
Tornado Codes for MAID Archival Storage

Matthew Woitaszek
University of Colorado, Boulder

matthew.woitaszek@colorado.edu

Henry M. Tufo
University of Colorado, Boulder

tufo@cs.colorado.edu

Abstract

This paper examines the application of Tornado

Codes, a class of low density parity check (LDPC)
erasure codes, to archival storage systems based on
massive arrays of idle disks (MAID). We present a log-
structured extent-based archival file system based on
Tornado Coded stripe storage. The file system is
combined with a MAID simulator to emulate the behavior
of a large-scale storage system with the goal of
employing Tornado Codes to provide fault tolerance and
performance in a power-constrained environment. The
effect of power conservation constraints on system
throughput is examined, and a policy of placing multiple
data nodes on a single device is shown to increase read
throughput at the cost of a measurable, but negligible,
decrease in fault tolerance. Finally, a system prototype is
implemented on a 100 TB Lustre storage cluster,
providing GridFTP accessible storage with higher
reliability and availability than the underlying storage
architecture.

1. Introduction

The high performance computing field has a nearly

insatiable demand for storage. Performance, availability,
reliability, cost, capacity, and scalability are common
metrics used to evaluate storage, but the environment
ultimately dictates the choice of technology. Though all
storage systems strive for reliability, it is of paramount
importance for archival storage. Intended to serve as
permanent repositories of data, archival storage systems
employ data redundancy techniques, such as replication,
erasure correcting codes, or error correcting codes, to
reduce the risk of data loss.

The emergence of new technologies has renewed
interest in exploring alternative architectures for archival
storage. For example, MAID (Massive Arrays of Idle
Disks) has been proposed as a low-power and lower-
latency replacement for magnetic tape as a backing store
[3]. Grid technologies have been used to construct
distributed storage systems for data preservation [6] that

include both disk and tape [8]. Tornado Codes and other
erasure codes have been shown to provide high levels of
fault tolerance. This confluence of new technologies
holds the potential of radically altering our concept of
archival storage by providing solutions that exhibit an
unprecedented combination of fault tolerance,
performance, availability, low power consumption, and
ability to be federated among collaborating institutions.

In our prior work, we examined the fault tolerance of
specific Tornado Code graphs, focusing on worst-case
data loss scenarios and overall system reliability, and
demonstrate that Tornado Codes with iterative decoding
provide higher reliability than replication and RAID [10].
Having demonstrated the feasibility of Tornado Codes
for storage applications, we now develop and implement
the Tornado Coded Archival Storage (TCAS) system.
The TCAS file system is then combined with a MAID
simulator to emulate a large-scale storage system, and is
evaluate using workload traces. Finally, we develop a
GridFTP front-end to the TCAS system that allows clients
to archive and retrieve files using a standard interface.

2. Background and related work

Tornado Codes were introduced by Luby as a

mechanism for reliable multicast [2]. The basic unit of a
Tornado Code is an irregular bipartite low density parity
check (LDPC) graph. The nodes of the graph store either
data or parity, and the randomly paired edges describe
which data nodes are combined using XOR to produce
parity nodes. A Tornado Code is constructed by
cascading several of these bipartite graphs. Tornado
Codes may be created with variable quantities of nodes
and stages, but it is the specific edge degree distribution
that makes a cascaded bipartite LDPC graph possess the
fault tolerance characteristics of a Tornado Code.

Because erasure codes provide better fault tolerance
than replication [9], they have been of particular interest
to distributed file system developers. OceanStore
originally included an archival storage class using Reed-
Solomon codes, but in 1999 the Typhoon project
examined using Tornado Codes as a replacement coding
method [4]. Typhoon demonstrated that Tornado Codes

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:45:55 UTC from IEEE Xplore. Restrictions apply.

could encode and decode data in substantially less time
than Reed-Solomon codes. More recently, RobuSTore
used a derivative of Luby’s LT codes to hide latency in a
distributed storage system using speculative access [11].

