
Implementation and Evaluation of a Popularity-Based Reconstruction
Optimization Algorithm in Availability-Oriented Disk Arrays

Lei Tian†

ltian@hust.edu.cn
Hong Jiang‡

jiang@cse.unl.edu
Dan Feng†

dfeng@hust.edu.cn
Qin Xin§

qxin@ieee.org
Xing Shu†

xshu2006@gmail.com
† Huazhong University of Science and Technology / Wuhan National Laboratory for Optoelectronics

‡ University of Nebraska-Lincoln
§Symantec Corporation

Abstract

In this paper, we implement the incorporation of a
Popularity-based multi-threaded Reconstruction
Optimization algorithm, PRO, into the recovery
mechanism of the Linux software RAID (MD), which is a
well-known and widely-used availability-oriented disk
array scheme. To evaluate the impact of PRO on RAID-
structured storage systems such as MD, we conduct
extensive trace-driven experiments. Our results
demonstrate PRO’s significant performance advantage
over the existing reconstruction schemes, especially on a
RAID-5 disk array, in terms of the measured
reconstruction time and response time.

1. Introduction

With the advent of RAID [1] or RAID-like storage
systems, a large body of research work has been proposed
in the literature to improve the conventional data recovery
mechanisms from disk failures, and the practicability and
applicability of these improved mechanisms have been
demonstrated. Generally, we can divide the previously
published work in this area into the three categories of
erasure code-based approaches, parity/spare layout-based
approaches, and recovery workflow-based approaches.

Since the mechanism evaluated in this paper belongs
to the third category of workflow-based approaches, we
will focus our discussion of recent and new approaches in
this category. Tian et al. [2] proposed a popularity-based
multi-threaded reconstruction optimization algorithm
(PRO) to optimize the recovery process deployed in disk
arrays by integrating the popularity and locality of
workloads into the recovery process.

The PRO algorithm is demonstrated to improve the re-
construction time and average I/O response time during
recovery by optimizing the original Disk-Oriented
Reconstruction (DOR) [3] approach in RAIDframe [4]
with the read-only workload of a machine running a web-

search engine. However, there are a number of limitations
and weaknesses of PRO, discussed below, which must be
addressed:

1). The PRO approach has been incorporated and
evaluated only in one of the existing common
reconstruction schemes, Disk-Oriented Reconstruction.
However, the effect of incorporating PRO in another
typical reconstruction approach, such as Pipeline
Reconstruction (PR) [5] in the Linux software RAID
(MD) has not been investigated and evaluated in practice
or analyzed quantitatively. We believe that it is imperative
to incorporate PRO into PR because, importantly, PR in
MD is based on a significantly different design
philosophy than DOR in RAIDframe, e.g., MD favors
availability [6] while RAIDframe favors reliability. We
summarize the main differences between MD's PR and
RAIDframe's DOR as follows: First, DOR associates
lower priority with the reconstruction I/O requests than
with requests of user accesses, while PR associates the
same priority to the reconstruction requests. Secondly,
DOR allocates most of the available disk bandwidth for
fast recovery, while PR preserves a reasonable amount of
disk bandwidth (the default range is from 1MB/s to
20MB/s) to avoid imposing negative performance impact
on user accesses. Thirdly, DOR integrates the redirection
of reads mechanism [3] while PR performs on-the-fly
reconstruction to re-generate data once users' reads arrive
on the failed disk. Besides, many product-level storage
systems consist of underlying MD implementations. EMC
Centera [7], for example, is built from a cluster of
commodity machines and manages the underlying disks
by MD.

2). The PRO approach has been evaluated only in
terms of the read-only workload of a web search engine
application [8, 9]. However, with respect to other
representative read/write workloads, such as mail server
applications and Online Transaction Processing (OLTP)
applications, the impact of PRO has not been evaluated. It
is necessary to conduct trace-driven experiments to assess

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:46:27 UTC from IEEE Xplore. Restrictions apply.

Table 1. A Description of the PRO’s APIs

PRO’s impact on both availability and reliability during
the recovery process.

