
Early Experiences in Managing Inter-Site Storage Area Networks Using Secure

Web Services

Ben Kobler

NASA Goddard Space

Flight Center

ben.kobler@nasa.gov

Fritz McCall Mike Van Opstal

University of Maryland Institute for

Advanced Computer Studies

{fmccall,mvanopst}@umiacs.umd.edu

Hoot Thompson Kirk Hunter

Patuxent Technology

Partners

{hoot,khunter}@ptpnow.com

Abstract

The NASA Goddard Space Flight Center and the

University of Maryland Institute for Advanced Computer

Studies have deployed a pilot system for managing

distributed IP-Based Storage Area Networks of

dynamically allocated SAN extensions in the Advanced

Virtual Engine Test Cell (AVETEC) Data Intensive

Computing Environment (DICE).

The system implements the framework for managing inter-

site storage area networks using Grid and Web Services

technologies presented at MSST06. It includes several new

components including a basic registry and a java-based

command line interface. The test-bed provides some early

experiences with the reliability, usability, and security of

the system, as well as some performance testing of the web

services.

1. Introduction

At MSST06, we reported on the challenges that our

administrators experienced while managing IP-based

storage area networks that spanned geographically

distributed and administratively independent sites

including the NASA Goddard Space Flight Center, the

University of Maryland Institute for Advanced Computer

Studies, and the Gilmore Creek Alaska Ground Station

Facility [1, 2]. We found that the cost of manually

establishing a SAN extension was very high because it

required a lot of coordination between experts at all of the

participating sites. In order to simplify the operation of

these inter-site storage area networks, we proposed a

management framework that uses grid technologies to

securely delegate administrative tasks to trusted users at

the various sites. To demonstrate the feasibility of our

approach, we presented a prototype system architecture

built on Apache Tomcat [3] and secure web services [4]

built on Apache Axis [5] and WSS4J [6].

In the past year, we continued to develop our prototype of

the management framework with the primary goal of

allowing users to dynamically establish SAN extensions on

an as-needed basis and to remove them when they are no

longer needed. A secondary goal of our prototype was to

minimize the technical expertise required to establish a

SAN extension to a needed resource. In order to achieve

these goals, we developed two new software components:

1. A registry of information about the participating

sites, shared devices, and shared zones that make

up an Inter-Site Storage Area Network.

2. A Java-based command-line interface for

dynamically managing iFCP connections

between users and the devices that they need to

access.

We installed these new components along with updated

versions of the prototype software in the AVETEC DICE

test-bed [7] at the NASA Goddard Space Flight Center

where we evaluated their reliability, performance,

usability, and security under a variety of network

conditions.

Our previous paper at MSST06 described the Management

Framework’s overall architecture, discussing its

capabilities, security mechanisms, authentication scheme,

and authorization system. The design and implementation

of SAN Extension technologies is well described in

technical publications [8, 9], and papers at previous MSST

conferences have described the performance of SAN

extension technologies over local, metropolitan, and wide

area networks using a variety of clustered file systems [2,

10, 11]. Rather than revisit these issues, this paper

describes our early experiences with the management

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:48:54 UTC from IEEE Xplore. Restrictions apply.

framework in the AVETEC DICE test-bed, and presents

the new features that we have developed in the last year.

2. Design and Implementation of the Pilot

System

2.1 Overview of the Management Framework

For our evaluations in the DICE test-bed, we developed a

new java-based command-line user interface that queries

the registry of inter-site SAN resources, and reconfigures

the SAN routers through the management framework’s

Invocation Service, implemented as a secure web service

acting as a proxy for calls to SAN Router Control

Software. Figure 1. shows the interaction of the various

software components.

Figure 1. Software Overview

In this configuration, users can find and access the

resources that they need without administrative

intervention. The command line interface is installed and

run without local administrative privilege on the client

system. However, some administrative access may be

needed to mount the file system depending on the

operating system, application, and file system that will

make use of the SAN extension.

2.2 Implementing the Registry Web Service

The registry is designed and implemented as a web service

that helps users find and access the resources that they

need through a variety of lookups based on high-level

information such as descriptions, identifiers, or addresses

for devices, sites, and zones. It also provides an

administrative interface for registering information about

shared resources. At a design level, it supports a data

model that describes participating sites, shared devices, and

zones. Figure 2. Illustrates the current data model for the

registry.

