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Abstract

Mass storage systems at CERN have evolved over time
to meet growing requirements, in terms of both scalability
and fault resiliency. The CERN Advanced STORage sys-
tem (CASTOR) and its new disk cache management layer
(CASTOR2) have been developed to meet the challenges
raised by the experiments using the new accelerator that
CERN is building: the Large Hadron Collider (LHC) [4].
This system must be able to cope with hundreds of millions
of files, tens of petabytes of storage and handle a constant
throughput of several gigabytes per second. In this paper,
we detail CASTOR’s architecture and implementation and
present some operational aspects. We finally list the per-
formance levels achieved by the current version both in a
production environment and during internal tests.

1. Introduction

The Cern Advanced STORage manager (CASTOR) is a
modular Hierarchical Storage Management (HSM) system
designed to handle tens of millions of files (with sizes in the
megabyte to gigabyte range) which result in an aggregated
storage capacity of tens of petabytes of tape archive and
petabytes of disk storage.

CASTOR builds on SHIFT (Scalable Heterogeneous In-
tegrated FaciliTy) system, which provided users with ac-
cess to the CERN tape system but had limited scalability,
up to approximately 10,000 files and 10MB/sec of data
throughput. The first version of CASTOR had a greater
scalability than SHIFT by several orders of magnitude,
handling several million files on tape and 200,000 files in
its disk cache. Although this proved adequate for LEP era
computing it could not provide the performance or scala-
bility necessary for LHC era computing requirements [6].

The CASTOR2 project started in 2003 and aimed at pro-

viding the data storage capacity and performance for man-
aging the data produced by the LHC experiments. These
data will be processed globally using the LHC Computing
Grid [8].

The main data store, called Tier 0, needs to store all
data coming from the LHC experiments, i.e. ATLAS, AL-
ICE, CMS and LHCb, and to run the initial data reconstruc-
tion. CASTOR provides a Central Data Recording facility
(CDR) and storage for the associated Reconstruction fa-
cilities. CASTOR handles data transfers to the Tier 1 sites,
where the data are replicated and further reconstruction and
analysis take place. Finally, many Tier 2 sites are linked to
each Tier 1 and act as data customers for the physics anal-
ysis data. Figure 1 gives a graphical view of the different
concurrent activities CASTOR is handling.

Figure 1. CASTOR data rates

CASTOR 2 was deployed in production at CERN in
2006. It currently (July 2007) manages 73.43 million files,
requiring over 7.5 PB of tape and a disk cache of over
1.5 PB. Figure 2 shows how the CASTOR namespace has
grown over time at CERN. CASTOR is used as well at sev-
eral other high energy physics institutes around the world,

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00  © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:47:58 UTC from IEEE Xplore.  Restrictions apply. 



notably ASGC1, INFN2, RAL3 and IHEP4. These institutes
have deployed or are in the process of deploying CAS-
TOR 2.
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Figure 2. Time evolution of CASTOR data
storage at CERN

Outside the particle physics domain, CASTOR is used
at INFN to store data from astrophysics projects, and at
CERN for satellite data from UNOSAT and data from var-
ious computer science projects.

In this paper we present the operational aspects of run-
ning a CASTOR instance and the performances achieved
by the current version, both in a production environment
and during internal tests. We conclude with a brief outline
of our roadmap for the continued development of the sys-
tem and the enhancements we plan to provide.

1.1. Related Work

Of other storage solutions [1], the High Performance
Storage System [2] is the most comparable to CASTOR.

HPSS provides HSM and archive services. It is a joint
development by IBM and five US Government laborato-
ries. Its design follows the IEEE Mass Storage Refererence
Model and allows data to be moved from an intelligent disk
or tape controller to the client. All metadata information is
kept on a RDBMS-based metadata engine, while movers
control the raw data transfer from heterogeneous hardware.

HPSS was used at CERN in late 1990s. It was not ad-
poted for LHC computing because at the time the system
was optimized for serial access to large files, but it did not
have the performances required for random access. Be-
cause it is a collaborative effort, it was not possible to guar-
antee development would meet our objectives, and an in-
house solution was considered preferable.