To address the issues above, we incorporate the PRO
approach into PR in the Linux software RAID, and
conduct a series of experiments and measurements to
evaluate the impacts of PRO on an availability-oriented
platform.

The main contributions of our paper are:
1). we implement the incorporation of PRO into the

PR scheme in the Linux software RAID.
2). we conduct extensive trace-driven experiments in a

real implementation, to investigate the performance and
reliability improvements of PRO over PR. The results
show the significant advantage of PRO over PR in
availability-oriented disk arrays, especially in RAID-5
disk arrays.

2. Design and Implementation of PRO

In this section, the PRO architecture and its design are
presented, along with its detailed implementation issues
and current limitations.

2.1. Design and Architecture of PRO

As a reconstruction optimization algorithm, PRO’s
goal is to optimize the existing recovery approaches to
generate an optimal reconstruction sequence for such
parallel reconstruction algorithms as Pipeline
Reconstruction (PR) and Disk-Oriented Reconstruction
(DOR). Due to the access popularity that is ubiquitous in
real I/O workloads, the main function of PRO is to
integrate workload characteristics into the existing
recovery approaches, rendering redirection of reads [10]
and head-following [3] much more efficient, thus
achieving the goals of improving the reconstruction time
and response time simultaneously.

The key idea of PRO is to allow the reconstruction
process in a RAID-structured storage system to rebuild
the frequently accessed areas prior to rebuilding
infrequently accessed areas.

More specifically, PRO firstly divides the storage
space of the replacement disk into contiguous and non-
overlapping areas, called “hot zones”, and initializes
multiple independent reconstruction threads with each
thread being responsible for rebuilding its corresponding
hot zone. Furthermore, the priority of a thread is
correlated to the popularity of its hot zone; Secondly, after
the successful initialization of the reconstruction threads,
PRO selects a reconstruction thread that has the highest
priority, allocates a time slice to it and activates it to
rebuild the remaining data units of its hot zone until the
time slice is used up. If the time slice is ran out of by this
thread, PRO suspends it, re-selects a reconstruction thread
with the currently highest priority, and allocates one new
time slice to it. This process repeats until all of the data
units in the replacement disk have been rebuilt.

From the architectural viewpoint, PRO is divided into
three modules: Access Monitor (AM), Reconstruction
Scheduler (RS) and Reconstruction Executer (RE). AM is
responsible for monitoring the users’ accesses and
adjusting the corresponding hot zones or initializing new
hot zones and new reconstruction threads. RS is
responsible for sorting the threads by their priority,
selecting the highest-priority thread, allocating a time
slice, and switching it to start rebuilding its remaining
data stripes. RE is responsible for rebuilding the
corresponding stripes issued by RS on the replacement
disks one by one. (See [2] for details)

2.2. Implementation Issues

To adapt PRO in PR of MD, we define ten main APIs.
Table 1 details information about the APIs of PRO on MD.

Table 1 lists the main APIs of PRO that need to be
augmented in PR of MD. Among them, the function of
pro_schedule_stripe is the core part of PRO, responsible
for the scheduling algorithm and connecting the AM
module and RE module.

The entire PRO source code is around 1000 lines of C
code, and it is easy to be shared with the RAID-1/RAID-
4/RAID-5/RAID-10 kernel modules of MD.

API Name Function Description Function invoked
pro_init_desp Initiaze the description of PRO raidx_run
pro_init_bitmap Initiaze the reconstruction bitmap table(RBT) raidx_run
pro_find_available_thread Find an available thread to allocate a new hot zone raidx_make_request
pro_init_thread Initiaze a thread with its corresponding hot zone raidx_make_request
pro_start_thread Switch the thread to the running or suspended state raidx_make_request
pro_find_hotzone Find whether the stripe is in any hot zone or not raidx_make_request
pro_sort_threads Sort all of the threads according to their priority(popularity) md_do_sync
pro_schedule_stripe Select the highest-priority thread and issue a stripe to recon md_do_sync
pro_free_bitmap Free the memory allocated for RBT raidx_stop
pro_free_desp Free the memory allocated for the description of PRO raidx_stop

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:46:27 UTC from IEEE Xplore. Restrictions apply.

