficiency improves because Equation (2) is
based on the number of physical writes and the same num-
ber of physical writes can pack more bytes when batching
is more effective. However, improved disk utilization ef-
ficiency worsens the average write latency, because each
physical write is larger and takes longer to complete. For
a given input request rate, as Tswitch increases, the disk uti-
lization efficiency improves significantly without degrad-
ing the average write latency too much. This result empir-
ically justifies one of the key design decisions in Mariner:
allowing multiple physical disk writes per track.

Each curve in Figure 6(b) shows the latency and
throughput of a given number of log disks when the inter-
request interval decreases from 0.18msec to 0.08msec from
left to right. For a fixed number of log disks, increase in
the input request rate increases both their throughput and
latency because batching is more effective and the size of
each physical write is bigger. For a given input request rate,
as the number of log disks increases, the throughput in-
creases linearly and the latency remains largely unchanged.
For example, when the inter-request interval is 0.1msec, the
1-disk configuration can achieve a throughput of 1000 disk
writes operations per second (OPS) with an average write
latency of 1.4msec, and the 2-disk configuration can can
achieve a throughput of 2000 disk writes operations per
second (OPS) with the same average write latency. This
linear improvement comes from the fact that multiple disks
can mask the disk head switch delays of individual disks as
well as provide higher aggregate raw transfer bandwidth.

Again each curve in Figure 6(c) has up to six measure-
ments, which from left to right correspond to the six inter-
request intervals in decreasing order, and we stop decreas-
ing the inter-request interval as soon as the measured la-
tency exceeds 2msec. For a given Twait , as the input request
rate increases, the throughput of the log disks increases be-
cause batching is more effective, and the average write la-
tency grows because each physical write is larger and takes
longer to complete. For a given input request rate, increase
in Twait improves the batching efficiency, which in turn in-
creases the throughput and the average write latency of the
log disks. From the results, 0.2msec seems to be a good
choice for Twait to achieve a reasonable tradeoff between
disk write latency and incurring reasonable write latency
overhead.

Figure 6(d) shows the performance impact of the recal-
ibration frequency on the average write latency. Increase in
the recalibration frequency improves the accuracy of disk
head position prediction and thus reduces the rotational la-
tency of disk writes. However, increase in the recalibration
frequency also introduces additional load to the log disks
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Figure 6. (a): Performance impact of the choice of Tswitch on the log disks’ disk space utilization efficiency and write latency.
(b): Performance impact of the number of log disks on the log disks’ throughput and write latency.(c): Performance impact of wait
time limt (Twait ) on the log disks’ throughput and write latency. (d): Impact of the choice of the recalibration frequency or interval
on the log disks’ write latency.

and may actually delay the disk writes requests from users.
Therefore, for a given workload, there is an optimal recali-
bration frequency that balances these two performance fac-
tors, as shown in Figure 6(d). For a workload consisting
of 4 KB large requests, a recalibration interval of 50msec
is the optimal value.

7.4. Impact of iSCSI Processing

This subsection evaluates the write throughput and la-
tency of Mariner’s Trail node as seen from an iSCSI client.
The test environment contains one iSCSI connection from
an iSCSI client to an iSCSI target that uses Mariner’s Trail
node as the underlying storage device. We use a synthetic
workload that keeps sending write requests of size 4KB at
a fixed inter-request interval and for each run, we measure
the average write latency. The queue length of both the
iSCSI initiator and the iSCSI target is set to 2048 to ac-
commodate large bursts.

We modify the IET iSCSI implementation in the follow-
ing ways to improve its write latency. The first modifica-

tion is to avoid going through the file-system-related APIs
as used by the fileio mode of the IET implementation.
Instead, we call generic make request directly, a standard
interface between the block device and other components
of the kernel. The second modification is to simplify the
software architecture. The original IET iSCSI implemen-
tation has two categories of threads: a network thread and
a pool of worker threads to issue requests to the underlying
storage entities. These two threads relay data through an
iSCSI command queue. Our implementation eliminates the
iSCSI command queue and directly places write requests
into the per-log-disk request queue.

Figure 7 shows how the iSCSI-level write latency varies
with the inter-request interval. The iSCSI-level write la-
tency increases dramatically when the inter-request interval
falls below 0.18msec, because the input load correspond-
ing to the inter-request interval of 0.18msec hits the ca-
pacity of the log disks. The IET iSCSI target implemen-
tation could process an iSCSI command every 0.08msec.
The average batch size is around 8KB, which takes a fixed
processing overhead of 0.1msec. The Trail implementa-
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Figure 7. The impact of the inter-request interval of the
input write request sequence on the average write latency.
Both the iSCSI initiator and target set their queue length to
2048. Twait is set to 0.36 msec and Tswitch is set to 2. One
vanilla iSCSI connection with only Trail node is compared
with two-phase commit implementation.

tion in the Mariner prototype introduces a small overhead
(around 0.07msec), which comes from decision logic that
determines which log disk to use, and post-processing after
each physical I/O completion.

