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Abstract 

The high demand for large scale storage capacity calls 
for the availability of massive storage solutions with high 
performance interconnects.  Although cluster file systems 
are rapidly improving and have the potential to allow 
extremely large numbers of commodity storage nodes to 
be pooled into a single large file-system, the number of 
ports on individual switches has not been increasing as 
quickly -- the largest switches available today support 
fewer than 2,000 Gigabit Ethernet ports.  Our goal, 
therefore, is to develop a new interconnect topology that 
can connect hundreds of thousands of nodes and achieve 
performance comparable to a single switch of equivalent 
size.  At the same time, such a new topology should be 
readily buildable using inexpensive components.  Our 
proposed architecture exploits the multiple Ethernet ports 
that are now standard on servers and combines host-
based routing and forwarding with network-based 
switching to allow massively large storage clusters to be 
built. Simulation results have shown that our proposed 
design achieves 72% to 90% of the performance of a 
single switch capable of accommodating all storage 
nodes, but our approach scales to hundreds of thousands 
of nodes. Furthermore, we use common off-the-shelf 
layer-2 switches rather than more expensive models that 
support layer-3 routing.  Finally, our approach is resilient 
to network faults because it maintains multiple paths 
between storage nodes. 

1. Introduction 

Today’s high-performance computing places 
increasing demands on a storage system’s capacity and 
the performance of its components [7].  Furthermore, the 
amount of data being created in scientific applications 
continues to increase.  As an example, the ATLAS 
detector, which is just one of the experiments that is part 
of CERN’s Large Hadron Collider (LHC), is expected to 
collect five to eight petabytes of data per year.  The LHC 
project as a whole is expected to  generate fifteen 
petabytes of data each year [1].   Assuming the 
availability of 1TB hard disks, ATLAS and LHC would 

require 5,000 to 15,000 such disks per year to store just 
one copy of the data set without replication. 

One possibility for storing such a large amount of data 
would be to use a cluster-based file system on a large 
number of commodity storage nodes.  Unfortunately, the 
current generation of cluster-based file systems is limited 
in the number of storage nodes it supports, although those 
limits are increasing with time.  RedHat’s GFS [6] 
supports up to 256 nodes. and the largest Google File 
System cluster in 2003 was composed of just over 1,000 
storage nodes [8].    Other cluster file systems, such as 
Panasas’s PanFS [5] and Cluster File Systems’s Lustre [2] 
now support much larger limits: the largest production 
Lustre system has 15,000 nodes.  Promising approaches 
that federate meta-data servers, such as Ceph [10] are 
likely push these limits to the hundreds of thousands. 

Given such progress on the cluster-based file system 
front, we now turn to the interconnection topologies that 
tie these clusters together.  The simplest approach is to 
use a single switch to connect the storage nodes in the 
cluster together, but this approach limits the cluster size to 
the largest number of ports available on a single switch.  
Unfortunately, the largest switches today support fewer 
than 2,000 Gigabit Ethernet ports, so any solution that 
scales to our target sizes will require multiple switches. 

In order to overcome this limitation, we note that 
today’s servers now come standard with multiple Ethernet 
ports, high-speed internal busses, and a large amount of 
processing power.  We exploit that combination by 
proposing a hybrid architecture in which each port on a 
storage node is connected to a different layer-2 switch and 
that node acts as a software router to forward packets 
between those interfaces.  The result is an interconnect 
that can connect hundreds of thousands of storage nodes 
with a design that achieves 72% to 90% of the 
performance of a single switch capable of accommodating 
those nodes, were such a switch to exist.  By using 
common off-the-shelf layer-2 switches rather than more 
expensive models that support layer-3 routing, the cost of 
our design is minimized.  Finally, because there are 
multiple paths between storage nodes, our design is 
resilient to large numbers of network faults.   
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Our paper is organized as follows: in Section 2 we 
detail our design approach, together with advice for 
practical implementation. Section 3 delves into the 
methodology used to determine the credibility of our 
approach.  Here we provide the algorithm used for the 
purpose of simulation.  Section 4 details our simulation 
results together with effects of switch failures.  Finally, 
we summarize our conclusions in Section 5. 

2. Storage Cluster Design 

 In this section, we turn to a hybrid design for 
interconnects that uses both nodes and switches to route 
packets.  We describe the construction, explain how it 
could be built in practice, and discuss how clients would 
connect with the cluster.  We note that numerous other 
researchers have looked at the general problem of 
topologies for storage clusters [7, 3, 9], including at prior 
instances of this conference [4, 11], and refer readers to 
those papers for details; in this section we focus on our 
design. 