Table 2. The Characteristics of the WebSearch and
Financial Traces.

Trace
Name

Num. of
Requests

RDs/WRs
ratio

I/O
Intensity
(IOPS)

WebSearch 200,000 99.98% /
0.02%

323.75

Financial 200,000 35.91% /
64.09%

64.06

Different from the DOR implementation in

RAIDframe, where the data structures of a bitmap array
pointer (RF_ReconMap_s) and an item pointer of the
bitmap array (RF_ReconMapListElem_s) are deployed to
indicate that a reconstruction unit has been either totally
reconstructed or not at all, the PR implementation in MD
does not provide a bitmap table to keep track of whether
every stripe unit has been rebuilt on the failed disk.

As a result, PRO augments a similar data structure,
Reconstruction Bitmap Table (RBT), into the original PR
implementation to indicate whether a stripe unit has been
rebuilt or not. We use one bit to represent each stripe unit,
and a true value (‘1’) denotes that the corresponding
stripe unit has been reconstructed; a false value (‘0’)
denotes that the corresponding stripe unit needs
reconstruction. In the current MD implementation, the
size of a stripe unit is the same as the page size (always
4KB). Denoting all the stripe states of a 320 GB hard-disk
will consume 10MB memory. However, the memory for
the storage of reconstruction bitmap table can be reduced
proportionally if a bit is designed to cover two or more
consecutive stripe units.

Another implementation issue that must be addressed
is that the data structure of RBT will be lost if a power
supply failure occurs during recovery. Once we plan to
re-start the recovery process to rebuild the remaining
units, we must reconstruct all of the units without RBT.
One of the available solutions for this problem is to utilize
NVRAM to store RBT, or flush the content of RBT on a
hard-disk temporarily just like the bitmap mechanism
embedded into the current MD version. We believe that it
is worthwhile to add extra memory or hardware
considering the benefits gained from PRO.

3. Performance Evaluations

In this section, we present a trace-driven evaluation of
an implementation of PRO embedded in the Linux MD
kernel module. This performance study concentrates on
the reconstruction performance in terms of average I/O
response time during recovery and reconstruction time.

3.1. Setup Details

All the experiments were performed on a server-class
PC with an Intel 3GHz Pentium4 Xeon processor and
512MB DDR memory. There is a Highpoint RocketRAID
2240 SATA card in the system to house 10 Seagate
ST3300831AS SATA2 disks. Each disk, with 300GB
capacity and 8MB cache, spins at 7200RPM, with a
sustained transfer rate of up to 76MB/s. We limit the
capacity of every disk to 5GB in experiments to avoid the
redundant time-consuming recovery process for an entire
disk. The MD software including its configuration tool
(mdadm) is shipped with the Fedora Core 4 Linux (kernel
version: 2.6.11). Based on the PR approach of MD, we
incoporate PRO into it. For the same reason as above, we
scale the default bandwidth range to between 10MB/s and
30MB/s.

3.2. Benchmark and Workloads

We have evaluated our implementation through
extensive trace-driven experiments and have conducted
performance evaluations by using RAIDmeter [2], which
is a block-level trace replay software tool with functions
of replaying traces and evaluating the I/O response time
of the storage device.

We run our evaluations over two traces identified from
the Storage Performance Council [8, 9]. The first one,
Financial, was collected from OLTP applications running
at a large financial institution, and the other one,
WebSearch, was collected from a system running a
popular search engine. Because of the relatively short
recovery time, we only use the beginning part of these
two traces that are sufficient for our evaluations. Table 2
shows the relevant workload characteristics of these two
traces.

3.3. Numerical Results

To evaluate the performance of two reconstruction
schemes: PR and PRO-powered PR (PRO for short), we
conduct the first set of experiments on a RAID-5 disk
array and a RAID-10 disk array composed of a variable
number of hard disks and one single hot-spare disk, with
the same chunk size of 64KB.

