BLUEWATERS

BREAKING THROUGH THE LIMITS

NCSA's Petascale Facility

Michelle Butler
Technical Program Manager
Storage Enabling Technogies Group
mbutler@ncsa.uiuc.edu

BREAKING THROUGH THE LIMITS

Coming in 2011—Blue Waters

- •First sustained-petascale system for open science in the world
- •Unparalleled national asset will revolutionize scientific research with significant societal impact
- •Hundreds of times more powerful than today's supercomputers
- •Comprehensive project includes software, application development and optimization, education, and industry interactions
- New, energy-efficient facility
- •National collaboration with UI, IBM, and Great Lakes Consortium
- •Supported by \$208 million grant from National Science Foundation

Details of what I can say:

		Blue
System Attribute	Abe	Waters
Vendor	Dell	IBM
Processor	Intel Xeon 5300	IBM Power7
Peak Performance (PF)	0.090	
Sustained Performance (PF)	0.005	≥1
Number of Cores/Chip	4	
Number of Processor Cores	9,600	>200,000
Amount of Memory (TB)	14.4	>800
Amount of Disk Storage (TB)	100	>10,000
Amount of Archival Storage (PB)	5	>500
External Bandwidth (Gbps)	40	100-400

Green Building Initiative: Silver Rating

- 20MW of power into the new building
 - Hopefully this is enough
 - Maybe not?
 - AC all the way to the racks and converted to DC there.
 - Looked into DC conversion at the building, but cost prohibitive.
 - Rack has 4 feeds and can run with 1 dropping out, 4 separate 4 MW feeds into the building
 - Not options:
 - Multiple company power feeds
 - Current facility has AmerenIP and UofI power feeds 2.4MW
 - Power coming from different locations of the building
 - Not an option for this building. Power from Uofl power plant.

PCF building continued:

- NCSA has own chilled water towers and from campus
- Uofl will supply chilled water in the summer months, and the outside air will cool our chilled water tanks for the 60% of the year when we have cooler temperatures.
- We wanted to have the heat that is generated from the machine used for the steam tunnels of the university, but the heat conversion was too costly.
- BW racks are water cooled based on power 7
- Trying to be environmental friendly:
- Use outside air if cold enough
 - Too many contaminates that would cause rusting such as humidity
 - Floating material such as dust would cause too many problems.
 - too costly to clean the air on the way in

PCF Building continued:

- Cost from the University
 - Years past all power and cooling were "free"
 - 58% overhead charged to all non-hardware grants
 - New policy for computer labs to pay for power/cooling
- 20,000 ft computer room
 - Plans on putting other projects on the floor if power allows
 - LSST and other NCSA resources that are required

Other things:

 Taking a parklot to 70% green space planted with indigent plants to Illinois