2.1. Our Hybrid Topology 

Our goal is achieve performance comparable to a 
single massively-large switch, were such a switch to exist.  

To achieve that goal, we use common off-the-shelf layer-2 
switches and exploit the presence of multiple Ethernet 
ports on storage nodes by enabling host-based routing and 
forwarding. 

In our 2D hybrid, we arrange our storage nodes in an 
M by N grid, as shown in Figure 1.  We augment that grid 
of storage nodes with an M-port switch at the top of each 
column and an N-port switch to the left of each row, for a 
total of M + N switches.  Each storage node in this 
example has two Ethernet ports; one is connected to the 
switch at the top of its column and the other is connected 
to the switch along its row.  This regular pattern of 
connections simplifies wiring compared to FNNs. 

In order to move packets from a source at (a, b) to a 
destination at (c, d), the source can send a packet to either 
(a, d) or (c, b) via the switch that connects them.  That 
intermediate node will then forward the packet to the 
destination, with which it also shares a switch.  Thus, our 
2D hybrid has two disjoint paths from source to 
destination, which could be used to benefit from multipath 
routing or improved resilience to switch failures. 

Compared to using a single monolithic switch, we 
require two Ethernet ports per storage node versus the 
single switch’s one.  Also, the latency between source and 
destination increases due to the traversal of two switches 
rather than one in addition to the time required for 
forwarding at the intermediate node.  However, compared 
to typical disk seek and rotation latencies, the additional 
latency caused by our approach is likely to be small.  As 
we will see in Section 4, however, the simulation results 
show the bandwidth to be comparable. 

To extend the 2D hybrid into a 3D hybrid, we would 
begin with L layers of MxN hybrids, add an additional 
switch layer containing MxN switches with L ports each, 
and connect each storage node to its corresponding switch 
in the switch layer, as shown in Figure 2 for a 2x2x2 
network. 

The 3D hybrid can greatly increase the number of 
storage nodes that can be connected together with 
switches of a given port count.  Alternatively, for a fixed 
number of storage nodes, one can build a 3D hybrid 
interconnect using switches with far fewer ports per 
switch than the equivalent 2D hybrid.  Another added 
benefit is that the 3D hybrid has much richer connection 
properties with many more paths between a source and 
destination.  However, the additional dimension requires 
one more port on each storage node, more (but smaller) 
switches, and more cables; latency will also increase. 

Should even larger clusters be required, the hybrid 
approach easily extends to 4D or higher in the obvious  
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Figure 1.  A 2 dimensional M x N hybrid 
design composed of M N-port switches and N M-
port switches. Each storage node is required to 

have 2 ports. 

 

 
 
 
 

Figure 2.  A 2 x 2 x 2 3D hybrid storage 
cluster. 
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Figure 4.  A two-dimensional hybrid model 
built using 49 standard 42U racks: the switch rack 

contains 41 switches with 48-ports each and racks 1 
through 48 are copies of the racks in Figure 3 and 

contain 1 switch and 41 nodes each.  The end result 
is a cluster of 41 x 48 storage nodes. 

way.  We thus achieve the goal of building an enormous 
cluster with impressive data forwarding capability. 

2.2. Real World Constraints 

When turning these abstract interconnect models into 
working storage clusters, one must account for real-world 
layout constraints.  In this sub-section, we describe how 
one might go about building a storage cluster that uses our 
hybrid interconnect topology in the face of such 
constraints.  We start with the trivial case of a 1D hybrid 
and then iteratively extend it to 2D and 3D. 

Given a standard 42U rack, one would build the trivial 
one-dimensional hybrid model by placing 41 storage 
nodes at rack positions 1 to 41 with the 42nd position 
reserved for a 48-port switch. Each storage node is 
attached to a free port in the switch, thus obtaining a 41-
node cluster, as shown in Figure 3. 

A 2D version of the hybrid model is shown in Figure 4.  
It requires a rack of 41 switches with 48 ports each and a 
row of 48 racks of the type described in the previous 
paragraph and shown in Figure 3.  The first port (drawn as 
a filled circle) of each node is connected to the switch in 
the top of its rack, as before.  The second port (drawn as 
an inverted triangle) of a storage node at height i is 
connected to the switch at height i in the switch rack.  
This results in a 41 x 48 cluster of 1968 storage nodes. 

To build a 3D hybrid, we would start with 48 rows of 
the 2D hybrid described above and add an additional row 
of racks containing a 48 x 41 array of switches to which 
the third port of the storage nodes is attached. The 
resulting cluster is of size 41 x 48 x 48, or 94464 nodes 
altogether.  For larger cluster sizes, it would presumably 
make sense to use 96 port or larger switches rather than 
attempting to build a 4D hybrid. 