Table 3 depicts the measured average response time of
the two approaches respectively. On a RAID-5 disk array,
PRO outperforms PR by up to 30.82% and 18.74% in
user response time for the Financial and WebSearch
traces, respectively. It clearly shows the efficacy of PRO.
One can see that the response time improvement of PRO
for a RAID-5 disk array is more significant than that for a
RAID-10 disk array. On the other hand, PRO consistently

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:46:27 UTC from IEEE Xplore. Restrictions apply.

Table 3. A comparison of PRO and PR user response time as a function of the number of disks.
Average User Response Time during recovery (millisecond)
WebSearch Financial

RAID
Level

Number
of
Disks PR PRO improved PR PRO improved
3 225.67 183.37 18.74% 92.44 63.95 30.82%
5 252.98 210.67 16.72% 68.34 54.46 20.31%
7 258.06 230.25 7.85% 71.36 55.93 21.62%

RAID-5

9 257.86 236.55 8.26% 62.62 48.55 22.47%
4 235.61 233.91 0.72% 50.75 48.81 3.82% RAID-10
6 238.45 239.66 -0.51% 59.88 51.50 13.99%

Table 4. A comparison of reconstruction time in PRO and PR as a function of the number of disks.

Reconstruction Time (second)
WebSearch Financial

RAID
Level

Number
of
Disks PR PRO improved PR PRO improved
3 488.23 487.95 0.06% 247.73 236.57 4.5%
5 483.20 484.22 -0.21% 313.63 244.23 22.13%
7 487.29 489.41 -0.44% 315.89 251.66 20.33%

RAID-5

9 488.36 487.66 1.43% 315.75 284.63 9.86%
4 487.53 487.98 -0.09% 418.11 418.74 -0.15% RAID-10
6 489.31 486.86 5.03% 421.33 442.52 -5.03%

exhibits scalable performance improvement as the
number of disk drives increases.

Figure 1 illustrates the noticeable improvement of the
PRO algorithm over PR in user response time on a RAID-
5 disk array. One can see that with respect to the
WebSearch trace, the onset of the PRO performance
improvement is much earlier than that of PR during
recovery. On the other hand, it is demonstrated that PRO
rapidly reduces user response time to a lower level prior
to the PR algorithm, and preserves this level steadily until
recovery is ended. However, the performance of PRO in
user response time is similar to that of PR on a RAID-10
disk array.

Table 4 depicts the reconstruction time results of the
two approaches. The improvement of PRO over PR on a
RAID-5 disk array is negligible under the WebSearch
trace while significant, under the Financial trace, with up
to 22.13% improvement. It is noted that because MD is
availability-oriented, its recovery mechanism allocates a
nominal bandwidth range to rebuild data units while
preserving a significant portion of the bandwidth for user
requests. Due to the heavier intensity of the WebSearch
workload, no matter which approach we deploy in MD, it
is observed that the reconstruction speed persists at
around 10~11MB/s, the pre-specified minimal bandwidth
threshold by our experiments. It demonstrates that MD
has to guarantee a minimal recovery bandwidth with the
heavy workload. However, because of the lower intensity
of the Financial workload, MD leverages the available
bandwidth to rebuild data stripes; enabling PRO to

effectively exploit popularity and locality to reduce seek
latency much more than PR. However, the improvement
or degradation by PRO over PR on a RAID-10 disk array
is relatively slight. It is also noted that the overhead of
reconstructing data on the fly is lower for RAID-10 than
for RAID-5. Another reason is that a RAID-10 disk array
deploys a read-balance method to service users’ accesses.
The two reasons cause the less significant improvement
on a RAID-10 disk array than on a RAID-5 disk array.