While Tornado Codes and LT codes are increasingly
popular coding methods for storage applications,
alternative approaches for generating LDPC graphs have
been proposed. For example, Plank and Thomason’s
analysis of specific graphs for several families of codes
demonstrated that random LDPC codes work best with
large numbers of nodes, and Plank’s continuing work
describes the construction of optimal codes for small (less
than 100 node) graphs [7]. We have chosen Tornado
Codes over other codes for the TCAS system because of
their simplicity and prior applications in the literature.
However, our software works with any graph-based
fixed-rate code.

In preparation for constructing a file system using
Tornado Codes, we analyzed the fault tolerance of
specific 96-node Tornado Code graphs in our prior work
[10]. Through simulations, we identified the worst case
failure scenarios for several graphs. Unsuitable graphs
were discarded, and the remaining graphs demonstrated
the ability to withstand the failure of any 4 out of 96
devices using iterative decoding. The ability to tolerate
any four lost devices provides fault tolerance greater than
RAID and mirroring. A single graph was selected for use
with the storage implementation presented here.

3. System design

The TCAS system is intended to serve as large-scale

single-site or federated storage system. We envision a
system that functions as a data grid appliance similar to a
Grid Brick but with larger capacity, configurable power
constraints, and higher throughput and lower latency than

tape-based systems. Our overall system architecture
consists of a Tornado Coded file system, a system
controller server running the file system, backing store
such as a MAID device, and a user interface based on
established data grid standards. A layered component
software architecture implements the TCAS system data
flow (see Figure 1).

3.1. Tornado coded file system

The TCAS file system is an extent-based, log-

structured, encoded-stripe file system (see Figure 2). Files
are broken into extents as necessary and aggregated on
fixed-size stripes. When a stripe is full, or a predefined
write buffer timeout has expired, the entire stripe is
encoded and the data and check nodes are distributed to
storage devices. Any block-based or object-based storage
target is an acceptable backing store.

The foundation of the Tornado Coded stripe storage is
provided by a series of Tornado Code graphs with known
failure profiles (see [10]). Each stripe consists of 48 data
nodes and 48 check nodes. Even though this is close to
the region where LDPC codes have high overhead, it is
an appropriate lower bound because it allows several
stripes to be read or written simultaneously while being
small enough to facilitate explicit device management.
The amount of data in each node (the block size) is a
design choice – we chose to maintain a constant block
size of 1 MB, so each stripe stores 48 MB of user data.
This is close to the average size of files from our archival
storage system trace data. However, the TCAS software
supports variable block sizes at the stripe level, and the
block size may be dynamically changed at runtime.

3.2. Block placement

Wide-scale distributed and peer-to-peer storage

systems have typically used overlay networks or complex
algorithms to place and locate data on a large number of
devices. A MAID system, on the other hand, has finite
capacity and is managed by a local system with complete
control, so nodes must explicitly be placed and retrieved
at runtime. By using predefined placement policies, the
number of device activations to retrieve data can be
minimized and failure sets more easily enumerated.

Standard Network Storage Protocol

File System Metadata Services

Block Location Metadata Services

Client Interface

Server Interface

Tornado Coded Stripe Storage

Client Interface

File System Metadata

Tornado Coding

Block Storage

Object Store Object Store

Object Location Object Location

Block or Object Access Protocol

Abstract Storage Interface

Queuing,
Scheduling, and

Activation Control

Figure 1. Tornado Coded Archival Storage software
architecture

Files

Data

Parity
Stripe}

Object Storage

Extents

Figure 2. Tornado Coded Archival Storage data flow – an
extent-based log-structured encoded-stripe file system

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:45:55 UTC from IEEE Xplore. Restrictions apply.

To simplify the placement problem, we have
subdivided the disks in the backing store into a number of
placement groups that are the size of Tornado Coded
stripes. For example, a 960-device MAID unit may be
configured with 10 placement groups of 96 disks each.
One placement group remains active to accept writes,
while others may be activated or deactivated for reads.
More complex layouts, such as spiraling stripes
throughout the system, may be achieved using this
technique without the scalability problems that would
arise using metadata to associate every node to a device.
This also provides flexibility for easily remapping failed
disks, using disks with different capacities, and increasing
the system’s capacity at runtime.