Figure 7 also shows that the iSCSI-level write la-
tency increases as the inter-request interval increases from
0.3msec to 0.5msec. This is because a request is deliv-
ered to the disk controller under two scenarios: either the
request’s wait time exceeds Twait when the next request
comes in or there is no queued request and a free log disk is
ready to be used. These two conditions conflict with each
other: a wait time exceeding Twait indicates there have been
queued requests and future requests will get queued. There-
fore, a time point exists to reach the worst case: the time
just falls within Twait and forces subsequent requests to be-
lieve there have been queued requests and experience the
queuing delay in the same way. For Twait of 0.36 msec and
5 log disks, this time point happens to be 0.5 msec. After
reaching a peak value at 0.5 msec, the write latency drops
down as the inter-request interval increases because input
request rate is far below Mariner’s capacity and no request
needs to be queued.

7.5. Impact of Modified Two-Phase Commit Pro-
tocol

In this section, we study the performance impact of the
modified two-phase commit protocol on the write latency.
An iSCSI client is connected to a Trail node, a master node
and a local mirror node. The queue length of both the iSCSI
initiator and the iSCSI target is set to 2048 to accommodate

large bursts. We use both synthetic workload and real disk
access traces in this experiment. The synthetic workload
consists of multiple request bursts with a sufficiently long
time interval between two consecutive bursts to allow the
master and local mirror node to finish the previous burst.
The target block address of each disk write request in the
synthetic trace is borrowed from the Lair62b trace. Both
the master node and local mirror node could complete a
burst size of 1000 requests within 100msec when the on-
disk cache is turned on. The burst size in the synthetic
workload is set to 1000 and the interval between two con-
secutive bursts is 200msec.

Figure 8(a) shows the write latency versus the inter-
request interval within a write burst. Compared the one
connection case with that of modified two-phase commit, it
is clear that the modified two-phase commit protocol does
not introduce any noticeable penalty on the write latency.
There are two reasons. First, because of TRM, the addi-
tional payload transfer due to data replication does not in-
cur additional networking overhead. Second, the latency
of a modified two-phase commit transaction ends when the
write to the Trail node is completed, which is exactly the
same as the iSCSI-level write latency reported in the pre-
vious subsection. Figure 8(b) shows the measured write
latency under disk access traces played back at different
speedup factors. Because the MS-SQL-Large trace is col-
lected on a server with a large buffer cache, it contains
larger bursts and the average inter-request interval is small.

When the speedup factor is smaller than 1, the write la-
tency increases because the inter-request interval increases
and the additional batching delay of the current Mariner
prototype kicks in and when the requests are sparse, the ad-
ditional batching delay disappears. When the speedup fac-
tor is large, the write latency also increases because of the
larger input load. For the MS-SQL-Large trace, increase
in the speedup factor eventually exceeds the throughput ca-
pacity of the log disks and result in very long write latency,
most of which is queuing delays at the Mariner client and
Trail node.

To illustrate the performance improvement, we setup a
vanilla storage server where writes are only propagated to
one storage node consisting of a vanilla hard drive. The
vanilla hard drive has their on-disk cache turned off. Stor-
age client and server are attached locally. We use MS-SQL-
Large and MS-SQL-Small trace to drive the comparison.
Figure 8(b) shows the performance improvement.For all
speedup factors, our scheme beats the vanilla configuration
by at least a factor of 500.

Figure 9(a) illustrates that both the write and read
throughput are improved by a factor of 5. This is because
the throughput of Postmark is sensitive to per-request la-
tency especially when writes are synchronous. This is be-
cause Postmark is a single-threaded benchmark and each
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Figure 9. (a): The measured Postmark throughput for directly-attached disk and Mariner’s storage architecture, respectively with
different read/write ratio. We create 100,000 files and run 500,000 transactions. Both the iSCSI device and the locally-attached disk
are synchronously mounted to the working directory of Postmark. (b): The measured Postmark transaction rates for directly-attached
disk and Mariner’s storage architecture with different read/write ratio. For Mariner , both iSCSI initiator and target set their queue
length to 2048. Twait is set to 0.36msec and Tswitch is 2. For directly-attached hard drive, we turn off their on-disk write cache.

synchronous operation will prevent future requests from
being sent out. As a result, a reduction in the per-request
elapsed time by N will lead to a N times increase in the
throughput. The average per-write elapsed time is 3 msec
for Mariner client above the file system and 20 msec for
directly-attached disks.

Figure 9(b) shows the transaction rate is also improved
by a factor of 5. As all writes are synchronous, a throughput
improvement of 5 indicates a per-request latency improve-
ment of 5. This is backed by the average per-write latencies
of both directly-attached disks and Mariner’s storage sys-
tem. The per-request latency on directly-attached disk is

around 20 msec and the per-request latency on Mariner’s
storage system is 3.2 msec when read/write ratio is zero.
However, under this workload, the advantage of request
batching can not be shown very clearly as at any point in
time, there is only one outstanding write request and there
is no batching.