Figure 2. Registry Data Model

The registry is useful for finding resources within the Inter-

Site SAN. We expect users to know only a short

description of the resource that they need. For example,

they may know that they want to access a disk named

DICE-XRAID, or they may know that their application

needs to connect to the GSFC-DICE zone. However, they

do not need to know the larger set of low-level SAN

extension connection parameters, because the registry will

provide them.

At an implementation level, the registry web service

provides remote methods built on Apache Axis. It also

defines several complex types that map objects from the

Java programming environment into the XML messaging

format used by the Simple Object Access Protocol

(SOAP). For example, the web service provides methods

to find resources by unique Device Identifiers, Device

descriptions, Site identifiers, and Site descriptions.

Most of the registry’s methods return a connection object

that contains the low-level information needed to create the

connection. Every connection object contains information

about the management framework, such as the IP address

and TCP port of the remote site’s management server. It

also carries protocol-specific connection information that

specifies information about a remote storage router’s IP

address, its TCP port, fiber channel port specifications, and

SAN zoning information.

Locking is an important issue for any system that shares

storage devices, but this is not the focus of our software.

Most sites employ clustered or SAN file systems, like

GPFS or SNFS, to manage locks when multiple hosts

access the same shared device concurrently. Previous

papers presented at MSST have demonstrated that these

file systems and their locking mechanisms have been very

successfully employed over Wide-Area Networks. For

example, researchers at the San Diego Super Computer

Center have demonstrated that GPFS file systems can

deliver very high performance over the Teragrid’s

transcontinental high-speed network [12]. Since file

locking is often efficiently handled at the file system layer,

our software only provides a simple exclusive locking

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:48:54 UTC from IEEE Xplore. Restrictions apply.

mechanism by which a client or an administrator can

request exclusive access to a shared device.

The registry is stored in a relational database management

system that enforces constraints on the stored data in order

to:

1. Ensure unique identifier assignments for zones,

SAN identifiers, and devices through the use of

primary and secondary database keys.

2. Prevent conflicts for device and site addresses

where multiple listings would not be valid.

3. Guarantee that consistent data is returned even as

multiple consumers run queries and updates

through the use of database transactions.

4. Enforce the validity of data relationships through

the use of foreign keys.

We currently use the Mysql Database version 5.0.27 to

implement the underlying data store.

2.3 Developing Router Control Software

Our router control software extends the prototype scripts

for managing the McData Eclipse SAN Routers that we

presented at MSST06. It uses perl-expect [13, 14] to add,

remove, and list iFCP connections on McData Eclipse

SAN Routers through their command line interface using

the telnet protocol. It also provides public status and

configuration information in a similar fashion. It currently

supports several firmware revisions of the Eclipse models

1620 and 2460 as well their predecessors, the Nishan

Systems Model 3300.

The control software is a local program on the management

server that is called by the Invocation Web Service on

behalf of authenticated remote users. Its only role is to

safely transmit commands and parameters to the SAN

routers. In this context, “safety” requires:

1. Protection from malicious and accidental

parameter injection attacks.

2. Assertions that we are interacting with the correct

SAN router based on the expected system name

and prompt.

3. Determination of an expected and compatible

firmware level

4. Cleaning control characters from the router’s

output so that the output is compatible with the

XML messaging system that will return output

and error streams to the remote user.

These checks help to ensure that the configuration

commands have only their desired effects, and that output

and error streams are accurately returned to the remote

user.

2.4 Client Interface

We developed a java-based command line interface named

flexzone that interacts with the registry and the invocation

service in order to find and inter-connect shared SAN

devices by dynamically creating the necessary SAN

extensions. For example, a user can request a connection

between the GSFC-DICE site and the DICE-Xraid disk

with:

`flexzone –registry –device-description DICE-Xraid –site

DICE1 `

This command encapsulates the more detailed parameters

that are needed to setup the SAN extension. It is

independent of the underlying SAN extension

technologies, and it hides the SAN topology information

that is needed to make the connections.

Depending on the information retrieved from the registry,

this command may actually require two independent calls

to the invocation service on two different management

servers. For example, it could call:

InvocationWS https://172.16.230.206 invoke Flexzone-

rtr.pl --addifcp --port 8 --zone 3 --ifcpip 10.8.1.50;

InvocationWS https://172.16.240.207 invoke Flexzone-

rtr.pl --addifcp --port 7 --zone 3 --ifcpip 10.8.0.40;

The first call would set up the consumer side of the

connection while the second would set up the device side

of the connection. Figure 3. illustrates how the various

components interact in this process.

Figure 3. A Sample Inter-site SAN

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:48:54 UTC from IEEE Xplore. Restrictions apply.