3.3. Overloaded block placement

One way of attempting to improve performance is by

increasing parallelism. In the case of TCAS on MAID,
device parallelism is already present: every write accesses
96 devices and every read accesses 48 devices. One way
to increase operational parallelism is by overloading data
nodes. Placing multiple data nodes on a single device
reduces the number of devices that must be accessed for
each stripe and thus increases the number of stripe
operations that may be performed in parallel. We
examined this technique only on data nodes. Overloading
the check nodes would be possible, but because check
nodes are not normally retrieved, overloading them would
decrease fault tolerance for little benefit.

At first glance, overloading data nodes is
counterintuitive because fault tolerance is achieved by
using large-scale LDPC codes and independent devices.
Our results show that placing two or three data nodes on a
device decreases the fault tolerance of Tornado Coded
stripes by a small amount – from theoretical MTBF
values in the billions of years to millions (see Table 1).
(In this configuration, mirroring has a reciprocal
reliability of only 208.8 years, so even the worst
overlapped Tornado Codes have higher reliability than
mirroring.) For several overload policies and Tornado
Code graphs, the first failure does not decrease at all.
Overloading becomes a matter of policy: a system
designer may choose to overload data nodes to help

performance, or omit it to obtain the highest fault
tolerance possible using a particular Tornado Code graph.

4. Trace-based workload simulation

The target system architecture consists of a control

system and MAID storage array connected with a high-
throughput I/O interconnect (see Figure 4). In the
simulated configuration, the MAID array contains 960
drives and the percentage of drives that are allowed
online at any time is an independent variable. Drive
spinup operations require 10 seconds and are normally
distributed, and the maximum disk throughput is limited
to 50 MB/s for a 1 MB operation. The Fibre Channel
interconnect is limited to 200 MB/s. We believe these
values conservatively represent expected performance of
a MAID system constructed with currently available
commodity disk drives and interconnects.

The simulated control system consists of a single
multiprocessor computer with a variable number of CPUs
and amount of system memory. In the target design, three
processors are dedicated to encoding and decoding
stripes. System memory is another of the limited
resources required for TCAS operations. A stripe requires
96 MB of memory, so the number of stripes that may be
allocated memory is controlled. The scheduler maintains
two queues each for write and read operations. The first
queue collects requests that must wait for resources, and a
second queue contains stripes that have been allocated
memory. This separates device activations and planning
from data movement and coding operations.

Figure 3. Example overloaded data node placement

Table 1 – MTBF (reciprocal of probability of failure) in
millions of years for 96-node storage systems by data
node placement policy with independent disk failures
with an annual failure rate p=.01 and no repair

Overload
Policy

Tornado
Graph 1

Tornado
Graph 2

Tornado
Graph 3

1:1 – 96 None 743.49 1681.52 1707.36
2:1 – 72 Block 23.61 44.13 425.35
2:1 – 72 Cyclic 13.58 314.76 81.30
3:1 – 64 Block 6.89 6.59 20.35
3:1 – 64 Cyclic 0.91 7.49 0.48

MAID StorageControl System

Fibre
Channel

(200 MB/s)

CPU CPUCPUCPU
OS
Use

Coding
(100 MB/s)

1 GB

1 GB

1 GB

1 GB Passive
Reconstruction

Active
Reconstruction
(10 stripes/GB) 960 SATA Drives

(50 MB/s for 1MB read)
10-30% online

Figure 4. Organization and resource constraints for
Tornado Coded MAID system emulator

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:45:55 UTC from IEEE Xplore. Restrictions apply.

The scheduler prevents the starvation of requests by
ordering activations and prioritizing block read and write
commands. Read and write operations are scheduled
before activations and deactivations to prevent disk
activation thrashing. The longer a stripe has been waiting,
the more it influences device activations to retrieve
necessary blocks. Also, after every block retrieval
operation, the Tornado Code reconstruction algorithm is
run on the stripe’s metadata state to prevent nodes that
can be reconstructed from being unnecessarily retrieved.

4.1. Evaluation traces and metrics

To generate traces for simulation, we started with

sanitized log excerpts of file access patterns from a multi-
petabyte tape-based archival storage system. Access data
from two periods of time was processed to create
simulation preload and analysis sets. The first two days of
data were used to preload the file system, and the final 24
hours became the trace for simulation. The preloaded file
systems contain about 100,000 files and 10 TB of data,
and the traces simulate reading and writing about 2 TB of
data in 25,000 files. The average read and write
throughputs of 24 and 31 MB/s respectively are under the
simulated capacity so queues do not grow indefinitely.

