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Abstract

One of the goals of upcoming hybrid hard disks is to
reduce power consumption by adding a small amount of
non-volatile flash memory (NVCache) to the drive itself.
By using the NVCache to satisfy writes while the rotat-
ing media is spun-down, hard disk power consumption can
be decreased by lengthening low-power periods. However,
the NVCache must eventually be flushed back to the rotat-
ing media in order to cache additional data. In this paper
we explore two questions: when and how should NVCache
content be flushed to rotating media in order to minimize
the overhead of data synchronization. We show that by us-
ing traditional 1/0O mechanisms such as merging and re-
ordering, combined with a “flush only when full” policy,
flushing performance improves significantly.

1. Introduction

More power management mechanisms are appearing in
desktop and laptop computing environments, both in the
hardware and software layers as power has evolved into a
first class resource in computing environments [14]. Hard
disks provide different power states with varying levels of
power consumption. Some power states can dynamically
adjust the power consumption based on 1/O activity, such
as with Hitachi’s ABLE technology [9]. Software solu-
tions also exist at the operating system level, such as spin-
down algorithms which determine the appropriate hard disk
power state [8, 7].

Unfortunately, desktop operating system 1/O behavior is
often not suitable for hard disk power management because
the 1/0 subsystem is not aware that 1/0 operations may re-
duce hard drive reliability or be blocked for several sec-
onds while the rotating media spins up. However, work has
been done to ameliorate this situation by reducing observed
spin-up latency [3]. Additionally, applications do not con-
sider the potential impact their 1/0O has on hard disks, pos-
sibly exacerbating hard drive issues associated with power
management.

In the near future, hybrid disks [15] with a small amount
of flash memory (NVCache) will be available, as depicted
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Figure 1. Hybrid Disk

in Figure 1. The NVCache is stored logically adjacent to
the rotating media. A hybrid disk maintains a single block
address space, but the NV Cache allows particular sectors
to be stored indefinitely on the NVVCache rather than on ro-
tating media. An operating system can utilize such a device
to reconcile power management and 1/0 performance.

In order for such 1/O redirection to occur, hybrid disks
introduce a new power mode, "NV Cache Power Mode”. In
this mode, the NV Cache acts as a write-cache for incoming
writes and the disk firmware implements its own rotating
media spin-down algorithm. Read requests can be serviced
solely from the NV Cache if the corresponding sectors from
a request are all located in the NVVCache. If the NVCache
becomes full or a read cannot be completely serviced from
the NV Cache, the rotating media must be spun up to make
room for new requests or to service the read request.

The details of such 1/O redirection and synchronization
to and from the NV Cache are left up to the manufacturer.
As a result, it is unknown what the best algorithms are.
For example, what is the best algorithm to flush data from
the NVCache to rotating media? And, should the entire
NV Cache be flushed on each spin-up? These are the ques-
tions we explore in this paper with the goal of provid-
ing a performance baseline for manufacturers to compare
against, and an indication of the most efficient synchroniza-
tion approaches.

2. Flushing Policies

Synchronizing data from the NVCache to the rotating
media occurs when the NV Cache is being used as a write
cache (NV Cache Power Mode is on); all writes to the
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device are redirected to the NVCache. Eventually the
NV Cache will fill up and need to be flushed to the rotating
media. In this paper we explore NVCache synchroniza-
tion. In particular, we examine: (1) when to synchronize
the NV Cache to the rotating media, and (2) how to schedule
synchronization. Our examination of when to synchronize
the NV Cache to the rotating media focuses on two alter-
natives: completely filling the NV Cache before flushing it
to the rotating media versus flushing the NVVCache on each
spin-up. Our examination of how to schedule synchroniza-
tion explores several scheduling algorithms used to flush
NV Cache data to rotating media.

2.1. When to Flush

This section discusses the trade-offs regarding the deci-
sion of when to flush NVCache data back to the rotating
media. We investigate two natural policies: flush on each
spin-up and flush only when the NVVCache becomes full.

Flushing the NVCache after each spin-up means that if
the rotating media is spun-up, regardless if it was because
of a read or write, the NVCache is flushed to rotating me-
dia. As a result, the chances of the NVCache filling up
decreases, meaning read requests are most likely responsi-
ble for spin-up operations. Since the NVCache is cleared
of all content on each each spin-up, the coherent location
of all sectors becomes rotating media—any subsequent re-
quest will only go to rotating media. As a result, the proba-
bility the NV Cache will contain read requested sectors dur-
ing future spin-down periods decreases as those sectors will
likely have been flushed to rotating media during a previous
flushing operation.

