
Hybrid Host/Network Topologies for Massive Storage Clusters

Asha Andrade
Department of

 Computer Science,
 Stony Brook University,

NY 11794-4400
aandrade@cs.sunysb.edu

Ungzu Mun
Department of

Computer Science,
Stony Brook University,

NY 11794-4400
umun@ic.sunysb.edu

Dong Hwan Chung
Department of

Computer Science,
Stony Brook University,

NY 11794-4400
donchung@ic.sunysb.edu

Alexander E. Mohr
Department of

Computer Science,
Stony Brook University,

NY 11794-4400
amohr@cs.sunysb.edu

Abstract

The high demand for large scale storage capacity calls
for the availability of massive storage solutions with high
performance interconnects. Although cluster file systems
are rapidly improving and have the potential to allow
extremely large numbers of commodity storage nodes to
be pooled into a single large file-system, the number of
ports on individual switches has not been increasing as
quickly -- the largest switches available today support
fewer than 2,000 Gigabit Ethernet ports. Our goal,
therefore, is to develop a new interconnect topology that
can connect hundreds of thousands of nodes and achieve
performance comparable to a single switch of equivalent
size. At the same time, such a new topology should be
readily buildable using inexpensive components. Our
proposed architecture exploits the multiple Ethernet ports
that are now standard on servers and combines host-
based routing and forwarding with network-based
switching to allow massively large storage clusters to be
built. Simulation results have shown that our proposed
design achieves 72% to 90% of the performance of a
single switch capable of accommodating all storage
nodes, but our approach scales to hundreds of thousands
of nodes. Furthermore, we use common off-the-shelf
layer-2 switches rather than more expensive models that
support layer-3 routing. Finally, our approach is resilient
to network faults because it maintains multiple paths
between storage nodes.

1. Introduction

Today’s high-performance computing places
increasing demands on a storage system’s capacity and
the performance of its components [7]. Furthermore, the
amount of data being created in scientific applications
continues to increase. As an example, the ATLAS
detector, which is just one of the experiments that is part
of CERN’s Large Hadron Collider (LHC), is expected to
collect five to eight petabytes of data per year. The LHC
project as a whole is expected to generate fifteen
petabytes of data each year [1]. Assuming the
availability of 1TB hard disks, ATLAS and LHC would

require 5,000 to 15,000 such disks per year to store just
one copy of the data set without replication.

One possibility for storing such a large amount of data
would be to use a cluster-based file system on a large
number of commodity storage nodes. Unfortunately, the
current generation of cluster-based file systems is limited
in the number of storage nodes it supports, although those
limits are increasing with time. RedHat’s GFS [6]
supports up to 256 nodes. and the largest Google File
System cluster in 2003 was composed of just over 1,000
storage nodes [8]. Other cluster file systems, such as
Panasas’s PanFS [5] and Cluster File Systems’s Lustre [2]
now support much larger limits: the largest production
Lustre system has 15,000 nodes. Promising approaches
that federate meta-data servers, such as Ceph [10] are
likely push these limits to the hundreds of thousands.

Given such progress on the cluster-based file system
front, we now turn to the interconnection topologies that
tie these clusters together. The simplest approach is to
use a single switch to connect the storage nodes in the
cluster together, but this approach limits the cluster size to
the largest number of ports available on a single switch.
Unfortunately, the largest switches today support fewer
than 2,000 Gigabit Ethernet ports, so any solution that
scales to our target sizes will require multiple switches.

In order to overcome this limitation, we note that
today’s servers now come standard with multiple Ethernet
ports, high-speed internal busses, and a large amount of
processing power. We exploit that combination by
proposing a hybrid architecture in which each port on a
storage node is connected to a different layer-2 switch and
that node acts as a software router to forward packets
between those interfaces. The result is an interconnect
that can connect hundreds of thousands of storage nodes
with a design that achieves 72% to 90% of the
performance of a single switch capable of accommodating
those nodes, were such a switch to exist. By using
common off-the-shelf layer-2 switches rather than more
expensive models that support layer-3 routing, the cost of
our design is minimized. Finally, because there are
multiple paths between storage nodes, our design is
resilient to large numbers of network faults.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:48:42 UTC from IEEE Xplore. Restrictions apply.

