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Abstract 
 
This paper examines the application of Tornado 

Codes, a class of low density parity check (LDPC) 
erasure codes, to archival storage systems based on 
massive arrays of idle disks (MAID). We present a log-
structured extent-based archival file system based on 
Tornado Coded stripe storage. The file system is 
combined with a MAID simulator to emulate the behavior 
of a large-scale storage system with the goal of 
employing Tornado Codes to provide fault tolerance and 
performance in a power-constrained environment. The 
effect of power conservation constraints on system 
throughput is examined, and a policy of placing multiple 
data nodes on a single device is shown to increase read 
throughput at the cost of a measurable, but negligible, 
decrease in fault tolerance. Finally, a system prototype is 
implemented on a 100 TB Lustre storage cluster, 
providing GridFTP accessible storage with higher 
reliability and availability than the underlying storage 
architecture. 

 
 

1. Introduction 
 
The high performance computing field has a nearly 

insatiable demand for storage. Performance, availability, 
reliability, cost, capacity, and scalability are common 
metrics used to evaluate storage, but the environment 
ultimately dictates the choice of technology. Though all 
storage systems strive for reliability, it is of paramount 
importance for archival storage. Intended to serve as 
permanent repositories of data, archival storage systems 
employ data redundancy techniques, such as replication, 
erasure correcting codes, or error correcting codes, to 
reduce the risk of data loss.  

The emergence of new technologies has renewed 
interest in exploring alternative architectures for archival 
storage. For example, MAID (Massive Arrays of Idle 
Disks) has been proposed as a low-power and lower-
latency replacement for magnetic tape as a backing store 
[3]. Grid technologies have been used to construct 
distributed storage systems for data preservation [6] that 

include both disk and tape [8]. Tornado Codes and other 
erasure codes have been shown to provide high levels of 
fault tolerance. This confluence of new technologies 
holds the potential of radically altering our concept of 
archival storage by providing solutions that exhibit an 
unprecedented combination of fault tolerance, 
performance, availability, low power consumption, and 
ability to be federated among collaborating institutions. 

In our prior work, we examined the fault tolerance of 
specific Tornado Code graphs, focusing on worst-case 
data loss scenarios and overall system reliability, and 
demonstrate that Tornado Codes with iterative decoding 
provide higher reliability than replication and RAID [10]. 
Having demonstrated  the feasibility of Tornado Codes 
for storage applications, we now develop and implement 
the Tornado Coded Archival Storage (TCAS) system. 
The TCAS file system is then combined with a MAID 
simulator to emulate a large-scale storage system, and is 
evaluate using workload traces. Finally, we develop a 
GridFTP front-end to the TCAS system that allows clients 
to archive and retrieve files using a standard interface. 

 
2. Background and related work 

 
Tornado Codes were introduced by Luby as a 

mechanism for reliable multicast [2]. The basic unit of a 
Tornado Code is an irregular bipartite low density parity 
check (LDPC) graph. The nodes of the graph store either 
data or parity, and the randomly paired edges describe 
which data nodes are combined using XOR to produce 
parity nodes. A Tornado Code is constructed by 
cascading several of these bipartite graphs. Tornado 
Codes may be created with variable quantities of nodes 
and stages, but it is the specific edge degree distribution 
that makes a cascaded bipartite LDPC graph possess the 
fault tolerance characteristics of a Tornado Code. 

Because erasure codes provide better fault tolerance 
than replication [9], they have been of particular interest 
to distributed file system developers. OceanStore 
originally included an archival storage class using Reed-
Solomon codes, but in 1999 the Typhoon project 
examined using Tornado Codes as a replacement coding 
method [4]. Typhoon demonstrated that Tornado Codes 
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could encode and decode data in substantially less time 
than Reed-Solomon codes. More recently, RobuSTore 
used a derivative of Luby’s LT codes to hide latency in a 
distributed storage system using speculative access [11].  