Because the system is driven by user requests, and
users hate to wait, the amount of time required to deliver
a file is our preferred performance metric. For all of our
experiments, each configuration was implemented and the
file system preloaded. Then, for each parameter of
interest, at least three runs of the trace were performed.
The average file operation times were calculated, and the
results of the runs were averaged and plotted.

4.2. Simulation results

As expected, both increasing the number of data nodes

per device and increasing the maximum number of
devices allowed online reduce the amount of time
required to retrieve a file (see Figure 5). The initial cases
with low parallelism have the poorest performance, and

as parallelism increases, the read response times approach
the device activation time of 10 seconds.

Increasing the data node overlap and online device
envelope generally reduces the mount count (see Figure
6), but one pathological case was found. When the no-
overlap case transitions from 144 to 192 devices online,
the mount count dramatically increases. In the 144 online
case, with one data node per device, only one stripe can
be read at a time. By policy, the active devices cannot be
powered down until there are no stripes requiring those
devices present in the reconstruction queue. In the 192
online case, two stripes can be retrieved simultaneously,
and the additional flexibility is immediately leveraged to
activate more drives. The mount count increases
dramatically, and the wait time decreases.

Our results show that the time required to write a file
to archival storage is consistent across all configurations
for a particular trace, but varies between traces. The
consistency across configurations is expected, as the
system always writes one stripe at a time to ready devices
as the log is flushed. Between traces, the difference
appears to be an interaction of the bus throughput and the
test case itself. For example, if one trace writes a few very
large files in a short period of time, these large file write
operations would become a large number of stripe write
operations and greatly increase the average write response
time across all configurations running that trace.

4.3. Discussion

The placement policies and device constraints clearly

affect performance and mount activity. For read
performance, it is possible to configure the system to a
break-even point of read parallelism where additional
increases in data node overloading or devices online do
not provide additional gain. By simply allowing enough
devices online it is possible to achieve an average file
read time approximately equivalent to the device
activation time. Placing more devices per data node or
allowing more devices online does not improve
performance, but does decrease the device mount count.

Maximum Devices Online
144 192 (20%) 288 (30%) 384 (40%)

A
ve

ra
ge

 F
ile

 R
ea

d
Ti

m
e

(s
)

0

10

20

30

40

50

60

70
1 data node per device (cyclic)
2 data nodes per device (cyclic)
3 data nodes per device (cyclic)
4 data nodes per device (cyclic)

Figure 5. Simulated average file read time by maximum
devices online and placement policy

Maximum Devices Online
144 192 (20%) 288 (30%) 384 (40%)

R
ea

d
M

ou
nt

 C
ou

nt
 (T

ho
us

an
ds

)

50

100

150

200

250

300

350

400

450
1:1
2:1 cyclic
3:1 cyclic
4:1 cyclic

Figure 6. Simulated read mount count by maximum
devices online and data node placement policy

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:45:55 UTC from IEEE Xplore. Restrictions apply.

The TCAS MAID simulation provides a convenient
mechanism for experimenting with policy changes in a
large-scale storage system. Not only does the simulator
provide file access statistics, but it calculates device
activation operations and estimates total power usage. By
combining the simulated performance with fault tolerance
data, a system designer can choose parameters to create a
system with the desired performance and fault tolerance.

5. Prototype implementation

Simulation is a logical preliminary step in the design

and evaluation of any complex system, but eventually the
short but important question arises: Does it work? The
software developed for the TCAS MAID evaluation
serves as both a discrete-event simulator and a functional
prototype. In simulation mode, the software goes through
the motions of manipulating blocks through an event-
driven data flow. The same code also supports emulating
a fully functional archival storage system, performing all
the data manipulation required to encode, store, decode,
and retrieve files in response to interactive user requests.

For preliminary testing, the simulation was extended to
support uploading and downloading real files, and we
tested archiving and retrieving entire local Linux
installations. Fault tolerance was examined by deleting
subdirectories containing the encoded data for entire
devices. These tests confirmed that our TCAS software
can store, retrieve, and reconstruct real data.