Our paper is organized as follows: in Section 2 we
detail our design approach, together with advice for
practical implementation. Section 3 delves into the
methodology used to determine the credibility of our
approach. Here we provide the algorithm used for the
purpose of simulation. Section 4 details our simulation
results together with effects of switch failures. Finally,
we summarize our conclusions in Section 5.

2. Storage Cluster Design

 In this section, we turn to a hybrid design for
interconnects that uses both nodes and switches to route
packets. We describe the construction, explain how it
could be built in practice, and discuss how clients would
connect with the cluster. We note that numerous other
researchers have looked at the general problem of
topologies for storage clusters [7, 3, 9], including at prior
instances of this conference [4, 11], and refer readers to
those papers for details; in this section we focus on our
design.

2.1. Our Hybrid Topology

Our goal is achieve performance comparable to a
single massively-large switch, were such a switch to exist.

To achieve that goal, we use common off-the-shelf layer-2
switches and exploit the presence of multiple Ethernet
ports on storage nodes by enabling host-based routing and
forwarding.

In our 2D hybrid, we arrange our storage nodes in an
M by N grid, as shown in Figure 1. We augment that grid
of storage nodes with an M-port switch at the top of each
column and an N-port switch to the left of each row, for a
total of M + N switches. Each storage node in this
example has two Ethernet ports; one is connected to the
switch at the top of its column and the other is connected
to the switch along its row. This regular pattern of
connections simplifies wiring compared to FNNs.

In order to move packets from a source at (a, b) to a
destination at (c, d), the source can send a packet to either
(a, d) or (c, b) via the switch that connects them. That
intermediate node will then forward the packet to the
destination, with which it also shares a switch. Thus, our
2D hybrid has two disjoint paths from source to
destination, which could be used to benefit from multipath
routing or improved resilience to switch failures.

Compared to using a single monolithic switch, we
require two Ethernet ports per storage node versus the
single switch’s one. Also, the latency between source and
destination increases due to the traversal of two switches
rather than one in addition to the time required for
forwarding at the intermediate node. However, compared
to typical disk seek and rotation latencies, the additional
latency caused by our approach is likely to be small. As
we will see in Section 4, however, the simulation results
show the bandwidth to be comparable.

To extend the 2D hybrid into a 3D hybrid, we would
begin with L layers of MxN hybrids, add an additional
switch layer containing MxN switches with L ports each,
and connect each storage node to its corresponding switch
in the switch layer, as shown in Figure 2 for a 2x2x2
network.

The 3D hybrid can greatly increase the number of
storage nodes that can be connected together with
switches of a given port count. Alternatively, for a fixed
number of storage nodes, one can build a 3D hybrid
interconnect using switches with far fewer ports per
switch than the equivalent 2D hybrid. Another added
benefit is that the 3D hybrid has much richer connection
properties with many more paths between a source and
destination. However, the additional dimension requires
one more port on each storage node, more (but smaller)
switches, and more cables; latency will also increase.

Should even larger clusters be required, the hybrid
approach easily extends to 4D or higher in the obvious

M

N

¦

¦

M port switch

N port switch

Host node

Figure 1. A 2 dimensional M x N hybrid
design composed of M N-port switches and N M-
port switches. Each storage node is required to

have 2 ports.

Figure 2. A 2 x 2 x 2 3D hybrid storage
cluster.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:48:42 UTC from IEEE Xplore. Restrictions apply.

Figure 4. A two-dimensional hybrid model
built using 49 standard 42U racks: the switch rack

contains 41 switches with 48-ports each and racks 1
through 48 are copies of the racks in Figure 3 and

contain 1 switch and 41 nodes each. The end result
is a cluster of 41 x 48 storage nodes.

way. We thus achieve the goal of building an enormous
cluster with impressive data forwarding capability.