While Tornado Codes and LT codes are increasingly 
popular coding methods for storage applications, 
alternative approaches for generating LDPC graphs have 
been proposed. For example, Plank and Thomason’s 
analysis of specific graphs for several families of codes 
demonstrated that random LDPC codes work best with 
large numbers of nodes, and Plank’s continuing work 
describes the construction of optimal codes for small (less 
than 100 node) graphs [7]. We have chosen Tornado 
Codes over other codes for the TCAS system because of 
their simplicity and prior applications in the literature. 
However, our software works with any graph-based 
fixed-rate code. 

In preparation for constructing a file system using 
Tornado Codes, we analyzed the fault tolerance of 
specific 96-node Tornado Code graphs in our prior work 
[10]. Through simulations, we identified the worst case 
failure scenarios for several graphs. Unsuitable graphs 
were discarded, and the remaining graphs demonstrated 
the ability to withstand the failure of any 4 out of 96 
devices using iterative decoding. The ability to tolerate 
any four lost devices provides fault tolerance greater than 
RAID and mirroring. A single graph was selected for use 
with the storage implementation presented here. 

 
3. System design 

 
The TCAS system is intended to serve as large-scale 

single-site or federated storage system. We envision a 
system that functions as a data grid appliance similar to a 
Grid Brick but with larger capacity, configurable power 
constraints, and higher throughput and lower latency than 

tape-based systems. Our overall system architecture 
consists of a Tornado Coded file system, a system 
controller server running the file system, backing store 
such as a MAID device, and a user interface based on 
established data grid standards. A layered component 
software architecture implements the TCAS system data 
flow (see Figure 1).  

 
3.1. Tornado coded file system 

 
The TCAS file system is an extent-based, log-

structured, encoded-stripe file system (see Figure 2). Files 
are broken into extents as necessary and aggregated on 
fixed-size stripes. When a stripe is full, or a predefined 
write buffer timeout has expired, the entire stripe is 
encoded and the data and check nodes are distributed to 
storage devices. Any block-based or object-based storage 
target is an acceptable backing store.  

The foundation of the Tornado Coded stripe storage is 
provided by a series of Tornado Code graphs with known 
failure profiles (see [10]). Each stripe consists of 48 data 
nodes and 48 check nodes. Even though this is close to 
the region where LDPC codes have high overhead, it is 
an appropriate lower bound because it allows several 
stripes to be read or written simultaneously while being 
small enough to facilitate explicit device management. 
The amount of data in each node (the block size) is a 
design choice – we chose to maintain a constant block 
size of 1 MB, so each stripe stores 48 MB of user data. 
This is close to the average size of files from our archival 
storage system trace data. However, the TCAS software 
supports variable block sizes at the stripe level, and the 
block size may be dynamically changed at runtime. 

 
3.2. Block placement  

 
Wide-scale distributed and peer-to-peer storage 

systems have typically used overlay networks or complex 
algorithms to place and locate data on a large number of 
devices. A MAID system, on the other hand, has finite 
capacity and is managed by a local system with complete 
control, so nodes must explicitly be placed and retrieved 
at runtime. By using predefined placement policies, the 
number of device activations to retrieve data can be 
minimized and failure sets more easily enumerated. 
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Figure 1. Tornado Coded Archival Storage software 
architecture 
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Figure 2. Tornado Coded Archival Storage data flow – an 
extent-based log-structured encoded-stripe file system
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To simplify the placement problem, we have 
subdivided the disks in the backing store into a number of 
placement groups that are the size of Tornado Coded 
stripes. For example, a 960-device MAID unit may be 
configured with 10 placement groups of 96 disks each. 
One placement group remains active to accept writes, 
while others may be activated or deactivated for reads. 
More complex layouts, such as spiraling stripes 
throughout the system, may be achieved using this 
technique without the scalability problems that would 
arise using metadata to associate every node to a device. 
This also provides flexibility for easily remapping failed 
disks, using disks with different capacities, and increasing 
the system’s capacity at runtime. 

