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Abstract

Storage Area Networks (SANs) based on Fibre Channel
have been used extensively in the last decade while iSCSI is
fast becoming a serious contender due to its reduced costs
and unified infrastructure. This work examines the perfor-
mance of iSCSI with multiple TCP connections. Multiple
TCP connections are often used to realize higher band-
width but there may be no fairness in how bandwidth is
distributed. We propose a mechanism to share congestion
information across multiple flows in “Fair-TCP” for im-
proved performance. Our results show that Fair-TCP sig-
nificantly improves the performance for I/O intensive work-
loads.

1. Introduction

Entities in a SAN, both storage and servers, communi-
cate using SCSI commands. A sender encapsulates SCSI
commands over a transport protocol and sends it to one or
more receivers; receivers receive the payload, decapsulates
the commands, and execute them. Thus a SAN is defined
by the transport it uses and the encapsulation standard it
follows. In this lieu, there are two competing industry stan-
dards – FC and iSCSI, which allow us to build SANs, each
based on differing transport and encapsulation standards.

The Fibre Channel (FC) is a serial interface, usually im-
plemented with fibre-optic cable. FC Standard [2] covers
the physical, link, network and transport layers of the OSI
network stack and a SCSI encapsulation protocol – FCP.
FC SANs, with most FCP implementations being hardware
accelerated, provide better throughput guarantees. How-
ever, FC installations require custom network components
and cannot be deployed over long distances.

Internet SCSI or iSCSI [1] is a storage networking stan-
dard that transports SCSI commands over TCP/IP, this al-
lows iSCSI to be used over any TCP/IP infrastructure. Un-

like FC, iSCSI needs only one network for both storage and
data traffic. However, a response to a block-level request in
iSCSI may encounter a greater delay compared to FC, de-
pending on network conditions and location of target.

Current efforts to improve performance for TCP are
striping data across a set of parallel TCP connections be-
tween a sender and receiver. However, when multiple con-
nections are used between the same source-target pairs, the
connections themselves interact/compete with each other
in non trivial ways. In order to achieve optimal throughput
it is imperative that we understand these interactions and
treat the connections accordingly; failing which could lead
to increased congestion and reduced throughput.

In this work, we study the effects of using multiple
TCP connections on iSCSI. Girish[6] shows that the ag-
gregate iSCSI throughput increases with increase in num-
ber of TCP connections in an emulated wide area network
(WAN). We find that the multiple TCP connections used by
iSCSI compete with each other and result in lesser through-
put for iSCSI than they are capable of. We propose a so-
lution named Fair-TCP based on TCP control block inter-
dependence [10] for managing TCP connections. We com-
pare the performance of our variant with the standard TCP
Reno[3] with SACK[4], in an emulated WAN. We find that
for I/O intensive workloads such as sequential write to a
large file, Postmark and Bonnie, Fair-TCP provides signif-
icant performance improvements.

Section 2 describes the behaviour of multiple TCP con-
nections, its effects on iSCSI and the proposed solution.
Section 3 details the experimental setup, tools and bench-
marks used in our experiments. Section 4 presents our re-
sults with a discussion. Section 5 concludes the paper.

2. iSCSI and TCP

iSCSI initiators are usually connected to iSCSI targets
using multiple TCP connections. The reason is two fold:
due to TCP window size restrictions and round trip times
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Figure 1. Congestion window trace
over long distances, it might not be possible for a single
TCP connection to utilize the full bandwidth capacity of
the underlying link; secondly, there may also be several
physical interconnects connecting the initiator to target,
and it would be most desirable to aggregate and simulta-
neously utilize all such existing physical interconnects. As
TCP does not support such aggregation, an iSCSI session
is therefore defined to be a collection of one or more TCP
connections between the initiator and the target.

2.1. Behaviour of multiple TCP connections

Many applications use multiple TCP connections be-
tween client and server for increased throughput. However
these TCP connections are treated independently: most
TCP implementations keep state on a per-connection basis
in a TCP control block (TCB) or an equivalent construct.
Several researchers [8, 9, 10] have shown that such concur-
rent connections compete with each other, often resulting
in unfair and arbitrary sharing of bandwidth. Concurrent
connections do not share indications of congestion along
the shared path between the sender and receiver. There-
fore each connection independently pushes the network to
a point where packet losses are bound to happen. Once the
network is congested, all the competing connections reduce
their transmission windows drastically, thus limiting the ef-
fective bandwidth. This results in under utilization of the
shared link, and hence less aggregate throughput. Also, it
often happens that some of the connections stall due to mul-
tiple losses, while others proceed unaffected. Thus concur-
rent TCP connections, when left without any explicit arbi-
tration, provide neither bandwidth utilization nor fairness.

