

Power & Cooling Impact on Data Center Reliability and Availability

The Data Center Perspective J. Ray Scott Director, Systems and Operations scott@psc.edu

Pittsburgh Supercomputing Center

© 2008 Pittsburgh Supercomputing Center

SGI Altix 450

Machine Room Facility

- Westinghouse Electric Company
 - Monroeville, PA
 - 16 miles East of Pittsburgh
- 11,000
 sq ft

Facility Comparison – LeMieux and XT3

Current Building – Power

- Vendor HPC Power Estimates
 - Exaggerated to be Safe
 - Duty cycle rather than peak
- Current usage is about .9 MW
- Two 23,000 volt underground lines serving an underground automatic substation providing alternate pathing to the site
- Enable service:
 - During routine line maintenance
 - Single-line interruptions.
- Two 23,000-4160 volt transformers
- Automatic switching incoming lines or transformers
- 4160 volt power is distributed to 7 power centers
- Each power center has two 1000/1333 kVA 4160-480/277 volt transformers

Current Building - Power

• UPS

- One 500 kVA UPS unit
- Two 650 kVA UPS units
- Static Maintenance Bypass
- 15 minutes of run time
- Generator
 - Five 1 MW diesel generators
 - Three day, 20,000 gallon fuel tank
 - Generators automatically start after power interruption
 - ~ Five minute sync time
 - Shed building load to maintain power to the computer systems and computer room HVAC equipment
 - Upon return of utility power, transfer the load from generator to utility without interruption

Current Building – Power, cont.

• 13 PDU's in the Computer room

Current Building – Power, cont.

• Grounding

• Clearing out under floor space

• Clearing out under floor space

• Eliminating Vortexes

- Temperature Monitoring
 - LeMieux Charts
 - XT3 Charts

• Over-temperature service contract issues

Current Building – Cooling

- Heat Recovery = \$60K for 1MW
- Four 300-ton chillers that feed a common manifold.
- Three chillers for capacity and one for redundancy
- Five pumps
 - Two parallel sets
 - 10 HP, 400 GPM
 - Only one pump in each set is required
- 14 Airflow/ADP 30 Ton Air Handling Units

Difficulties in predicting disk failures

- Bianca Schroeder Garth A. Gibson
 "Disk failures in the real world: What does an MTTF of 1,000,000 hours mean to you?"
- High percentage of NPF disks
- Power-cycle can "fix"
- Cold is better
 - Google paper adds age
 - <u>http://labs.google.com/papers/disk_failures.pdf</u>
- Power failures

Effects of Power Outages

Expanding to Petascale Systems

- Building Regulatory Issues
 - Cooling towers on the Roof
- Component Lead Times
- Power metering
 - Separate meters for functions
- 480 Volts to Racks
 - 80% Savings in infrastructure
 - Includes direct wiring cabinets no connectors
- Water cooling racks save ~10%
 - Takes the 40% factor to 30%

Expanding to Petascale Systems, cont.

• Used / Uninstalled Equipment

Facility Storage Trends

- Spindle reductions on NSF Program Systems (Courtesy Phil Andrews, NICS and Chris Jordan, TACC)
 - 95 spindles per TFLOP for SDSC DataStar
 - 5 for TACC Ranger
 - 2.5 for NICS Kraken
- Storage scheduling
 - Jobs requesting I/O needs
- Increased Spindle Efficiency
 - "Zest" talk by Paul Nowoczynski, Tuesday, 1:30pm

The End – Thank You