 
3.3. Overloaded block placement 

 
One way of attempting to improve performance is by 

increasing parallelism. In the case of TCAS on MAID, 
device parallelism is already present: every write accesses 
96 devices and every read accesses 48 devices. One way 
to increase operational parallelism is by overloading data 
nodes. Placing multiple data nodes on a single device 
reduces the number of devices that must be accessed for 
each stripe and thus increases the number of stripe 
operations that may be performed in parallel. We 
examined this technique only on data nodes. Overloading 
the check nodes would be possible, but because check 
nodes are not normally retrieved, overloading them would 
decrease fault tolerance for little benefit. 

At first glance, overloading data nodes is 
counterintuitive because fault tolerance is achieved by 
using large-scale LDPC codes and independent devices. 
Our results show that placing two or three data nodes on a 
device decreases the fault tolerance of Tornado Coded 
stripes by a small amount – from theoretical MTBF 
values in the billions of years to millions (see Table 1). 
(In this configuration, mirroring has a reciprocal 
reliability of only 208.8 years, so even the worst 
overlapped Tornado Codes have higher reliability than 
mirroring.) For several overload policies and Tornado 
Code graphs, the first failure does not decrease at all. 
Overloading becomes a matter of policy: a system 
designer may choose to overload data nodes to help 

performance, or omit it to obtain the highest fault 
tolerance possible using a particular Tornado Code graph. 

 
4. Trace-based workload simulation 

 
The target system architecture consists of a control 

system and MAID storage array connected with a high-
throughput I/O interconnect (see Figure 4). In the 
simulated configuration, the MAID array contains 960 
drives and the percentage of drives that are allowed 
online at any time is an independent variable. Drive 
spinup operations require 10 seconds and are normally 
distributed, and the maximum disk throughput is limited 
to 50 MB/s for a 1 MB operation. The Fibre Channel 
interconnect is limited to 200 MB/s. We believe these 
values conservatively represent expected performance of 
a MAID system constructed with currently available 
commodity disk drives and interconnects.  

The simulated control system consists of a single 
multiprocessor computer with a variable number of CPUs 
and amount of system memory. In the target design, three 
processors are dedicated to encoding and decoding 
stripes. System memory is another of the limited 
resources required for TCAS operations. A stripe requires 
96 MB of memory, so the number of stripes that may be 
allocated memory is controlled. The scheduler maintains 
two queues each for write and read operations. The first 
queue collects requests that must wait for resources, and a 
second queue contains stripes that have been allocated 
memory. This separates device activations and planning 
from data movement and coding operations.  

 

Figure 3. Example overloaded data node placement 
 

Table 1 – MTBF (reciprocal of probability of failure) in 
millions of years for 96-node storage systems by data 
node placement policy with independent disk failures 
with an annual failure rate p=.01 and no repair 

Overload 
Policy 

Tornado 
Graph 1 

Tornado 
Graph 2 

Tornado 
Graph 3 

1:1 – 96 None 743.49 1681.52 1707.36 
2:1 – 72 Block 23.61 44.13 425.35 
2:1 – 72 Cyclic 13.58 314.76 81.30 
3:1 – 64 Block 6.89 6.59 20.35 
3:1 – 64 Cyclic 0.91 7.49 0.48 
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Figure 4. Organization and resource constraints for 
Tornado Coded MAID system emulator 
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The scheduler prevents the starvation of requests by 
ordering activations and prioritizing block read and write 
commands. Read and write operations are scheduled 
before activations and deactivations to prevent disk 
activation thrashing. The longer a stripe has been waiting, 
the more it influences device activations to retrieve 
necessary blocks. Also, after every block retrieval 
operation, the Tornado Code reconstruction algorithm is 
run on the stripe’s metadata state to prevent nodes that 
can be reconstructed from being unnecessarily retrieved. 
 