Smaller clusters could also be built.  A 41 x 24 2D 
hybrid cluster of 984 storage nodes could be built using a 
switch rack containing 41 24-port switches.  Alternatively, 
one could use 21 48-port switches in which nodes at 
heights 1 and 2 are connected to the same switch, and so 
on.  The advantage of the latter approach is that if the 
cluster were later to double in size, one would only need 
to purchase 20 additional 48-port switches, install them in 
the switch rack, and wire the switches as in the 41 x 48 
case.  Thus, our topology can gracefully grow from a 
single rack cabinet to sizes necessary to support the data 
requirements of the LHC [1]. 

2.3. Connecting Clients  

So far, we’ve discussed how storage nodes connect to 
each other, but neglected how clients connect to storage 
nodes.  We envision a number of possible scenarios, 
depending on the number of clients and their request 
patterns. 

If the number of clients is less than the number of 
storage nodes, perhaps the most straightforward approach 
would be to add an extra port to each storage node and 
directly connect the client to that port, assuming that the 
storage node also acts as a server for the cluster file 
system (and that appropriate firewall rules are in place to 
avoid unwanted attacks).  If the number of clients is much 
larger than the number of servers, a similar approach 
could be employed, but using switches to fan out each 
connection to multiple clients. 

3. Methodology 

We programmed a software simulator in Python which 
implements the designs of our proposed storage cluster. 
The resulting storage cluster is run through a sequence of 
operations to determine its performance relative to a 
single switch and selected other designs. Prior to delving 
into details of the algorithm and the metrics used for 

 

Figure 3.  A 41-node one-dimensional hybrid 
cluster using a standard 42U rack. 
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comparison, we mention the underlying assumptions in 
the implementation of the simulator. 

Because packet level tracing using ns-2 would have 
been too resource intensive for the cluster sizes we 
wanted to explore, our simulator works at the flow level.  
Our primary assumption is that when there is contention 
for the bandwidth of a link, whichever transport protocol 
is used will result in an allocation of bandwidth between 
flows that is approximately equal. 

The sequence of steps shown in Figure 5 is used to 
determine the bandwidth assigned to each flow.  We are 
interested in the performance metrics of aggregate 
bandwidth and average bandwidth per flow to compare 
our proposed designs with potential alternatives. 

3.1. Simulation Parameters 

We have run simulations for a single large switch, a 
mesh, a torus, FNN, and our 2D and 3D hybrids.  In the 
case of the mesh, torus, and our proposed hybrid models, 
we need to explicitly specify the number of nodes along 
each dimension, i.e. for a mesh it would be something 
along the lines 48 x 48, but for a 3D hybrid it would be 48 
x 48 x 48 and so on. We use combinations of commonly 
available switch sizes, such as 8, 16, 24, 48, 288, and 630 
ports.  For the FNN interconnects, we generated 
topologies from the public topology generator on their 
web page [3].    

4. Simulation Results 

We assess the performance of the various approaches 
by imposing three categories of loads: low, medium, and 
high.  In the low load case, the number of flows is one-

tenth the number of storage nodes in the system.  For the 
medium load case, the number of flows is equal to the 
number of nodes, while for the high load case, the number 
of flows is 10 times the number of storage nodes.  We 
assume that the links in the system are all gigabit Ethernet 
links. 

 
procedure compute_aggregate_rate_bw 
compute shortest path between all nodes; 
for each randomly generated  flow do 
   for each link in flow do 
      flow_cnt[link]++; 
     bw[link] = capacity[link]/flow_cnt[link]; 
   done 
done 
for each link in order of non-increasing load do 
   for each flow having link in its shortest path do 
     bw[flow] = bw[edge]; 
     capacity[link] -= bw[flow]; 
   done 
 done 
 avg_bw = sum (bw[flow]) / flow cnt; 
end 
 

Figure 5.  Algorithm to compute average 
bandwidth across a given network. 

Figure 6.  Average bandwidth vs. node count 
when the number of flows across the network equals 
the node count. The 2D and 3D Hybrid models are 

our designs. 

 

Figure 7.  Aggregate bandwidth when the 
number of flows is 1/10th the node count, equal 

to node count and 10 times the node count 
when the node count is 10,000. 
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4.1. System Bandwidth 

 
 In Figure 6, we plot the average bandwidth versus 

number of nodes in the cluster for the medium load case 
in which the flow count equals the node count for all of 
our proposed designs.  FNN performs extremely well up 
to 4608 nodes, but at that point was using storage nodes 
with 7 ports each and switches with 1152 ports.  Given 
such results, it seems infeasible for FNNs to scale to the 
massive sizes we are interested in.  Our proposed 2D 
hybrid achieves an average bandwidth value that is 81% 
to 90% of the bandwidth of a single switch; the 3D hybrid 
achieves 72% to 82% of a single switch. 