1Academia Sinica Grid Computing, Taipei, Taiwan
2Istituto Nazionale di Fisica Nucleare, Bologna, Italy
3Rutherford Appleton Laboratory, Didcot, United Kingdom
4Institute for High Energy Physics, Moscow, Russia

2. Architecture

The CASTOR system exposes a global hierarchical
namespace that allows users to name files in a UNIX like
manner. It provides transparent tape storage and automated
disk cache management to ensure performance and reliabil-
ity. Hence, given the requirements depicted in Figure 1, the
scalability and reliability needs have a large impact on the
architecture. Reliability imposes strong constraints on the
consistency of the system state (e.g. the disk cache state),
especially in case of crashes. Scalability adds constraints
on the size. CASTOR 2 architecture is thus database cen-
tric, with a number of stateless daemons, as shown in Fig-
ure 3.

Figure 3. The CASTOR system architecture

A relational database contains the system state, as well
as all requests and their status. All daemons continuously
query the database for the next operation to perform, e.g.
schedule the next transfer for a client, issue a tape recall or
garbage collect some filesystem. This design allows for a
number of key features, including easy scalability and bet-
ter fault tolerance by replicating the daemons for the same
component on different machines, and simplified operation
by allowing the updating and restarting of daemons while
another instance is supporting the load.

With clusters of hundreds of disk servers using thou-
sands of commodity disks, the management of storage
resources increasingly faces the same issues and chal-
lenges as the management of standard computing re-
sources. Therefore, the CASTOR system is viewed as a
Storage Resource Sharing Facility, where load has to be
properly scheduled on the available resources. CASTOR
benefits from the existing tools by externalizing schedul-
ing activities, as well as most of the decision making pro-
cesses, where policies can be easily plugged in a variety of
scripting languages. Typical examples are migration/recall
policies and file replication policy.

A large project like CASTOR needs to be developed ac-
cording to a robust software process. The UML methodol-
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ogy is used at all levels, from describing the workflow to
designing the different components. UML modelling has
also allowed to use automated code generation for services
like a database abstraction layer, and streaming of objects
for the interprocess data exchange. Standard design pat-
terns like Abstract interfaces, Pluggable services and Fac-
tories are heavily used, allowing for easy code evolution.

The rest of this section deals with the most important
CASTOR components, the disk cache layer and the tape
archive layer.

2.1. Disk Cache Management

In the management of large disk caches, the primary
challenge is to define efficient garbage collection policies in
order to optimize cache usage and avoid inefficient recalls
from tape. However, handling user requests, and especially
scheduling their accesses to the disks, is also of primary im-
portance if good bandwidth is to be achieved. This implies
proper monitoring of the disk status which must be fed to
the scheduling system. All these activities are implemented
in CASTOR 2 as separate components.

The disk cache management layer is also responsible for
interaction with clients. Clients first interact with the re-
quest handler, a very light weight gateway that only stores
requests in the central database. CASTOR has demon-
strated the ability to manage peaks of more than 100 re-
quests per second without service degradation.

In the context of Grid applications, clients may not inter-
act directly with the request handler but rather go through
the more generic SRM interface. The SRM specifications
have evolved over time as a worldwide effort. As of July
2007 SRM version 1.1 is the production version. The CAS-
TOR implementation has been proved to scale up to 1.7
million requests/day. The new version 2.2 of the SRM in-
terface has been implemented for CASTOR and is being
tested. For further details, please refer to [15].

The CASTOR system supports a number of file trans-
fer protocols. These can either be tightly or loosely inte-
grated with CASTOR. They are respectively called inter-
nal and external protocols. Internal protocols deal with
CASTOR transfer URLs (e.g. protocol://disk-
server:port//castor/...) and will internally
connect to the CASTOR core services to gather metadata
information. The transfer will then take place using the
native protocol in the CASTOR disk cache. CASTOR in-
ternal protocols are RFIO, ROOT [5], XROOT [7], and
GridFTP v2 [12]. External protocols do not support CAS-
TOR URLs, nor contact the CASTOR core services di-
rectly. For these protocols the client contacts a gateway ma-
chine running a modified version of the external protocol
daemon. This will request the data from CASTOR using
one of the internal protocols (usually RFIO). GridFTPv1

falls into this category.
The stager is the daemon responsible for handling user

requests. Like all CASTOR daemons, it is stateless and re-
lies on the central database. Different services are defined
for handling different types of requests. They are imple-
mented using separate thread pools in order to decouple
the different loads. The stager is also responsible for the
management of file replication within the disk cache.