Flushing the NVCache each spin-up also means that,
while the rotating media is spun-up, subsequent 1/Os will
go to the rotating media. The synchronization process will
also contend with user-initiated 1/O, decreasing overall 1/0
performance. The overhead of flushing the NVCache to
rotating media is relatively periodic because it occurs after
every rotating media spin-up. Although somewhat subjec-
tive, users tend to find periodic stimulus more acceptable
than aperiodic stimulus [4], so users may find such flush-
ing policy acceptable.

Alternatively, flushing the NVVCache when it becomes
full means that it will only be initiated on a redirected write
request. As a result, flushing will not occur after each spin-
up; flushing operations will occur less frequently, but each
operation will be longer. From a user’s perspective, flush-
ing only when the rotating media is full is analogous to
aperiodic stimulus. Therefore, users may be less tolerant
of such performance degradation.

Although writes are more likely to cause spin-up op-
erations when using the flush when full policy, reads are
still the predominant cause of spin-up operations. How-
ever, since the NVCache will contain more valid sectors

when read operations occur, the chances that read requests
can be satisfied while the rotating media is spun-down in-
creases. If valid sectors are stored on the NVVCache while
the rotating media is spun-up, subsequent requests (while
rotating media is spun-up) may be forced to go to both ro-
tating media and the NV Cache, resulting in reduced /O
performance. However, another benefit of waiting until the
NV Cache is full before flushing is that if sorting and merg-
ing occur, there may fewer sectors that need to be flushed
back to rotating media. Such a feature is described in the
next section, Section 2.2.

Considering the two approaches above, flushing on each
spin-up effectively translates into flush-on-read, while flush
when full translates into flush-on-write. Since read requests
may often be user initiated, flushing on each spin-up means
that the flushing process will contend with user-initiated
1/0 consisting of read and probably write requests. On the
other hand, flushing when full will occur in response to a
write request while the rotating media is spun-down, mean-
ing there is no user-activity. Therefore, flushing when full
may result in data synchronization that a user never ob-
serves.

2.2. How to Flush

This section describes algorithms which aim to decrease
the time to flush data from the NV Cache to rotating media.
An algorithm which flushes data from an NV Cache to rotat-
ing media requires three resources: rotating media, DRAM,
and flash. Hybrid disks will contain all three resources.
Fundamentally, flushing data from the NVVCache to the ro-
tating media involves reading the data from the NVVCache
into DRAM, and then writing it to rotating media. This in
turn frees up that data from DRAM and the NVVCache. The
four flushing algorithms (shown in Figure 2) build upon
each other, aiming to make flushing more efficient.

The first algorithm, because of its simplicity, serves as a
baseline. This algorithm is shown in Figure 2(a). It reads
one request at a time from flash into the DRAM buffer.
By request we mean a request redirected to the NV Cache.
Once the request is in DRAM it is written to the appropriate
location on rotating media. This algorithm is independent
of the DRAM size such that no matter how large it is, only
one request at a time will be read into DRAM and then
written to rotating media.

The second algorithm improves upon the first by lever-
aging the size of the DRAM buffer to reduce the num-
ber of NV Cache read operations and the time rotating me-
dia is blocked waiting for NVCache data to be read into
DRAM. The main idea behind algorithm 2 is that when
reading NV Cache requests into DRAM, as many redirected
requests as can fit into DRAM are read into it with one large
read request, as shown in Figure 2(b). We refer to reading
multiple NVCache requests into DRAM at once as reading
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Figure 2. Flush Algorithms

a chunk. Included in the chunk is each request’s data, plus
metadata describing the request’s location on rotating me-
dia. The size of a chunk depends on the size of the DRAM
buffer allocated for synchronization. We assume redirected
requests are written to the NV Cache in log order, which en-
ables performing a single NV Cache read request for multi-
ple redirected requests. Once a chunk is read into DRAM,
each request within the DRAM chunk is processed in the
same log order.

The third algorithm uses two DRAM buffers as shown
in Figure 2(c). The DRAM buffer is actually split logically
into two equal size DRAM hbuffers. By using two DRAM
buffers we can ensure that the rotating media is continu-
ously written to. The main idea is that while requests from
one DRAM buffer are being written to rotating media, the
other DRAM buffer is being filled by the next set of redi-
rected requests from the NVCache. The rotating media
must still wait for the initial DRAM buffer to fill (starting a
flush sequence) before writes can begin being written to ro-
tating media. Therefore, relative to the question of when to
flush, the initial wait time will occur more often with flush
on each spin-up.

The fourth algorithm is shown in Figure 2(d). It ex-
tends algorithm three by adding merging and sorting to
each DRAM buffer being written to rotating media. It
is important to note that, as shown in the figure, sorting
and merging occurs locally within the respective DRAM
chunks, meaning coherency is still preserved. First, all re-
quests are sorted in the DRAM chunk by rotating media
sector address (LBA). The benefit of request sorting is that
the disk arm will make a logical progression through the
block address space when flushing each DRAM buffer, re-
ducing overall seek time. Next, all overlapping requests
are merged (using the request occurring last as the data
source). Requests that partially overlap are also coalesced.
By merging multiple requests into a single large request,
disk 1/0 time is reduced.