2.2. Real World Constraints

When turning these abstract interconnect models into
working storage clusters, one must account for real-world
layout constraints. In this sub-section, we describe how
one might go about building a storage cluster that uses our
hybrid interconnect topology in the face of such
constraints. We start with the trivial case of a 1D hybrid
and then iteratively extend it to 2D and 3D.

Given a standard 42U rack, one would build the trivial
one-dimensional hybrid model by placing 41 storage
nodes at rack positions 1 to 41 with the 42nd position
reserved for a 48-port switch. Each storage node is
attached to a free port in the switch, thus obtaining a 41-
node cluster, as shown in Figure 3.

A 2D version of the hybrid model is shown in Figure 4.
It requires a rack of 41 switches with 48 ports each and a
row of 48 racks of the type described in the previous
paragraph and shown in Figure 3. The first port (drawn as
a filled circle) of each node is connected to the switch in
the top of its rack, as before. The second port (drawn as
an inverted triangle) of a storage node at height i is
connected to the switch at height i in the switch rack.
This results in a 41 x 48 cluster of 1968 storage nodes.

To build a 3D hybrid, we would start with 48 rows of
the 2D hybrid described above and add an additional row
of racks containing a 48 x 41 array of switches to which
the third port of the storage nodes is attached. The
resulting cluster is of size 41 x 48 x 48, or 94464 nodes
altogether. For larger cluster sizes, it would presumably
make sense to use 96 port or larger switches rather than
attempting to build a 4D hybrid.

Smaller clusters could also be built. A 41 x 24 2D
hybrid cluster of 984 storage nodes could be built using a
switch rack containing 41 24-port switches. Alternatively,
one could use 21 48-port switches in which nodes at
heights 1 and 2 are connected to the same switch, and so
on. The advantage of the latter approach is that if the
cluster were later to double in size, one would only need
to purchase 20 additional 48-port switches, install them in
the switch rack, and wire the switches as in the 41 x 48
case. Thus, our topology can gracefully grow from a
single rack cabinet to sizes necessary to support the data
requirements of the LHC [1].

2.3. Connecting Clients

So far, we’ve discussed how storage nodes connect to
each other, but neglected how clients connect to storage
nodes. We envision a number of possible scenarios,
depending on the number of clients and their request
patterns.

If the number of clients is less than the number of
storage nodes, perhaps the most straightforward approach
would be to add an extra port to each storage node and
directly connect the client to that port, assuming that the
storage node also acts as a server for the cluster file
system (and that appropriate firewall rules are in place to
avoid unwanted attacks). If the number of clients is much
larger than the number of servers, a similar approach
could be employed, but using switches to fan out each
connection to multiple clients.

3. Methodology

We programmed a software simulator in Python which
implements the designs of our proposed storage cluster.
The resulting storage cluster is run through a sequence of
operations to determine its performance relative to a
single switch and selected other designs. Prior to delving
into details of the algorithm and the metrics used for

Figure 3. A 41-node one-dimensional hybrid
cluster using a standard 42U rack.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:48:42 UTC from IEEE Xplore. Restrictions apply.

comparison, we mention the underlying assumptions in
the implementation of the simulator.

Because packet level tracing using ns-2 would have
been too resource intensive for the cluster sizes we
wanted to explore, our simulator works at the flow level.
Our primary assumption is that when there is contention
for the bandwidth of a link, whichever transport protocol
is used will result in an allocation of bandwidth between
flows that is approximately equal.

The sequence of steps shown in Figure 5 is used to
determine the bandwidth assigned to each flow. We are
interested in the performance metrics of aggregate
bandwidth and average bandwidth per flow to compare
our proposed designs with potential alternatives.

3.1. Simulation Parameters

We have run simulations for a single large switch, a
mesh, a torus, FNN, and our 2D and 3D hybrids. In the
case of the mesh, torus, and our proposed hybrid models,
we need to explicitly specify the number of nodes along
each dimension, i.e. for a mesh it would be something
along the lines 48 x 48, but for a 3D hybrid it would be 48
x 48 x 48 and so on. We use combinations of commonly
available switch sizes, such as 8, 16, 24, 48, 288, and 630
ports. For the FNN interconnects, we generated
topologies from the public topology generator on their
web page [3].