The resource monitoring daemon collects monitoring
information from the available disk servers e.g. CPU load
and number of I/O streams. This information is used as
input to the I/O scheduling system. An external scheduler
is responsible for implementing the resource sharing and
scheduling [9] in order to optimize hardware usage and
avoid overloading. CASTOR currently supports two dif-
ferent schedulers: MAUI [10], an open source solution for
small sized clusters, and LSF [13], a commercial schedul-
ing facility usually used for large CPU farms. At CERN,
the size of our resources demands the use of LSF.

The Nameserver provides the CASTOR names-
pace, which presents CASTOR files under the form
of a hierarchical filesystem rooted with “castor” fol-
lowed by the domain, e.g. /castor/cern.ch or
/castor/cnaf.infn.it. The next level in the hier-
archy usually identifies the hostname (or alias) of the node
with a running instance of the CASTOR Name Server. The
naming of all directories below the third level hierarchy is
entirely up to the service administrator managing the sub-
trees.

The Distributed Logging Facility (DLF) provides a
centralized recording of logging and accounting informa-
tion from multiple machines and an intuitive and easy-to-
use web interface to browse the logging data. This is essen-
tial within a distributed architecture to diagnose and under-
stand problems as well as to compute statistics about the
system. The DLF framework consists of a central server,
which can process thousands of messages a second, and
a client-side API, widely used in all CASTOR compo-
nents. The server stores all the data collected in a relational
database.

Garbage collection in the disk cache is mostly imple-
mented as a database job which selects, according to dy-
namic policies, the files to be removed from cache. An
external daemon can then query the database for files to
delete and effectively remove them. As an example, typi-
cal policies used at CERN includes deletion of all migrated
files (Data recording mode) and deletion of old and unused
files (analysis facility).

2.2. Tape Archive Management

The CASTOR tape archive provides long term availabil-
ity of data with maximum transparency and flexibility for
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the end user. In other words, users should not realize that
their data are stored on tape and the data should be auto-
matically migrated to newer media when necessary without
any impact on their availability. CASTOR’s tape system
addresses these issues via a set of components.

The tape daemon is the interface to the tape hardware.
It interacts with the tape robots to transfers data to/from
tape. The tape daemon supports a number of types of tape
drives and related robots. The current status of CERN’s
tape robots and drives is described in Table 1.

Drive type Nb drives Speed
STK 9940B 44 30 MB/s

IBM 3592 E05 50 100 MB/s
STK T10000 50 120 MB/s

Library Nb tapes Capacity
STK Powderhorn 10,000 2 PB

IBM 3584 5,500 3.85 PB
STK SL8500 13,000 6.5 PB

Table 1. Status of the tape hardware at CERN

The Volume Manager (VMGR) and the Volume and
Drive Queue Manager (VDQM) respectively handle the
status of the tapes and tape drives. They handle queues
of requests from tapes and drives and act as resource allo-
cators.

The remote tape copy (rtcopy) software interacts with
the disk layer. It manages a set of migrators and recallers
respectively writing and reading data from/to tape. Both
migrations and recalls are user driven actions that depend
on the disk cache status and are controlled by external poli-
cies. They use high speed streams and allow for multiplex-
ing of streams from different disk servers in order to fill the
tape buffers. rtcopy also takes care of computing a check-
sum of the files going to, and coming from, tape in order to
detect possible tape errors.

Finally, the repack component is responsible for mov-
ing data from a set of tapes to another set. This allows
both to migrate data from one generation of tapes to an-
other and to recuperate space on tapes where a lot of files
were deleted.