3. Tests in the AVETEC DICE Test-bed

3.1 Overview of the AVETEC DICE Test-bed

Our testing environment in the DICE test-bed includes two

logically separate sites. One site, DICE1, is configured as

a consumer with a dual Intel Xeon processor Dell 2850

acting as a SAN attached server that will access the shared

disk resources. It connects to a Mcdata Eclipse 1620 SAN

Router through a McData Sphereon 4700 Switch. The

other site, DICE2, is configured to share disk space from

an Apple Xserve RAID through a McData Eclipse 2640

Router. It includes a Dell 6300 with four Intel Pentium 2

processors configured as a management server to control

setup and tear down of connections. Figure 4. illustrates the

installation of our hardware in the DICE test-bed.

We connected these sites through Gigabit Ethernet on the

DICE local area network (LAN). We also configured

private non-routed networks for control of the McData

Eclipse Routers’ management ports. We simulate various

wide area network conditions by passing the DICE LAN

connections through a Dell 2850 with dual Intel Xeon

processors running the Nist Net network emulation

package (NistNet) [15].

Even though the management framework can control both

sides of a dynamic connection (as shown in the previous

client interface example section), our test environment

provides just a single management server to dynamically

control the device side of the connections. This simplified

our test measurements and proved to be adequate and

efficient for our performance tests.

3.2 Basic Evaluations in the AVETEC DICE Test-

bed

The DICE test-bed provides several advantages for basic

evaluations of the management framework’s functionality.

It is collaboratively supported by a group of systems,

storage and network administrators who provide

installation and management services for all of its various

hardware and software systems. They play an important

role in evaluating the management framework and they

provide valuable feedback regarding its utility and

usability.

A secondary goal of our evaluations in the DICE test-bed

is to determine whether a system is sufficiently secure for

integration into a production environment. As a first step

toward this evaluation, our system was tested with a

network security port scanner before it could be connected

to the main test network. Using a McAfee Foundstone

scanner, the security team has tracked vulnerabilities and

potential risks in past versions of the Apache Tomcat code

base. This interaction has been widely beneficial, both in

better securing our software and in increasing familiarity

with Java-based web applications and the Apache Tomcat

Server among DICE participants.

Figure 4. DICE Testing Environment

3.3 Usage and Test Cases

For our performance and reliability tests, we tested the

ability to setup and tear down an iFCP-based SAN

extension in order to access an ext3 file system on the

Apple Xserve RAID using the following commands:

 Flexzone –add –site dice1 –device-description

 Xraid0

 Flexzone –list –site dice1

 Flexzone –remove –site dice1 –device-description

 Xraid0

In order to better understand the cost of using Axis-based

web services to manage SAN extensions, we instrumented

our code in order to time the various steps involved in the

process, including queries against the registry, requests to

the invocation service, and calls to the router control

software. We tested our software’s performance under a

variety of network conditions including high latency and

high-loss using NIST Net .

It is important to note that our measurements do not

include the time required for the operating system to mount

the file system, because this depends heavily on the

application, operating system, and file system. These

issues are beyond the scope of this paper. Instead, we

focused on the performance of the control connections

needed to establish the SAN extension.

3.4 Overhead in Establishing SAN Extensions

We measured the overall time to setup and tear down an

iFCP SAN Extension using the Hyper-Text Transfer

Protocol (http). Graph 1. shows the average run time of

our three test commands on a local area network without

any measured delay or packet loss.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:48:54 UTC from IEEE Xplore. Restrictions apply.

Graph 1. Aggregate Execution Times

Our tests show that we can typically reconfigure a SAN

router in less than 25 seconds with requests to setup SAN

extensions taking slightly less time than requests to tear

them down. The router control software takes a majority

of the setup time, so we consider that in the next section.

3.5 Cost of Reconfiguring SAN Routers

Graph 1. shows that reconfiguring the routers typically

takes the most time of all our operations when we run on a

local area network. We found that this holds true even as

network latencies increase the runtime of our web services.

Graph 2. illustrates the percentage of time spent in the

Registry Service, the Invocation Service, and the SAN

Router Control Software under varying network latencies.

Graph 2. Software Runtime Comparison

While investigating the large command execution runtime,

we found that the McData Eclipse SAN Routers take

between 5 and 12 seconds to start a management session

using the telnet protocol, which presents a relatively large

overhead on our average operation, which is typically less

than 25 seconds. However, no other device in the DICE

test-bed showed similar delays, so our conclusion is that

these delays are unique to the McData Eclipse SAN

Routers.