4. Simulation Results

We assess the performance of the various approaches
by imposing three categories of loads: low, medium, and
high. In the low load case, the number of flows is one-

tenth the number of storage nodes in the system. For the
medium load case, the number of flows is equal to the
number of nodes, while for the high load case, the number
of flows is 10 times the number of storage nodes. We
assume that the links in the system are all gigabit Ethernet
links.

procedure compute_aggregate_rate_bw
compute shortest path between all nodes;
for each randomly generated flow do
 for each link in flow do
 flow_cnt[link]++;
 bw[link] = capacity[link]/flow_cnt[link];
 done
done
for each link in order of non-increasing load do
 for each flow having link in its shortest path do
 bw[flow] = bw[edge];
 capacity[link] -= bw[flow];
 done
 done
 avg_bw = sum (bw[flow]) / flow cnt;
end

Figure 5. Algorithm to compute average
bandwidth across a given network.

Figure 6. Average bandwidth vs. node count
when the number of flows across the network equals
the node count. The 2D and 3D Hybrid models are

our designs.

Figure 7. Aggregate bandwidth when the
number of flows is 1/10th the node count, equal

to node count and 10 times the node count
when the node count is 10,000.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:48:42 UTC from IEEE Xplore. Restrictions apply.

4.1. System Bandwidth

 In Figure 6, we plot the average bandwidth versus

number of nodes in the cluster for the medium load case
in which the flow count equals the node count for all of
our proposed designs. FNN performs extremely well up
to 4608 nodes, but at that point was using storage nodes
with 7 ports each and switches with 1152 ports. Given
such results, it seems infeasible for FNNs to scale to the
massive sizes we are interested in. Our proposed 2D
hybrid achieves an average bandwidth value that is 81%
to 90% of the bandwidth of a single switch; the 3D hybrid
achieves 72% to 82% of a single switch.

We also look at the data of Figure 6 in more detail for
the specific case of 768 nodes. While the single-switch
model with a hypothetical 768-port switch results in an
average value of approximately 490 Mbps, our 2D hybrid
reports 415 Mbps utilizing a total of 64 switches of which
48 are 16-port and 16 are 48-port. The 3D model on the
other hand reports 397 Mbps utilizing 320 switches. The
FNN however achieves 990 Mbps utilizing 11 288-port
switches. We note here that our models perform closely
with the single-switch model, using inexpensive switches,
while the FNN is a restrictive model using 11 highly
priced 288-port switches.

The plot of average rate in Figure 6 also depicts the
consistency in the average bandwidth utilization for our
proposed designs, although there is a slight decrease with
increasing number of nodes.

Figures 7 and 8 are comparisons of the aggregate and
average bandwidth per flow for a hybrid topology with

10,000 nodes for the three levels of load we examined.
While there is a significant increase in the aggregate
utilizations with an increased load, the average shows a
decline. We see that our results closely track those for the
single switch.

We speculate that the slight decrease in performance
for 3D hybrid compared to 2D hybrid comes from
increased contention in the network. A single switch must
only deal with contention on the links connecting the
source and destination, whereas the 2D hybrid must deal
with it at those locations as well as the intermediate node.
Because our bandwidth allocation assigns a rate to a flow
based on its slowest bottleneck, flows that traverse more
links are more likely to see a slower bottleneck due to
statistical variation.

Another possibility is that because the simulator
currently selects the first shortest-path link, flows are
having more contention than they would if a random
shortest path were selected. It is possible that we could
mitigate this effect by adding random selection to our
simulator, or by choosing the least loaded among the set
of best paths.

4.2. When Switches Fail

Robustness of a storage system is crucial for an
organization, so we also investigate the behavior of
various topologies under conditions of switch failure.
Simulation measurements for a network with 4096 hosts
and 40,960 flows reveals that robustness depends largely
on the type of topology.