Some of the information in a TCB, like round-trip time
(RTT), is not application specific but is specific to a host
(or subnet). If there are multiple TCP connections between
the same hosts, each will independently monitor its trans-

Table 1. Ensemble Allocation
Ensemble Allocation

conn srtt = ecb srtt
conn rttvar = ecb rttvar

conn snd cwnd = ecb snd cwnd/ecb ref cnt
conn snd ssthresh = ecb snd ssthresh/ecb ref cnt

Table 2. Ensemble Updates
ecb srtt = new conn srtt

ecb rttvar = new conn rttvar
ecb snd cwnd = ecb snd cwnd + (new conn snd cwnd -

old conn snd cwnd/ecb ref cnt)
ecb snd ssthresh = ecb snd ssthresh + (new conn snd ssthresh -

old conn snd ssthresh/ecb ref cnt)

missions to estimate the RTT. Such a scheme is wasteful as
it needs extra processing and memory at a TCP endpoint.

In order to see if iSCSI suffers from any of the above
problems, we evaluated the performance of iSCSI with
multiple TCP connections. We observed the congestion
window of each connection, for a sequential file write of
1GB. Figure 1 shows a sample trace of congestion window
for 2 connections in a emulated WAN with delay of 4ms,
collected approximately every 10ms.

From the traces, we can see the two connections com-
pete for bandwidth resulting in one connection using the
network more than the other. The observed mean and stan-
dard deviation (SD) for congestion window of the two con-
nections are 3.38/2.14 and 3.38/2.13. The observed mean
and SD for difference in window sizes is 0 and 3.06. The
mean 0 in the window difference indicates that over long
periods each connection gets the same amount of network
bandwidth. The larger deviation in window difference
compared to the deviations in each connection’s window,
indicates that when one connection has a large window the
other has a smaller window. This is a very undesirable be-
haviour from TCP connections which results in reduced
throughput and inappropriate fairness. In this work, we
share the congestion information among TCP connections
to reduce the command turnaround times and increase the
throughput of iSCSI.

2.2. Fair-TCP

Several researchers have worked on sharing the con-
gestion information among TCP connections [10, 11, 12].
Touch [10] proposed sharing TCB information among a
bundle of similar connections called an ensemble. We have
implemented a congestion information sharing mechanism,
Fair-TCP based on Touch[10]. The TCBs of individual
connections are stripped of RTT and congestion control
variables. Instead, they now contain a reference to the En-
semble Control Block (ECB), of the ensemble they are part
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Figure 2. Fair-TCP Design

Figure 3. Experimental Testbed
of. Fair-TCP does not support caching of TCB states, since
connections in an iSCSI session are persistent for a very
long time, and are not reestablished frequently. Figure 2
outlines the design of Fair-TCP.

Fair-TCP aggregates congestion window and slow start
threshold values in the ECB. Ensemble allocates fair share
of available window to each connection and shares the RTT
information among connections of the ensemble. Fair-TCP
maintains a reference count of the number of connections in
the ensemble. Table 1 outlines the allocation of congestion
information to connections of the ensemble.

Ensemble update policy is outlined in table 2. When
a new connection is established, it is added to the corre-
sponding ensemble and ref cnt is incremented. Fair-TCP
has been implemented on both target and initiator.

3. Experimental Setup

3.1. Tools and Benchmarks

The UNH-iSCSI [7] protocol implementation of initiator
and target drivers for Linux 2.4.x and 2.6.x kernels is used
for all our experiments.

The NIST Net [14] network emulation tool for
GNU/Linux is used for introducing delays.

Bonnie++ [15] benchmark performs a number of simple
tests of hard drive and file system performance.

The Postmark [16] benchmark models the workload
seen by a busy web server and is sensitive to I/O latency.
The Postmark configuration used in our experiments is
listed in Table 3. and rest of the parameters have been set
to

3.2. Experimental Testbed

Our experimental WAN emulation testbed is illustrated
in Figure 3. Three machines were used in our experimental
setup: initiator,router and target. All the three machines
were connected to a D-Link DGS10008TL gigabit switch.