We also look at the data of Figure 6 in more detail for 
the specific case of 768 nodes. While the single-switch 
model with a hypothetical 768-port switch results in an 
average value of approximately 490 Mbps, our 2D hybrid 
reports 415 Mbps utilizing a total of 64 switches of which 
48 are 16-port and 16 are 48-port. The 3D model on the 
other hand reports 397 Mbps utilizing 320 switches. The 
FNN however achieves 990 Mbps utilizing 11 288-port 
switches. We note here that our models perform closely 
with the single-switch model, using inexpensive switches, 
while the FNN is a restrictive model using 11 highly 
priced 288-port switches. 

The plot of average rate in Figure 6 also depicts the 
consistency in the average bandwidth utilization for our 
proposed designs, although there is a slight decrease with 
increasing number of nodes. 

Figures 7 and 8 are comparisons of the aggregate and 
average bandwidth per flow for a hybrid topology with 

10,000 nodes for the three levels of load we examined. 
While there is a significant increase in the aggregate 
utilizations with an increased load, the average shows a 
decline.  We see that our results closely track those for the 
single switch. 

We speculate that the slight decrease in performance 
for 3D hybrid compared to 2D hybrid comes from 
increased contention in the network.  A single switch must 
only deal with contention on the links connecting the 
source and destination, whereas the 2D hybrid must deal 
with it at those locations as well as the intermediate node.  
Because our bandwidth allocation assigns a rate to a flow 
based on its slowest bottleneck, flows that traverse more 
links are more likely to see a slower bottleneck due to 
statistical variation. 

Another possibility is that because the simulator 
currently selects the first shortest-path link, flows are 
having more contention than they would if a random 
shortest path were selected.  It is possible that we could 
mitigate this effect by adding random selection to our 
simulator, or by choosing the least loaded among the set 
of best paths. 

4.2.    When Switches Fail 

Robustness of a storage system is crucial for an 
organization, so we also investigate the behavior of 
various topologies under conditions of switch failure.  
Simulation measurements for a network with 4096 hosts 
and 40,960 flows reveals that robustness depends largely 
on the type of topology. 

In Figure 9, we plot the failed flow percentages against 
the percentage of switch failures. We are thus effectively 
determining the percentage of connections that cannot be 
established given a switch failure fraction.  In the extreme 

 
Figure 8.  Same data as Figure 7, but 

plotting average bandwidth per flow when the 
number of flows is 1/10th the node count, equal 

to node count and 10 times the node count 
when the node count is 10,000. 

Figure 9.  Percentage of failed flows for 
our proposed hybrid models. The node count 
used is 4096, with flow count being ten times 

the node count. 
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case where 50% of the switches have failed, 24% of the 
flows in a 2D hybrid model cannot be established, 
whereas it is 9% in case of the 3D hybrid and a small 3% 
in the case of the 4D hybrid. In particular, a 2D hybrid 
cluster is less robust than the corresponding 3D and 4D 
models due to the absence of one and two levels of 
alternate routes respectively. With additional dimensions, 
the probability of having a significant portion of the 
network connected is much greater that it would be 
otherwise.  

In Figure 10, we plot the average rate of the surviving 
flows as a function of the percentage of failed switches.  
We report a 33% drop in the average rate when 50% of 
the switches in the cluster fail, while it being less than 6% 
with 5% of switch failures.  

5. Conclusion 

In this paper we have presented a new approach to the 
design of cluster interconnects networks that can connect 
hundreds of thousands of nodes and achieve performance 
results comparable to a single switch of equivalent size.  
Our proposed architecture exploits the multiple Ethernet 
ports that now ship as standard on servers and combines 
host-based routing and forwarding with network-based 
switching to allow massive storage clusters to be built 
using inexpensive layer-2 switches.  Simulation results 
show that our 2D hybrid achieves 81% to 90% of the 
performance of a single switch and the 3D hybrid 
achieves 72% to 82% of its performance.  Furthermore, 
our design is practical to deploy in datacenters and is 
resilient to even significant numbers of failed switches.  
Our hybrid topology’s potential to enable cluster file 
systems to meet storage demands, bundled with its high 
degree of scaling, resilience to both switch and node 
failures, and moderate infrastructure cost make it a viable 
solution for future massive storage cluster needs 
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Figure 10.  Average rate in the presence of 
switch failures. 
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