Figure 2(a) and Figure 2(b) shows the reconstruction
time, response time and overall improvement of PRO
over PR on a RAID-5 disk array consisting of 3 disks and
1 hot-spare disk, with chunk sizes of 64KB if we raise the
minimal and maximal bandwidth thresholds to 100MB/s,
which is not obtainable for the hard-disks we used. As a
result, PR prefers to utilize any hard-disk bandwidth
available to rebuild data blocks, which is similar to DOR
in RAIDframe. In Figure 2(a) and Figure 2(b), one can
see that PRO outperforms PR in both reconstruction time
and user response time by up to 4.44% and 27.65%-
47.17% respectively. From Figure 2, one can see
obviously that allocating more bandwidth helps both PR
and PRO, but PRO benefits significantly more.

We conducted performance evaluations on the
platform of a RAID-5 disk array consisting of 3 disks and
1 hot-spare disk, with chunk sizes of 16KB and 64KB to
investigate the impact of chunk sizes. Figure 3(a) and
Figure 3(b) illustrates the measured reconstruction time
and average response time. One can see that for the three

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:46:27 UTC from IEEE Xplore. Restrictions apply.

stripe sizes we examined, the PRO algorithm outperforms
the PR in average response time.

The results illustrate that PRO outperforms PR both in
average response time during recovery and reconstruction

time for MD, an availability-oriented disk array,
especially on a RAID-5 disk array. It is noted that PRO
outperforms PR by a large margin in average response
time, and is slightly better in reconstruction time than PR.

0 50 100 150 200 250 300 350 400 450 500
100

200

300

R
es

po
ns

e
Ti

m
e(

m
illi

se
co

nd
)

Reconstruction Time(second)

 PR
 PRO

PR End

PRO End

0 50 100 150 200 250
0

100

200

300

400

500

600

700

R
es

po
ns

e
Ti

m
e(

m
illi

se
co

nd
)

Reconstruction Time(second)

 PR
 PRO

PR End

PRO End

 Figure 1(a) WebSearch, RAID-5 Figure 1(b) Financial, RAID-5

0 50 100 150 200 250 300 350 400 450 500
200

300

R
es

po
ns

e
Ti

m
e(

m
illi

se
co

nd
)

Reconstruction Time(second)

 PR
 PRO

PR End

PRO End

0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

700

800

900

1000

1100

R
es

po
ns

e
Ti

m
e(

m
illi

se
co

nd
)

Reconstruction Time(second)

 PR
 PRO

PR End

PRO End

 Figure 1(c) WebSearch, RAID-10 Figure 1(d) Financial, RAID-10

Figure 1(a), (b), (c), (d). A comparison of PRO and PR user response time on a RAID-5 and RAID-10 disk array as
a function of the respective traces: WebSearch and Financial. In all of these figures, the two curves show the PRO
and DOR user response time trend during recovery. Figure 1(a) and Figure 1(b) depict the response time trend on
a RAID-5 disk array consisting of 3 disks and 1 hot-spare disk, with a stripe unit size of 64KB. Figure 1(c) and
Figure 1(d) depict the response time trend on a RAID-10 disk array consisting of 6 disks and 1 hot-spare disk, with
a stripe unit size of 64KB.

Websearch Financial
0

200

400

600

800

1000

1200

1400

1600

1800

Av
er

ag
e

R
es

po
ns

e
Ti

m
e(

m
ill

is
ec

on
d)

 PR(L)
 PRO(L)
 PR(U)
 PRO(U)

Websearch Financial
0

200

400

R
ec

on
st

ru
ct

io
n

Ti
m

e(
se

co
nd

)

 PR(L)
 PRO(L)
 PR(U)
 PRO(U)

Figure 2 (a) avg. response time Figure 2 (b) reconstruction time

Figure 2(a), (b). A comparison of PRO and PR user response time and reconstruction time on a RAID-5 disk array
consisting of 3 disks and 1 hot-spare disk with a stripe unit size of 64KB as a function of the respective traces:
WebSearch and Financial. In all of these figures, PR(L) and PRO(L) signify that MD preserves the bandwidth
between 10MB/s and 30MB/s while PR(U) and PRO(U) indicates that MD utilizes any available bandwidth to for
the fastest recovery.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:46:27 UTC from IEEE Xplore. Restrictions apply.