The initiator hosted a 2.6GHz Pentium 4, 256MB RAM,
Broadcom BCM5700 gigabit NIC and running Linux

Table 3. Postmark Parameters
Parameter Value

Number of Simultaneous Files 20000
Lower Bound on file size 500 Bytes
Upper Bound on file size 100 KBytes
Number of Transactions 50000

Table 4. TCP Retransmits for 1024 block size
Delay(ms) 0 2 4 6 8 10
TCP (103) 20.8 26.5 27.6 27.4 27.1 26.7

Fair-TCP(103) 21.0 21.4 21.9 21.3 21.9 21.6

2.4.20 kernel. The target hosted a dual 866MHz Pentium
III, 756MB RAM, FC HBA and running Linux 2.6.5 ker-
nel. The target was connected to two JBODs, each housing
three Seagate ST336752FC 15K RPM disks. The router
hosted a hyper-threaded 2.6 GHz Pentium 4, 1 GB RAM
and two gigabit NICs (D-Link DL2K and Intel 82547EI).

Both the initiator and the target were running UNH
iSCSI. The router was running NIST Net tool to simulate
a WAN environment. The WAN simulation was tuned in
accordance with profiling information presented in Paxson
[13], which found that over long periods network connec-
tions suffered a 2.7% packet loss in a WAN.

4. Results and Discussion

In all our experiments 4 TCP connections were used
in a session between initiator and target. Girish[6] iden-
tifies that beyond 4 connections the incremental increase
in throughput is very low. Standard ethernet frame size of
1500 bytes was used. We did not consider using jumbo
frames, since in real systems not all components in the net-
work path support jumbo frames. Socket buffers on both
the initiator and the target were set to maximum of 512KB.

4.1. Sequential File Writes

Figure 4 shows the performance of iSCSI for a sequen-
tial file write of 1GB with different block sizes for write
system call and varying network delays. A request for fsync
was made before closing the file to ensure that all the data
were written to the disk. Figure 4 shows the performance
of iSCSI for Reno TCP with SACK (referred to as stan-
dard TCP or TCP) and Fair-TCP. Fair-TCP performs better
at all delays. But as the delays increase the gap narrows,
this we believe is due to delays overwhelming the window
management efficiency of Fair-TCP.

The block sizes used in the write system call had little
effect on the overall throughput. To find the reason, we ob-
served the SCSI request sizes received by iSCSI. Since the
writes were sequential the operating system aggressively
caches each write and bundles them into chunks of 128KB
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Figure 4. Throughput for Sequential File writes with varying delays and block sizes

Table 5. Aggregate Congestion Window
Delay TCP Fair-TCP
(ms) Mean SD %SD Mean SD %SD

0 17.0 5.0 29 16.4 3.2 19
2 13.2 4.3 33 16.0 3.4 21
4 13.6 4.1 30 15.7 3.2 20
6 14.2 4.1 29 15.6 3.2 20
8 14.5 4.2 29 15.6 3.1 20
10 14.8 4.1 27 15.6 3.1 20

and sends to the disk. So the block size was not really a
factor that affects the throughput for sequential file writes.

With increasing delays throughput of iSCSI decreased
rapidly. This we believe is mainly due to the synchronous
nature of iSCSI. There can only be a limited number of
pending SCSI requests with the target. The initiator can
only send a limited number of SCSI requests during an
RTT interval, which do not generate enough traffic in the
network to match the bandwidth-delay product and get the
maximum possible throughput.

To see if the increase in throughput observed in Fair-
TCP is due to better management of window or aggressive
nature of Fair-TCP, we measured the number of TCP re-
transmits for a block size of 1024 bytes. The results are
shown in table 4. The number of retransmits for Fair-TCP
are lesser in almost all the cases. Fair-TCP shares the most
recent estimate of RTT, between all connections. As a re-
sult it has fewer false retransmits.

Table 5 shows the aggregate congestion window of
all connections, collected on the initiator (write traffic is
mainly data-outs from initiator). Fair-TCP has a larger
window and lesser deviation, which indicates Fair-TCP has
more stable window.

Table 6. SCSI Write turnaround times
Delay TCP Fair-TCP
(ms) Mean SD %SD Mean SD %SD

0 208 225 108 102 131 127
2 351 265 75 183 117 64
4 450 288 64 310 146 47
6 548 332 60 414 182 43
8 642 376 60 414 182 39
10 728 378 51 636 225 35

Table 6 shows the mean and SD of SCSI command
turnaround times. Mean command turnaround time is
smaller for Fair-TCP and deviation percentage is also less
except for the delay of 0ms. Further experiments are re-
quired to determine the exact reason for such behaviour.

In our experiments of sequential file writes, we observe
that Fair-TCP offers better throughput and reduces the de-
viation in command turnaround times. Fair-TCP is less
burstier than standard TCP and reduces the number of false
retransmits.