In Figure 9, we plot the failed flow percentages against
the percentage of switch failures. We are thus effectively
determining the percentage of connections that cannot be
established given a switch failure fraction. In the extreme

Figure 8. Same data as Figure 7, but

plotting average bandwidth per flow when the
number of flows is 1/10th the node count, equal

to node count and 10 times the node count
when the node count is 10,000.

Figure 9. Percentage of failed flows for
our proposed hybrid models. The node count
used is 4096, with flow count being ten times

the node count.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:48:42 UTC from IEEE Xplore. Restrictions apply.

case where 50% of the switches have failed, 24% of the
flows in a 2D hybrid model cannot be established,
whereas it is 9% in case of the 3D hybrid and a small 3%
in the case of the 4D hybrid. In particular, a 2D hybrid
cluster is less robust than the corresponding 3D and 4D
models due to the absence of one and two levels of
alternate routes respectively. With additional dimensions,
the probability of having a significant portion of the
network connected is much greater that it would be
otherwise.

In Figure 10, we plot the average rate of the surviving
flows as a function of the percentage of failed switches.
We report a 33% drop in the average rate when 50% of
the switches in the cluster fail, while it being less than 6%
with 5% of switch failures.

5. Conclusion

In this paper we have presented a new approach to the
design of cluster interconnects networks that can connect
hundreds of thousands of nodes and achieve performance
results comparable to a single switch of equivalent size.
Our proposed architecture exploits the multiple Ethernet
ports that now ship as standard on servers and combines
host-based routing and forwarding with network-based
switching to allow massive storage clusters to be built
using inexpensive layer-2 switches. Simulation results
show that our 2D hybrid achieves 81% to 90% of the
performance of a single switch and the 3D hybrid
achieves 72% to 82% of its performance. Furthermore,
our design is practical to deploy in datacenters and is
resilient to even significant numbers of failed switches.
Our hybrid topology’s potential to enable cluster file
systems to meet storage demands, bundled with its high
degree of scaling, resilience to both switch and node
failures, and moderate infrastructure cost make it a viable
solution for future massive storage cluster needs

References

[1] CERN,European Organization for Nuclear Research,
http://lhc.web.cern.ch/lhc/

[2] Cluster File Systems, "Lustre: A Scalable, High-
Performance File System."

[3] A. A. Douglas, B. Jonathan and E. Robert,
"98¢/Mflops/s ultra-large-scale neural-network
training on a pIII cluster", Proceedings of
Supercomputing 2000.

[4] A. Hospodor and E. L. Miller, "Interconnection
Architectures for Petabyte-scale High-performance
Storage Systems", Proceedings Mass Storage
Systems and Technologies (MSST), April 2004.

[5] Panasas, http://www.panasas.com
[6] Red Hat, “Red Hat Global File System.”
[7] R. Renato John, "Server I/O networks past, present,

and future", Proceedings of the ACM SIGCOMM
workshop on Network-I/O convergence: experience,
lessons, implications, Karlsruhe, Germany, 2003.

[8] G. Sanjay, G. Howard and L. Shun-Tak, "The
Google file system", Proceedings of the Symposium
on Operating Systems Principles, 2003.

[9] H. Thomas, I. M. Timothy, P. L. Raymond, G. D.
Henry and P. G. Huang, "High-cost CFD on a low-
cost cluster", Proceedings of Supercomputing 2000.

[10] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long
and C. Maltzahn, "Ceph: A Scalable, High-
Performance Distributed File System", Proceedings
of Operating Systems Design and Implementation
(OSDI06), Seattle, WA, November 2006.

[11] Q. Xin, E. L. Miller, T. J. E. Schwarz and D. D. E.
Long, "Impact of Failure on Interconnection
Networks for Large Storage Systems", Proceedings
of Mass Storage Systems and Technologies (MSST
2005), Monterey, CA, April 2005.

Figure 10. Average rate in the presence of
switch failures.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:48:42 UTC from IEEE Xplore. Restrictions apply.