Table 2 shows the per-request latency improvement for
different NFS operations by playing the Lair trace with
TBBT trace player. TBBT trace player is at the NFS client
side. Playing one-hour trace of the whole day trace(2:00am
on Oct 21st, 2001) in full speed takes only 3 seconds for
Mariner and 21 seconds for direct-attached disk. Per-write
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NFS OP Avg Elapsed Time Avg Elapsed Time
for Disk (msec) for Mariner (msec)

setattr 33.3 4.8
write 121 12
create 82.7 9

remove 64.5 7
rename 57.3 9.0

link 83.2 8.9
mkdir 161 13.4

Table 2. Elapsed time improvement for different
write-related NFS operations, where Tswitch = 2 and
Twait= 0.36 msec. Both direct-attached disk and
Mariner’s iSCSI device are mounted synchronously
on the NFS server directory.

NFS operation latency improves by a factor of between 6
and 10. This is because there are multiple outstanding re-
quests for batching. The latency at the iSCSI layer is 2
msec and .

7.6. Metadata Update Overhead

For each logical disk write, Mariner creates a log record,
writes it to a log disk together with the payload and updates
the B-tree index structure asynchronously. More specifi-
cally, the user-level B-tree daemon periodically polls the
kernel for updates to the B-tree, and makes the correspond-
ing modifications in one batch. The performance over-
head of index structure updates mainly comes from con-
text switching and additional disk I/O to force the updates
to disk. To measure the performance impact of updates to
the index structure, we compare the average write latencies
when the index structure update is turned on and off.

In this experiment, we set up an iSCSI initiator and an
iSCSI target, which uses a Trail device as the underlying
storage device, and issue a total of 200000 4KB synthetic
write requests from the iSCSI initiator. Because a Trail
device writes every incoming write request where the disk
head happens to be at that instant, the locality characteris-
tic of the input write requests is immaterial. Therefore, it
is perfectly reasonable to use a synthetic workload in this
study. We measure a Trail device’s throughput by gradually
decreasing the inter-request interval of the input workload
until the measured average write latency starts to increase
dramatically, at which time the input load exceeds the sys-
tem’s capacity and the queuing delay starts to dominate.

The difference between the two curves in Figure 10 rep-
resents the performance overhead due to index structure up-
dates. This overhead is less than 1% when the user-level B-
tree daemon polls the new B-tree entries in the kernel every
200msec, which is translated to five context switches per
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Figure 10. The overhead associated with metadata inser-
tion and update

second. The resulting context switching overhead is negli-
gible. Because the user-level B-tree daemon writes updates
to disk in batches, the disk I/O cost is also insignificant.

8. Conclusion

Modern enterprise storage systems are increasingly
geared towards the notion of comprehensive data protec-
tion, which aims to protect data from hardware/software
failures, human errors, malicious attacks and environmen-
tal disasters. To achieve comprehensive data protection,
existing storage systems/products tend to glue together a
variety of data protection mechanisms that were developed
separately in an ad hoc way. The result is that compre-
hensive data protection comes with excessive performance
overhead. The goal of the Mariner project is to develop
efficient implementation techniques that could reduce the
performance penalty associated with comprehensive data
protection to a negligible level. Along the way, we rec-
ognize that replication and logging are the two fundamen-
tal building blocks for comprehensive data protection, and
organize Mariner’s system architecture around these two
primitives to minimize the associated performance over-
head. More specifically, the Mariner project makes the fol-
lowing research contributions:

• A modified track-based logging technique that can si-
multaneously achieve low write latency, high write
throughput and high disk space utilization efficiency
using only commodity IDE/ATA drives,

• A modified two-phase commit protocol that exploits
low-latency disk logging to hide the latency of local
mirroring and remote replication without compromis-
ing the data integrity, and

• A novel transparent reliable multicast mechanism that
exploits Ethernet switches’ VLAN support to imple-
ment tree-based link-layer multicast and drastically

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:44:54 UTC from IEEE Xplore.  Restrictions apply. 



reduces the storage-area networking overhead associ-
ated with data replication.

In the end, for a five-disk configuration, Mariner is able
to deliver 1.8msec write latency and achieve 70% log
disk space utilization under an input workload of 12500
writes/sec and 4KB per write request. With this perfor-
mance result, we believe we have proved our thesis that it
is possible to support comprehensive data protection with-
out incurring significant performance overhead.

Although the run-time performance overhead of the
Mariner architecture is similar to that of vanilla iSCSI
storage systems without any protection, it requires much
more sophisticated recovery processing for various failure
modes. How to produce a provably correct implementa-
tion of these data recovery schemes is our current focus.
In addition, how to transform Mariner’s block-level CDP
functionality into something similar to those provided by
standard versioning file systems is another research direc-
tion that we are currently pursuing.
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