Websearch Financial
0

50

100

150

200

250

300

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e(

m
illi

se
co

nd
) PR(64K)

 PRO(64K)
 PR(16K)
 PRO(64K)

Websearch Financial
0

50

100

150

200

250

300

350

400

450

500

R
ec

on
st

ru
ct

io
n

Ti
m

e(
se

co
nd

)

 PR(64K)
 PRO(64K)
 PR(16K)
 PRO(16K)

 Figure 3 (a) avg. response time Figure 3 (b) reconstruction time

Figure 3(a), (b): A comparison of PRO and PR average response time during recovery and reconstruction time as a
function of the respective stripe unit size: 16KB and 64KB.

4. Conclusions and Future Work

In this paper, we present the incorporation of a
Popularity-based multi-threaded Reconstruction
Optimization algorithm (PRO) into the Pipeline
Reconstruction (PR) recovery approach of Linux software
RAID (MD). PRO optimizes the reconstruction sequence
for the existing parallel recovery algorithms. We
implement PRO in the Linux software RAID kernel
module and evaluate the performance impact of PRO by
conducting extensive trace-driven experiments. Our
experimental results have demonstrated that PRO can
greatly improve reconstruction performance in
availability-driven disk arrays. Compared with PR, PRO
results in up to 30.82% improvement in average response
time and up to 22.13% improvement in reconstruction
time in a RAID-5 system.

We believe that there are still many directions for
future research on PRO. One potential direction is to
incorporate the preemptive scheduling algorithm instead
of the original unitary priority-based time-sharing
scheduling algorithm to exploit the rapidly changing
popularity. Another idea is to investigate the impacts of
PRO in the recovery mechanisms in distributed storage
systems with appropriate benchmarks and real workloads.

Acknowledgments

We thank the Storage Performance Council and UMass
Trace Repository for providing us the I/O traces, the
anonymous reviewers for their valuable comments in
reviewing this paper. This work is sponsored by the
National Basic Research Program of China (973 Program)
under Grant No. 2004CB318201, the Program for New
Century Excellent Talents in University NCET-04-0693
and NCET-06-0650, and the US NSF under Grant No.
CCF-0621526.

References

[1] D. Patterson, G. Gibson, and R. Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In
SIGMOD '88, 1988.

[2] Lei Tian, Dan Feng, Hong Jiang, Ke Zhou, Lingfang
Zeng, Jianxi Chen, Zhikun Wang, and Zhenlei Song.
PRO: A Popularity-based Multi-threaded Recon-
struction Optimization for RAID-Structured Storage
Systems. In FAST '07, San Jose, CA, Feb 2007.

[3] M. Holland. On-Line Data Reconstruction in
Redundant Disk Arrays. Carnegie Mellon Ph.D.
Dissertation CMU-CS-94-164, April 1994.

[4] W.V. Courtright II, G.A. Gibson, M. Holland and J.
Zelenka. RAIDframe: Rapid Prototyping for Disk
Arrays. In SIGMETRICS '96 Vol. 24 No. 1, May
1996.

[5] Jack Y.B. Lee and John C.S. Lui. Automatic
Recovery from Disk Failure in Continuous-Media
Servers. IEEE Transaction On Parallel and
Distributed Systems, Vol. 13, No. 5, May 2002.

[6] A. Brown and D. A. Patterson. Towards Main-
tainability, Availability, and Growth Benchmarks: A
Case Study of Software RAID Systems. In USENIX
'00, pages 263-276, San Diego, CA, June 2000.

[7] EMC. EMC Centera: Content Addressed Storage
System. http://www.emc.com/.

[8] Storage Performance Council.
http://www.storageperformance.org/home.

[9] OLTP Application I/O and Search Engine I/O.
UMass Trace Repository.
http://traces.cs.umass.edu/index.php/Storage/Storage.

[10] R. Hou, J. Menon, and Y. Patt. Balancing I/O
Response Time and Disk Rebuild Time in a RAID5
Disk Array. In Proceedings of the Hawaii
International Conference on Systems Sciences,
pages 70-79, 1993.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:46:27 UTC from IEEE Xplore. Restrictions apply.