4.1.  Evaluation traces and metrics 

 
To generate traces for simulation, we started with 

sanitized log excerpts of file access patterns from a multi-
petabyte tape-based archival storage system. Access data 
from two periods of time was processed to create 
simulation preload and analysis sets. The first two days of 
data were used to preload the file system, and the final 24 
hours became the trace for simulation. The preloaded file 
systems contain about 100,000 files and 10 TB of data, 
and the traces simulate reading and writing about 2 TB of 
data in 25,000 files. The average read and write 
throughputs of 24 and 31 MB/s respectively are under the 
simulated capacity so queues do not grow indefinitely. 

Because the system is driven by user requests, and 
users hate to wait, the amount of time required to deliver 
a file is our preferred performance metric. For all of our 
experiments, each configuration was implemented and the 
file system preloaded. Then, for each parameter of 
interest, at least three runs of the trace were performed. 
The average file operation times were calculated, and the 
results of the runs were averaged and plotted. 

 
4.2. Simulation results 

 
As expected, both increasing the number of data nodes 

per device and increasing the maximum number of 
devices allowed online reduce the amount of time 
required to retrieve a file (see Figure 5). The initial cases 
with low parallelism have the poorest performance, and 

as parallelism increases, the read response times approach 
the device activation time of 10 seconds. 

Increasing the data node overlap and online device 
envelope generally reduces the mount count (see Figure 
6), but one pathological case was found. When the no-
overlap case transitions from 144 to 192 devices online, 
the mount count dramatically increases. In the 144 online 
case, with one data node per device, only one stripe can 
be read at a time. By policy, the active devices cannot be 
powered down until there are no stripes requiring those 
devices present in the reconstruction queue. In the 192 
online case, two stripes can be retrieved simultaneously, 
and the additional flexibility is immediately leveraged to 
activate more drives. The mount count increases 
dramatically, and the wait time decreases. 

Our results show that the time required to write a file 
to archival storage is consistent across all configurations 
for a particular trace, but varies between traces. The 
consistency across configurations is expected, as the 
system always writes one stripe at a time to ready devices 
as the log is flushed. Between traces, the difference 
appears to be an interaction of the bus throughput and the 
test case itself. For example, if one trace writes a few very 
large files in a short period of time, these large file write 
operations would become a large number of stripe write 
operations and greatly increase the average write response 
time across all configurations running that trace.  
 
4.3. Discussion 

 
The placement policies and device constraints clearly 

affect performance and mount activity. For read 
performance, it is possible to configure the system to a 
break-even point of read parallelism where additional 
increases in data node overloading or devices online do 
not provide additional gain. By simply allowing enough 
devices online it is possible to achieve an average file 
read time approximately equivalent to the device 
activation time. Placing more devices per data node or 
allowing more devices online does not improve 
performance, but does decrease the device mount count. 
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Figure 5. Simulated average file read time by maximum 
devices online and placement policy 
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Figure 6. Simulated read mount count by maximum 
devices online and data node placement policy 
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The TCAS MAID simulation provides a convenient 
mechanism for experimenting with policy changes in a 
large-scale storage system. Not only does the simulator 
provide file access statistics, but it calculates device 
activation operations and estimates total power usage. By 
combining the simulated performance with fault tolerance 
data, a system designer can choose parameters to create a 
system with the desired performance and fault tolerance. 
 
5. Prototype implementation 

 
Simulation is a logical preliminary step in the design 

and evaluation of any complex system, but eventually the 
short but important question arises: Does it work? The 
software developed for the TCAS MAID evaluation 
serves as both a discrete-event simulator and a functional 
prototype. In simulation mode, the software goes through 
the motions of manipulating blocks through an event-
driven data flow. The same code also supports emulating 
a fully functional archival storage system, performing all 
the data manipulation required to encode, store, decode, 
and retrieve files in response to interactive user requests.  

For preliminary testing, the simulation was extended to 
support uploading and downloading real files, and we 
tested archiving and retrieving entire local Linux 
installations. Fault tolerance was examined by deleting 
subdirectories containing the encoded data for entire 
devices. These tests confirmed that our TCAS software 
can store, retrieve, and reconstruct real data. 