We chose to expose the TCAS system using the
GridFTP interface because of its ubiquity in the scientific
computing and data grid communities. We wrote a
custom GridFTP data storage interface (DSI) module to
serve as the TCAS front end. Our DSI is based on the
Globus sample source code, but we thoroughly examined
the SRB DSI [1] to become familiar with DSI
development techniques. We loosely coupled the DSI and
the back-end storage system using a SQL database and a
storage cache (see Figure 9). The loose coupling regulates
the flow of data to and from the slower archival backing

store. In the prototype implementation, all operations are
atomic and sent to archival storage for fulfillment.

5.1. Storage cluster deployment

We deployed the TCAS system on NCAR’s 100 TB

Lustre storage cluster named Maelstrom. The cluster
consists of 12 storage servers, each of which manages a
single disk array configured with RAID5 LUNs. Because
the Tornado Codes have 96 nodes, and the storage cluster
only has 12 independent storage devices, a cyclic 96:12
node to device mapping was used to associate nodes with
devices. Nodes are represented by appropriately named
subdirectories that have been configured to stripe across
only one object storage target (OST). We verified that the
TCAS software on Maelstrom was able to upload and
download files from other machines using GridFTP.

To examine the effect of deploying TCAS on this
system we enumerated disk chassis and server failure case
scenarios through simulation. The reliability of the system
describes the potential of data loss given the failure of an
increasing number of disk chassis units (see Figure 7). All
three of the Tornado Code graphs we tested can survive
the loss of two disk chassis units, and one can survive the
loss of any three. If the servers and disk units are properly
dovetailed in a high availability configuration, the TCAS
storage remains available with the failure of any three
storage servers (see Figure 8). In fact, if servers are
chosen appropriately, half of the storage servers in
Maelstrom can be taken offline for maintenance without
causing loss of availability. The primary benefit of this
implementation is that it takes advantage of Lustre to
gracefully handle device failures and to provide access to
the backing store.

Failed Disk Chassis Units
0 2 4 6 8 10 12

Fr
ac

tio
n

R
ec

on
st

ru
ct

io
n

Fa
ilu

re

0

0.2

0.4

0.6

0.8

1
Tornado 1
Tornado 2
Tornado 3

Figure 7. Fraction reconstruction failure by number of
failed disk chassis units in the Maelstrom system

Failed Servers (Dovetailed to Disk Chassis Units)
0 2 4 6 8 10 12

Fr
ac

tio
n

R
ec

on
st

ru
ct

io
n

Fa
ilu

re

0

0.2

0.4

0.6

0.8

1
Tornado 1
Tornado 2
Tornado 3

Figure 8. Fraction reconstruction failure by number of
failed servers in the Maelstrom system

GridFTP Server

GridFTP Cache

Cache Database
Archival
Storage
Server

Archival Backing Stor

GridFTP
Clients

Figure 9. TCAS system and GridFTP DSI coupling

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:45:55 UTC from IEEE Xplore. Restrictions apply.

6. Future work

There is a broad range of opportunities for continued

work in the area of Tornado Coded archival storage. For
fault tolerance, additional work may provide more
accurate system reliability based on expected workloads.
Our initial Tornado Code graph fault tolerance
investigations assumed a device annual failure rate (AFR)
of 1.0%. This AFR does not reflect the device power state
changes performed by a MAID system, which is
important because powering drives on and off several
times per hour influences drive reliability. Our simulator
is capable of producing device activation data based on
archival storage access traces. To close the reliability
loop, this simulated device activation data could be used
to produce time-variant device AFR values, and then to
calculate system reliability based on device reliability
over time.

The prototype implements the data flow, but as with
most research prototype log-structured file systems, many
nontrivial details such as stripe cleaning and file version
interfaces have not been completed. For power-aware
MAID configurations, switching from hard constraints to
soft constraints could allow the activation of more drives
during high usage periods to reduce file delivery time.
We believe that it is possible to identify an optimal power
envelope given a hardware configuration and real-time
system load.