4.2. Sequential File Reads

Figure 5 shows the performance of iSCSI with different
block sizes for read system call and varying network delays
for a file read of 1GB. The throughput for reads are less
than for writes, due to buffer cache in the Linux kernel,
which performs all the writes in the memory and flushes
them to the disk as the memory becomes full. Whereas
for reads, the kernel fetches the data from the disk when
needed. Fair-TCP performs better at all delays. However
the increase in throughput is not significant, due to only one
read request being pending at the SCSI layer.
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Figure 5. Throughput for Sequential file reads with varying block sizes and delays

Table 7. SCSI Read turnaround times
Delay TCP Fair-TCP
(ms) Mean SD %SD Mean SD %SD

0 52 105 201 56 104 186
2 87 140 161 71 82 116
4 116 127 110 103 95 92
6 147 147 100 133 99 75
8 172 150 87 160 104 65
10 196 139 71 187 103 55

The block sizes used in read system call had little effect
on the overall throughput. We observed that the read re-
quest sent by the operating system are for 128KBytes. The
Linux kernel prefetches disk blocks starting with 1 prefetch
and increases the number of prefetches upon success upto
32. Since the file is sequential, requests get clustered into a
single disk read of size 128KBytes.

Table 7 shows the mean and SD of SCSI command
turnaround times. Mean turnaround time and deviation per-
centages are lesser smaller for Fair-TCP.

4.3. Bonnie++

Table 8 shows the results for Rewrites and Seeks with
Bonnie++[15]. Bonnie++ was run in fast mode in all ex-
periments. File size of 1GB and block size of 1024 bytes
were used. Results for block writes and reads are omit-
ted as they were similar to sequential file writes and reads
which were discussed before. Create/stat/unlink tests are
omitted as they were similar to Postmark. Fair-TCP im-
proves the performance of rewrites by about 5-35%. The
lower throughput seen for rewrites is due to blocking read
requests. Fair-TCP improves the performance of seeks by

Table 8. Bonnie++ single process
TCP Fair-TCP

Delay Rewrite Seeks Rewrite Seeks
(ms) (KB/s) /sec (KB/s) /sec

0 1383 65.8 1633 93.9
2 669 65.4 917 82.7
4 484 58.5 591 71.1
6 389 54.5 433 63.7
8 322 52.5 341 57.0
10 279 42.0 291 47.1

10-40%. Due to parallel seeks (3 by default), more data is
queued at SCSI layer and results in better seek rate.

Bonnie++ allows running several instances of it in a syn-
chronized way using semaphores. We ran 4 process of Bon-
nie++, each process performing the tests with a file size of
256MB and block size of 1024 bytes. Results are shown
in figure 6. As observed in the previous experiments, Fair-
TCP performs well but the improvement diminishes with
increasing delays. For random seeks, Fair-TCP performs
consistently better and improves the seek rate by 20-30%.

4.4. Postmark

Postmark[16] was run with configuration as in table 3.
Right graph of Figure 7 shows the times taken to run the
postmark. Around 4GB of data was transacted during the
execution of postmark. Standard TCP needs 10-18% more
time than Fair-TCP to run Postmark. Considering that Post-
mark is single threaded and reads are synchronous, the per-
formance improvement observed is mainly due to asyn-
chronous file writes and metadata writes from the buffer
cache.

Left graph of Figure 7 shows the read and write through-
puts. The read and write throughput improves by about 10-
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Figure 6. Bonnie++ 4 process

18% for Fair-TCP. Due to filesystem caching effects and
asynchronous nature of writes, throughput for writes in all
cases is better than read.

Postmark is completely single-threaded. In a normal
web server, there would generally be more than one thread
running at a time. To simulate the workload better we ran
10 concurrent processes of Postmark, each with initial files
of 2000 and 5000 transactions The time taken to complete
all the Postmark processes are shown in right graph of Fig-
ure 8. Standard TCP needs 17-50% more time than Fair-
TCP to run Postmark. The performance difference in a sin-
gle Postmark process to multiple processes is due to sev-
eral requests getting queued at the SCSI level. Fair-TCP
has more data available at the TCP level in a multiprocess
environment and this improves the performance.

Left graph of Figure 8 shows the aggregate read and
write throughput for 10 processes. Fair-TCP increases the
throughput by 17-50%.

5. Conclusions

In this work, we investigated the performance of iSCSI
with multiple TCP connections and found that iSCSI
throughput suffers from competing TCP connections. We
proposed a TCB information sharing method called Fair-
TCP based on [10]. We implemented Fair-TCP for Linux
compared the performance of iSCSI with Fair-TCP and
standard TCP under different workloads. We find that Fair-
TCP improves the performance of iSCSI significantly in
I/O intensive workloads. For workloads such as single
threaded read, the SCSI data generated is quite low, hence
Fair-TCP does do not as good as in I/O intensive work-
loads.

Figure 7. Postmark

Figure 8. 10 Postmark processes
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