We chose to expose the TCAS system using the 
GridFTP interface because of its ubiquity in the scientific 
computing and data grid communities. We wrote a 
custom GridFTP data storage interface (DSI) module to 
serve as the TCAS front end. Our DSI is based on the 
Globus sample source code, but we thoroughly examined 
the SRB DSI [1] to become familiar with DSI 
development techniques. We loosely coupled the DSI and 
the back-end storage system using a SQL database and a 
storage cache (see Figure 9). The loose coupling regulates 
the flow of data to and from the slower archival backing 

store. In the prototype implementation, all operations are 
atomic and sent to archival storage for fulfillment.  
 
5.1. Storage cluster deployment 

 
We deployed the TCAS system on NCAR’s 100 TB 

Lustre storage cluster named Maelstrom. The cluster 
consists of 12 storage servers, each of which manages a 
single disk array configured with RAID5 LUNs. Because 
the Tornado Codes have 96 nodes, and the storage cluster 
only has 12 independent storage devices, a cyclic 96:12 
node to device mapping was used to associate nodes with 
devices. Nodes are represented by appropriately named 
subdirectories that have been configured to stripe across 
only one object storage target (OST). We verified that the 
TCAS software on Maelstrom was able to upload and 
download files from other machines using GridFTP.  

To examine the effect of deploying TCAS on this 
system we enumerated disk chassis and server failure case 
scenarios through simulation. The reliability of the system 
describes the potential of data loss given the failure of an 
increasing number of disk chassis units (see Figure 7). All 
three of the Tornado Code graphs we tested can survive 
the loss of two disk chassis units, and one can survive the 
loss of any three. If the servers and disk units are properly 
dovetailed in a high availability configuration, the TCAS 
storage remains available with the failure of any three 
storage servers (see Figure 8). In fact, if servers are 
chosen appropriately, half of the storage servers in 
Maelstrom can be taken offline for maintenance without 
causing loss of availability. The primary benefit of this 
implementation is that it takes advantage of Lustre to 
gracefully handle device failures and to provide access to 
the backing store.  
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Figure 7. Fraction reconstruction failure by number of 
failed disk chassis units in the Maelstrom system 
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Figure 8. Fraction reconstruction failure by number of 
failed servers in the Maelstrom system 
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6. Future work 
 
There is a broad range of opportunities for continued 

work in the area of Tornado Coded archival storage. For 
fault tolerance, additional work may provide more 
accurate system reliability based on expected workloads. 
Our initial Tornado Code graph fault tolerance 
investigations assumed a device annual failure rate (AFR) 
of 1.0%. This AFR does not reflect the device power state 
changes performed by a MAID system, which is 
important because powering drives on and off several 
times per hour influences drive reliability. Our simulator 
is capable of producing device activation data based on 
archival storage access traces. To close the reliability 
loop, this simulated device activation data could be used 
to produce time-variant device AFR values, and then to 
calculate system reliability based on device reliability 
over time. 

The prototype implements the data flow, but as with 
most research prototype log-structured file systems, many 
nontrivial details such as stripe cleaning and file version 
interfaces have not been completed. For power-aware 
MAID configurations, switching from hard constraints to 
soft constraints could allow the activation of more drives 
during high usage periods to reduce file delivery time. 
We believe that it is possible to identify an optimal power 
envelope given a hardware configuration and real-time 
system load. 

 
7. Conclusion 

 
Tornado Codes provide erasure coding with 

probabilistically successful data reconstruction. In this 
paper, we presented an architecture for a MAID storage 
system using Tornado Codes for fault tolerance in an 
archival storage system. Through simulation, we have 
examined several design considerations for such of a 
system. Our results show that a simple block-based data 
layout, possibly placing multiple data nodes per device, 
provides the best performance. The system can easily be 
deployed on traditional hardware and exposed using a 
standard interface. In the future, we plan to extend TCAS 
to construct a federated storage system within a data grid 
infrastructure. By combining Tornado Codes and MAID, 
the system will provide highly reliable data storage within 
a configurable power footprint.  
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