7. Conclusion

Tornado Codes provide erasure coding with

probabilistically successful data reconstruction. In this
paper, we presented an architecture for a MAID storage
system using Tornado Codes for fault tolerance in an
archival storage system. Through simulation, we have
examined several design considerations for such of a
system. Our results show that a simple block-based data
layout, possibly placing multiple data nodes per device,
provides the best performance. The system can easily be
deployed on traditional hardware and exposed using a
standard interface. In the future, we plan to extend TCAS
to construct a federated storage system within a data grid
infrastructure. By combining Tornado Codes and MAID,
the system will provide highly reliable data storage within
a configurable power footprint.

Acknowledgements

We would like to thank Dirk Grunwald for his

suggestion of using Tornado Codes with MAID storage
systems and Manish Vachharajani for the idea of
overloading data node placement. Adam Boggs, Jason
Cope, Sean McCreary, Michael Oberg, and Theron Voran

provided valuable feedback. Support and computer time
were provided by NSF ARI Grant #CDA-9601817,
NASA AIST grant #NAG2-1646, DOE SciDAC grant
#DE-FG02-04ER63870, NSF sponsorship of the National
Center for Atmospheric Research, and a grant from the
IBM Shared University Research program.

References

[1] Bresnahan, John. SRB GridFTP DSI (Computer Software

Source Code), 11 October 2006. http://www.mcs.anl.gov/
~bresnaha/globus_srb_dsi-0.13.tar.gz

[2] Byers, J. W., M. Luby, and M. Mitzenmacher, “Accessing
Multiple Mirror Sites in Parallel: Using Tornado Codes to
Speed Up Downloads”, Proceedings of IEEE INFOCOM
1999, 275-283, 1999.

[3] Colarelli, D., and D. Grunwald, “Massive Arrays of Idle
Disks for Storage Archives”, Proceedings of the 2000
ACM/IEEE Conference on Supercomputing (SC’02), 1-11,
November 2002.

[4] Delco, M., H. Weatherspoon, and S. Zhuang, “Typhoon:
An Archival System for Tolerating High Degrees of File
Server Failure”, University of California, Berkeley project
report, 13 December 1999. http://www.cs.berkeley.edu/
~hweather/Typhoon/

[5] Luby, M. G., M. Mitzenmacher, M.A. Shokrollahi, and
D.A. Spielman, “Efficient Erasure Correcting Codes”,
IEEE Transactions on Information Theory, 47(2), 569-
584, February 2001.

[6] Moore, R.W., J.F. JaJa, and R. Chadduck, “Mitigating Risk
of Data Loss in Preservation Environments,” Proceedings
of the 22nd IEEE/13th NASA Goddard Conference on
Mass Storage Systems and Technologies (MSST 2005),
2005.

[7] Plank, J.S., A.L. Buchsbaum, R.L. Collins, and M.G.
Thomason, “Small Parity-Check Erasure Codes -
Exploration and Observations”, Proceeding of DSN-05:
International Conference on Dependable Systems and
Networks, Yokohama, Japan, June 2005.

[8] Wan, M., A. Rajasekar, R. Moore, and P. Andrews, “A
Simple Mass Storage System for the SRB Data Grid”,
Proceedings of the 20th IEEE/11th NASA Goddard
Conference on Mass Storage Systems & Technologies
(MSST 2003), San Diego, CA, April 2003.

[9] Weatherspoon, H. and J. Kubiatowicz, “Erasure Coding vs.
Replication: A Quantitative Comparison”, Proceedings of
the First International Workshop on Peer-to-Peer Systems
(IPTPS 2002), March 2002, 328-338.

[10] Woitaszek, M. and H. M. Tufo, “Fault Tolerance of
Tornado Codes for Archival Storage”, Proceedings of the
15th IEEE International Symposium on High Performance
Distributed Computing (HPDC 15), Paris, France, June
2006.

[11] Xia, H. and A.A. Chien, “RobuSTore: Robust Performance
for Distributed Storage Systems”, Proceedings of the 14th
NASA Goddard - 23rd IEEE Conference on Mass Storage
Systems and Technologies (MSST 2006), May 2006.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:45:55 UTC from IEEE Xplore. Restrictions apply.