3. Monitoring

Monitoring is an important component of CASTOR. It
is used by the operations team, by the user community, and
to aid in planning future resource allocation. This section
presents a brief overview of the monitoring system, a de-
tailed explanation is available in [11].

The CASTOR monitoring system queries the state of the
system, in terms of performance and errors, in a variety of

ways. We make use of DLF to centrally analyze logs from
all machines within the system. SQL procedures are used
on each instance database to provide status information to
a variety of presentations systems.

In addition to the CASTOR specific software, we make
use of Computer Centre monitoring tools such as Lemon
[3]. For example, we make use of Lemon actuators which
act as triggers for specific monitoring metrics. When spe-
cific conditions are met, actions are automatically taken.
These can range from restarting a daemon, to moving a
disk server out of production, to sending a GSM SMS to
a service manager.

The monitoring of resource utilization provides ac-
counting information that is used for planning the alloca-
tion of resources. We record information about the number
of requests per second to the stager, the number of files in
the system and their status, disk and tape space usage and
a cornucopia of other information.

To make ensure system consistency, checking mech-
anisms are used for configuration and for data consis-
tency. The castorReconcile package has been developed
to present information from the CASTOR database, the
scheduling subsystem, the state management system, and
others. It provides a summary of each instance so that all
information about a problem machine can be seen in a sin-
gle place, and the state of all machines in an instance can
be seen at a glance. In addition, we have software which
periodically scans all the file systems and compare the file
metadata on the disk servers with the status described by
the stager database to detect deviations. This detects prob-
lems, such as orphaned files, missing disk copies, size mis-
matches and misplaced files. It is planned to add check-
sums to this to verify the integrity of files.

3.1. Monitoring Evolution

Initially CASTOR monitoring was fully integrated with
the monitoring system used at CERN. However, to aid de-
ployment at other sites, since 2006 we have made the soft-
ware more independent of the monitoring tool used for
aggregation, transport and display of the information. To
achieve this we run as much monitoring as possible at the
database layer, where SQL procedures aggregate informa-
tion and make it available to various display systems. This
feature has increased the monitoring systems flexibility and
efficiency, and has also resulted in our sensors becoming
predominantly thin clients. These thin clients can easily be
developed for other monitoring systems.

4. Performance Tests

CASTOR has several performance requirements: they
are related to storage capacity, provided bandwidth and ac-
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cess pattern. To be able to store all raw data coming from
the experiment CASTOR should provide 10 PB of tape
storage during the first year and is expected to increase to
30 PB/year.

The disk cache will require 6 PB in the first year and
eventually provide 11 PB/year.

From the bandwidth viewpoint, as shown in Figure 1,
CASTOR should handle concurrently several streams of
data coming from different kind of sources up to a total of
27 GB/s. Additionally, it has to support an extra 2 GB/s out
and 1 GB/s in of transfers between tapes and disk cache.

For data recording and export to Tier 1 centers, CAS-
TOR must deal with several tens of 60-100 MB/s streams,
being able to simultaneously store this data on disk and
tape, but without latency concerns.

A completely different access pattern is the one related
to Tier 1 data analysis, where the concurrent streams can
be thousands, each reading or writing randomly and at a
random speed. In this usage pattern, the average through-
put for each stream can be low but, latency should ideally
be < 100 ms. To insure that these performance require-
ments are met and to validate the software, CASTOR has
been extensively tested using simulations of real life sce-
nario which are called Data Challenges. Two kinds of sim-
ulations can be distinguished: the ones driven by user com-
munities (User Data Challenges) and the internal ones (In-
ternal Data Challenges).

4.1. User Data Challenges

User driven data challenges are scheduled to validate
the computing infrastructure for a specific scenario. The
scope of these challenges ranges from CASTOR to the ex-
periment specific framework, to the grid layers and to the
network infrastructure. Typical scenarios are data taking,
event reconstruction and analysis, and export of data to Tier
1 institutes. In all cases, the challenge lasts several weeks
and runs on a regular CASTOR production instance with
no specific configuration. Usually, this is run in parallel to
normal production activities.
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Figure 4. ALICE data challenge

Figure 4 shows an example of the network activity for

the Alice CASTOR production instance between Septem-
ber and December 2006. During this period the ALICE ex-
periment ran an extended data challenge where CASTOR
demonstrated that it can sustain an aggregated traffic of the
order of 1 GB/sec for more than 2 months. Figure 4 mea-
sures inbound and outbound traffic to the disk cache. In-
bound traffic includes both new user data and files recalled
from tape. Outbound traffic includes both the retrieval of
data by the users and the migration of new data to tape.