2.3. Partial 1/0s

It is often the case that when reading a chunk of mem-
ory into DRAM from the NV Cache the last request doesn’t
completely fit into the DRAM chunk. For example, if the
chunk is 1MB and two redirected requests are .75MB each,
one full 1/0 and one-third of the other will be present in
the chunk. As a result, only the first redirected request in
memory can be flushed to rotating media. The partial 1/0
request is ignored and re-read into the DRAM on the next
DRAM chunk read.

Alternatively, if a small DRAM size is used to move data
from flash to rotating media, the first redirected 1/0 may
often be larger than the total DRAM chunk size. Still, the
request must eventually be written to disk. In order to ac-
complish this, a redirected flash request is written to rotat-
ing media in the form of partial 1/Os, where the partial 1/0
size is equal to the DRAM chunk size. When the last partial
1/O for a redirected request is written out to rotating media,
the next redirected request is flushed from NV Cache to ro-
tating media. Naturally, as the DRAM chunk size increases
the chances of a partial 1/0 request occurring decreases.

3. Experimentation

To emulate a hybrid disk and the proposed algorithms
we use a 2.5in disk and compact flash card. The 2.5in
disk is a Hitachi Travelstar E7K100 and the flash device is
a Sandisk Ultra 1l CompactFlash memory card; the flash
device represents the NVVCache. Traditional DDR memory
simulates a hybrid disk’s DRAM cache. The host system
used for the experimentsis a Linux 2.6 machine with a Pen-
tium 4 3.06GHZ processor. Raw-device access is used to
access the block address space of both the NVCache and
rotating media.

To properly examine which sectors, written to disk, are
written back to rotating media during a flushing operation,
we replayed several real block-level 1/0 traces through an
adaptive spin-down algorithm developed by Helmbold et
al. [8]. When the spin-down algorithm spins down the ro-
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| Name |

Type | Duration | Year |

Eng Linux Engineering Workstation 7 days | 2005

HPLAJW | HP-UX Engineering Workstation

7 days | 1992

WinPC

Windows XP Desktop 7 days | 2006

Mac Mac OS X 10.4 Powerbook 7 days | 2006

Table 1. Block-Level Trace Workloads

tating media, subsequent trace 1/0 requests are redirected
to the NVCache. Writes are redirected to NVCache with
a metadata sector describing the redirected requests sector
number, offset, and length. We use zero-filled bytes as the
actual data transferred between the different storage media.
The rotating media is left spun-down while writes are redi-
rected to the NVVCache. Reads are also redirected to the
NVCache if the rotating media is spun-down in the hopes
that the NV Cache can service the request. If the NVCache
cannot service a read request, the rotating media is spun-up
and services the request, possibly gathering the requested
data from both rotating media and NV Cache sectors. After
the rotating media is spun-up, and if the NV Cache should
be flushed to rotating media, requests from the NVCache
are read into DRAM, then written out to rotating media,
according to the algorithms in Section 2.1. The traces are
used to determine when to spin down the rotating media,
the size of redirected requests, and where those requests
belong on rotating media.

3.1. Traces

The block-level access traces we use are from four real
desktop workloads gathered from four different desktop
operating systems, which are shown in Table 1. Each work-
load is a trace of disk requests from a single disk, and each
entry contains: 1/0O time, sector, sector length, and read or
write. The first workload, Eng, is a trace from the root disk
of a Linux desktop used for software engineering tasks; the
ReiserFsS file system resides on the root disk. The trace was
extracted by instrumenting the disk driver to record all ac-
cesses for the root disk to a memory buffer, and transfer it
to user space (via a system call) when it became full. A
corresponding user space application appended the mem-
ory buffer to a file on a separate disk. The trace, HPLAJW,
is from a single-user HP-UX workstation [16]. The WinPC
trace is from an Windows XP desktop used mostly for web
browsing, electronic mail, and Microsoft Office applica-
tions. The trace was extracted through the use of a filter
driver. The final trace, Mac is from a Macintosh Power-
Book running OS X 10.4. The trace was recorded using the
Macintosh command line tool, fs_usage, by filtering out file
system operations and redirecting disk I/O operations for
the root disk to a USB thumb drive.
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Figure 3. Optimal Cached Data
4. Results

Before evaluating the performance of the proposed algo-
rithms, we first consider write caching performance with an
infinite-sized NV Cache. Figure 3 shows the amount of data
cached using an infinite NVVCache for the 7 days of each
trace. The amount of data cached with an infinite NVVCache
serves as a point of reference for the four proposed algo-
rithms. For example, this figure shows that if the NV Cache
is flushed only when full, the NVVCache need only be 5GB
for the Mac trace, which is the amount of 1/0 written to that
hard disk for a week. Similarly, the NV Cache need only be
.5GB to cache a week’s worth of HP data. However, be-
cause the NV Cache size is finite, the actual amount of data
redirected is less.