3.6 Effects of Network Latency on Performance

We expect the management framework to operate over

wide area networks that may present high latencies or high

loss due to distance or congestion. In order to evaluate our

system in these environments, we tested its reliability and

performance under various network conditions using

NISTnet. Increasing latency over a range of values

between zero and one hundred and sixty milliseconds had

no impact on the reliability of our software. Graph 3.

shows the effects of network latency on the runtime

performance of our web services. As expected, higher

latencies increase the runtime of our web services, but only

at a moderate and tolerable rate.

Graph 3. Effects of Network Latency on Runtime

Our conclusion is that large increases in network latency

have a relatively small impact on the overall runtime of our

system. This suggests that our approach will be suitable

for most production wide-area networks.

3.7 Effects of Network Packet Loss on Reliability

We also tested the functionality of our client under network

conditions with increasing loss. Although no failures were

observed under high network latencies, high rates of

network packet loss caused calls to the management

framework to fail. Graph 4. shows the increasing rate of

failed calls to the management framework as the network

becomes less reliable.

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:48:54 UTC from IEEE Xplore. Restrictions apply.

Graph 4. Effect of Packet Loss on Reliability

We expect calls to the management framework to fail as

the underlying TCP IP network becomes unreliable, but we

feel that there is some room for improvement in this area.

Our analysis of the failures shows that the failures resulted

from socket errors, where reads or writes from the remote

host could not be completed in a timely fashion. We are

currently investigating ways of increasing the socket

timeouts and adding additional retries to improve the

reliability of our software on networks that drop between

eight and twelve percent of network packets.

4. Future Work

We plan to continue our practical evaluations of the

management framework by controlling SAN extensions in

order to support GPFS and Ext3 file systems in the DICE

test-bed. We also plan to begin testing integration with the

Internet Small Computer Systems Interface (iSCSI) and the

UDP-Based Data Transfer Protocol (UDT) [16].

Upon completion, we plan to make the software available

to the public, and to identify collaborators to help test it

with real-world applications.

5. References

[1] Ben Kobler, Fritz McCall, Mike Smorul: “A Framework for

Managing Inter-Site Storage Area Networks using Grid

Technologies.” MSST 2006: 15-18

[2] Hoot Thompson, Curt Tilmes, Robert Cavey, Bill Fink, Paul

Lang, Ben Kobler: “Considerations and Performance Evaluations

of Shared Storage Area Networks at NASA Goddard Space Flight

Center.” MSST 2003: 135-145

[3] The Apache Tomcat Server, http://tomcat.apache.org/.

[4] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo. Web

Services Security: SOAP Message Security, Oasis Standard

200401, March 2004.

[5] The Apache Axis Project, http://ws.apache.org/axis/

 [6] The Apache WSS4J Project, http://ws.apache.org/wss4j/

 [7] The Advanced Virtual Engine Test Cell Data Intensive

Computing Environment, http://www.avetec.org/DICE/

[8] T. Clark, “Designing Storage Area Networks: A Practical

Reference for Implementing Fibre Channel and IP SANs.”

Addison Wesley Professional, March 2003

[9] T. Clark, “IP SANs: A Guide to iSCSI, iFCP, and FCIP

Protocols for Storage Area Networks”, Addison Wesley

Professional, December 2001

[10] Phil Andrews, Bryan Banister, Patricia A. Kovatch, Chris

Jordan, Roger L. Haskin: Scaling a Global File System to the

Greatest Possible Extent, Performance, Capacity, and Number of

Users. MSST 2005: 109-117

[11] Phil Andrews, Patricia A. Kovatch, Chris Jordan: Massive

High-Performance Global File Systems for Grid computing. SC

2005: 53

[12] Phil Andrews, Chris Jordan, Hermann Lederer : “Design,

Implementation, and Production Experiences of a Global Storage

Grid” MSST06

[13] Perl Expect Module

http://sourceforge.net/projects/expectperl/

[14] Libes, D., "Exploring Expect: A Tcl-Based Toolkit for

Automating Interactive Applications", O'Reilly & Associates,

January 1995.

[15] M. Carson, D. Santay, “NIST Net: a Linux-based network

emulation tool” ACM SIGCOMM Computer Communication

Review Volume 33: 111-12

[16]UDP-Based Data Transfer Protocol,

http://udt.sourceforge.net/

24th IEEE Conference on Mass Storage Systems and Technologies (MSST 2007)
0-7695-3025-7/07 $25.00 © 2007

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on July 13,2010 at 20:48:54 UTC from IEEE Xplore. Restrictions apply.