Figure 5. CMS number of running and pend-
ing transfers during one year

Figure 5 shows a graph of the number of concurrent I/O
tranfers taking place on the system for a full year for the
CMS experiments production CASTOR setup. When the
number of transfers goes higher than the total number of
available slots on the disk servers, exceeding requests were
properly queued in the scheduling system. In this instance
and during other challenges, CASTOR proved able to sus-
tain more than 5000 concurrent transfers and 30 000 pend-
ing ones.

4.2. Internal Data Challenges

Internal data challenges are performed on a dedicated
CASTOR instance and target specific usage patterns, fea-
tures, and boundary conditions of the CASTOR software.
They are run under the control of the CASTOR develop-
ment team and allow observation of the system under heavy
load so that it can be optimized by tuning its various param-
eters. The incoming traffic is generated by scripts, which
are able to simulate the different activities that are foreseen
in the Tier 0. As already introduced in Figure 1, four dif-
ferent concurrent activities are taking place: the raw data
transfer from the DAQ (Data acquisition) buffers, the trans-
fer from the Tier 0 buffer to the reconstruction farm, the
export to the Tier 1 sites through the Grid, and the tape
migration.

Figure 6 shows the outcome of one week of data acqui-
sition, including the migration to tape. For this challenge,
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Figure 6. Tier 0 data-taking simulation

100 CPU nodes have been used as sources, and the CAS-
TOR system has been configured with 48 disk servers with
a total of 240 TB and 28 tape drives. In this configuration
the system sustained an average throughput of 1 GB/s and
demonstrated that it could sustain over 2 GB/s for hours, as
shown by the last part of the plot.

Disk servers have been tuned at the kernel and the
filesystem level to increase the throughput of their RAID
(Redundant Array of Inexpensive Disks) subsystems. It has
been demonstrated that a standard diskserver, with 24 phys-
ical disks mounted on 3 RAID controllers using the XFS
filesystems, can sustain concurrent inbound and outbound
throughput of 70 MB/s using the CASTOR RFIO protocol.

Modern tape drives can deliver between 100 and
120 MB/s of throughput, according to their specifications.
Taking into accounts mount times and tape marks, this re-
sults in a 70 to 90 MB/s available data rate, depending on
the average file size. The CASTOR tape system is able to
use all this bandwidth. However, within a global context,
the disk cache scheduling mechanism imposes further con-
straints on the data rates. The typical average data writing
rate experienced in a CASTOR production environment is
in the range of 40 to 60 MB/s. This still provides a safe
margin to sustain the expected data taking requirements of
the LHC.

5. Conclusion

The CASTOR 2 software is the latest evolution of the
CERN hierarchical mass storage system for high availabil-
ity data. CASTOR 2 was brought into production in early
2006 and has already successfully passed several data chal-
lenges, showing its ability to sustain constant loads of over
4 GB/s, to store tens of millions of files using more than
7 PB of total space and to serve concurrently more than
5000 file transfers. CASTOR 2 comes with extensive mon-
itoring tools in an extensible framework allowing service
managers to easily monitor the system and improve opera-
tions.

CASTOR 2 integrates with the Grid framework by im-
plementing an SRM interface. Specification 1.1 has been
implemented and is in production, specification 2.2 is cur-
rently undergoing tests prior to its deployment [15]. Future

evolutions of the specification will be supported.
Other future developments include improvements of the

authentication and authorization scheme via the use of the
VOMS (Virtual Organization Membership Service) Grid
standard [14]. Better support for disk only data pools
(where no tape backup is used), improvements in effi-
ciency of the disk and tape usage and extension of mon-
itoring functionalities to support Grid accounting are also
planned.
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