Figure 4 also shows the amount of data cached while
the rotating media is spun-down with a infinite NV Cache.
However, this figure shows the amount of data cached per
spin-down period. Even with an infinite NV Cache, 100MB
of NVCache is never used on a single spin-down period.
With the flush on each spin-up policy, at most a 100MB
NVCache is needed to cache all writes per spin-down pe-
riod.

A crucial metric for measuring flushing performance
is time—how long does it take to flush NVCache con-
tent back to rotating media. Figure 5 shows these results
for each trace, including a break-down of time spent for
each media. The amount of DRAM in these experiments
is 16MB and the NVCache size is 64MB. In these figures
the label Each represents flushing the NV Cache after each
spin-down period. The label Full represents flushing the
NVCache only when the NVVCache is full. And Total rep-
resents the total flushing time, including both time to read
the flash buffers into memory and write corresponding re-
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This figure shows several interesting properties about =
flushing performance. First, when comparing Full to Each g
for total time, Full is generally faster than flushing on
each spin-up—it reduces the amount of time each media
is blocked. Second, flushing is largely dominated by disk.
This is because the NVCache can issue a single 64MB read 160 -
to the NVCache, which consists of several redirected re- 140 | Walol  m alg2 alg3 alg4
quests, each of which must be written to rotating media. 120

When comparing the individual algorithms to each other

100 I M m -
the first thing to observe is that when looking at the Total
. . i 60
time for Each, we see that algorithm algl generally per- 0 4 _
forms better than alg2. Looking at the respective Disk and 20 4 - I L

NVCache timings, the NVCache time typically decreases 0-
slightly from algl to alg2 but the disk time increases. The

NVCache decreases because fewer 1/0s are needed to read

the NVCache. However, the disk timing increases because

with alg2 potentially hundreds of 1/Os are pushed out to the (c) Mac

disk all at once, while with algl, the disk has a chance to

catch up while the NVCache reads each redirected request. 501 ®malgl = alg2 alg3 algs

40 - | -
5. Related Work "
There are several works which consider combining flash g 2 - )
and rotating media to decrease hard disk power consump- 10 | _ =
L.or Rann

tion. Marsh et al. propose that flash (FLASHCACHE) 04
exist as a layer between DRAM and rotating media [13].

Data passes through the FLASHCACHE with an LRU pol-

icy. They show it is possible to reduce hard disk power

consumption and increase performance. NVCache [2] (d) Win

and SmartSaver [6] are hard-disk energy saving schemes,

which use flash to buffer requests during standby and Figure 5. Flush Time
prefetch disk data to increase standby periods. The signif-
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icant difference between these approaches is the eviction
policy. NVCache uses a combination of LRU and LFU,
while SmartSaver uses an algorithm akin to GreedyDual-
Size [5] originally developed for web-caching.

Alternatively, another work named FlashCache uses
flash memory to reduce the power consumed by main-
memory in web servers [12]. Fundamentally, FlashCache
acts like a secondary buffer cache to reduce main-memory
power consumption during idle-time without impacting
network performance. There are several other works that
utilize some form of non-volatile memory to increase 1/0
performance. Ruemmler and Wilkes [16], Baker et al. [1],
Hu et al. [11], and WAFL [10] all buffer disk 1/O in
NVRAM to some extent.

Hybrid disks place a small amount of flash memory log-
ically adjacent to the rotating media. Interfaces to leverage
the NV Cache are specified in the ATA8 specification [17].
However, implementation is largely left to the manufac-
turer. Unfortunately, this means most hybrid disk technol-
ogy will not be published. Therefore, it is our goal to pro-
vide functionality and performance measurements to serve
as baseline for future hybrid disk technology and research.
Bisson et al. explores ways to leverage hybrid disks to min-
imize power consumption [3]. This work leverages hybrid
disks at the OS layer to reduce power consumption, spin-
up latency, and wear-leveling impact. This work presents
four algorithms exploiting 1/0 that occurs while the rotat-
ing media is spun-down.

6. Conclusion

We have presented several algorithms which improve
the efficiency of synchronizing NV Cache data to rotating
media for upcoming hybrid hard disks when the NV Cache
is used as a write-cache to reduce hard disk power con-
sumption. We focused on two preliminary policy ques-
tions: when to flush and how to flush. We found that flush-
ing the NVVCache only when full can reduce flushing time
by over 75% relative to flushing on each spin-up. We also
found that ordering and merging are effective in reducing
the overall number of 1/O operations to rotating media, and
ordering reduces disk seek time, together reducing flushing
time by as much as 90% over algorithms without ordering
or merging.
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