Data-Intensive Computing with Hadoop

Thanks to: Milind Bhandarkar <<u>milindb@yahoo-inc.com</u>> Yahoo! Inc.

Agenda

- Hadoop Overview
- HDFS
- Programming Hadoop
 - Architecture
 - Examples
 - Hadoop Streaming
 - Performance Tuning
- Debugging Hadoop Programs

Hadoop overview

- Apache Software Foundation project
 - Framework for running applications on large clusters
 - Modeled after Google's MapReduce / GFS framework
 - Implemented in Java
- Includes
 - HDFS a distributed filesystem
 - Map/Reduce offline computing engine
 - Recently: Libraries for ML and sparse matrix comp.
- Y! is biggest contributor
- Young project, already used by many

Hadoop clusters

It's used in clusters with thousands of nodes at Internet services companies

Amazon/A9 Facebook Google IBM Intel Research Joost

Last.fm New York Times PowerSet Veoh Yahoo!

Hadoop Goals

- Scalable
 - Petabytes (1015 Bytes) of data on thousands on nodes
 - Much larger than RAM, even single disk capacity
- Economical
 - Use commodity components when possible
 - Lash thousands of these into an effective compute and storage platform
- Reliable
 - In a large enough cluster something is always broken
 - Engineering reliability into every app is expensive

Sample Applications

- Data analysis is the core of Internet services.
- Log Processing
 - Reporting
 - Session Analysis
 - Building dictionaries
 - Click fraud detection
- Building Search Index
 - Site Rank
- Machine Learning
 - Automated Pattern-Detection/Filtering
 - Mail spam filter creation
- Competitive Intelligence
 - What percentage of websites use a given feature?

Problem: Bandwidth to Data

- Need to process 100TB datasets
- On 1000 node cluster reading from remote storage (on LAN)
 - Scanning @ 10MB/s = 165 min
- On 1000 node cluster reading from local storage
 - Scanning @ 50-200MB/s = 33s-8 min
- Moving computation to the data enables I/O bandwidth scaling
 - Network is the bottleneck
 - Data size is reduced by the processing
- Need visibility into data placement

Problem: Scaling Reliably is Hard

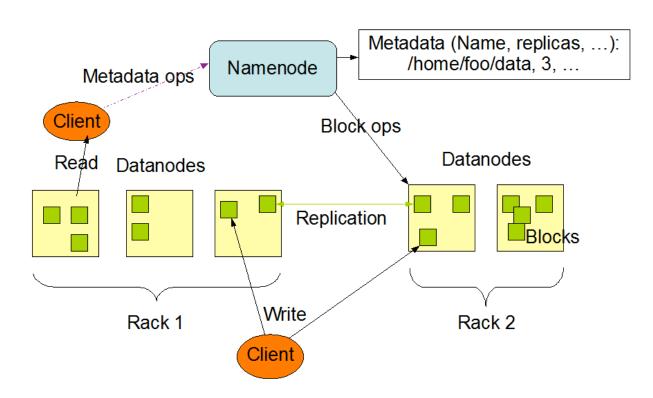
- Need to store Petabytes of data
 - On 1000s of nodes, MTBF < 1 day
 - Many components disks, nodes, switches, ...
 - Something is always broken
- Need fault tolerant store
 - Handle hardware faults transparently
 - Provide reasonable availability guarantees

Hadoop Distributed File System

- Fault tolerant, scalable, distributed storage system
- Designed to reliably store very large files across machines in a large cluster
- Data Model
 - Data is organized into files and directories
 - Files are divided into uniform sized blocks and distributed across cluster nodes
 - Blocks are replicated to handle hardware failure
 - Corruption detection and recovery: Filesystem-level checksuming
 - HDFS exposes block placement so that computes can be migrated to data

HDFS Terminology

- Namenode
- Datanode
- DFS Client
- Files/Directories
- Replication
- Blocks
- Rack-awareness



HDFS Architecture

HDFS Architecture

- Similar to other NASD-based DFSs
- Master-Worker architecture
- HDFS Master "Namenode"
 - Manages the filesystem namespace
 - Controls read/write access to files
 - Manages block replication
 - Reliability: Namespace checkpointing and journaling
- HDFS Workers "Datanodes"
 - Serve read/write requests from clients
 - Perform replication tasks upon instruction by Namenode

Interacting with HDFS

- User-level library linked into the application
- Command line interface

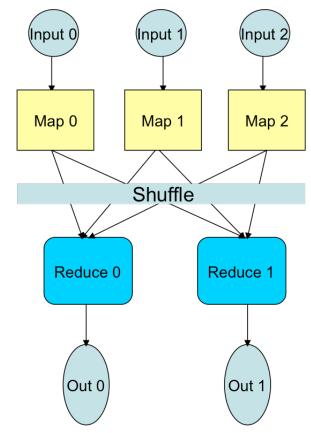
hadoop fs [-fs <local | file system URI>] [-conf <configuration file>] [-D <property=value>] [-ls <path>] [-lsr <path>] [-du <path>] [-dus <path>] [-mv <src> <dst>] [-cp <src> <dst>] [-rm <src>] [-rmr <src>] [-put <localsrc> <dst>] [-copyFromLocal <localsrc> <dst>] [-moveFromLocal <localsrc> <dst>] [-get <src> <localdst>] [-getmerge <src> <localdst> [addnl]] [-cat <src>] [-copyToLocal <src><localdst>] [-moveToLocal <src> <localdst>] [-mkdir <path>] [-report] [-setrep [-R] [-w] <rep> <path/file>] [-touchz <path>] [-test -[ezd] <path>] [-stat [format] <path>] [-tail [-f] <path>] [-text <path>] [-chmod [-R] <MODE[,MODE]... | OCTALMODE>t PATH...] ile | hadooo dfs -put - my [-chown [-R] [OWNER][:[GROUP]] PATH [-chgrp [-R] GROUP PATH...] [-help [cmd]]

Map-Reduce overview

- Programming abstraction and runtime support for scalable data processing
- Scalable associative primitive: Distributed "GROUP-BY"
- Observations:
 - Distributed resilient apps are hard to write
 - Common application pattern
 - Large unordered input collection of records
 - Process each record
 - Group intermediate results
 - Process groups
 - Failure is the common case

Map-Reduce

- Application writer specifies
 - A pair of functions called Map and Reduce
 - A set of input files
- Workflow
 - Generate *FileSplits* from input files, one per Map task
 - *Map phase* executes the user map function transforming input records into a new set of kv-pairs
 - Framework shuffles & sort tuples according to their keys
 - *Reduce phase* combines all kv-pairs with the same key into new kv-pairs
 - Output phase writes the resulting pairs to files
- All phases are distributed among many tasks
 - Framework handles scheduling of tasks on cluster
 - Framework handles recovery when a node fails



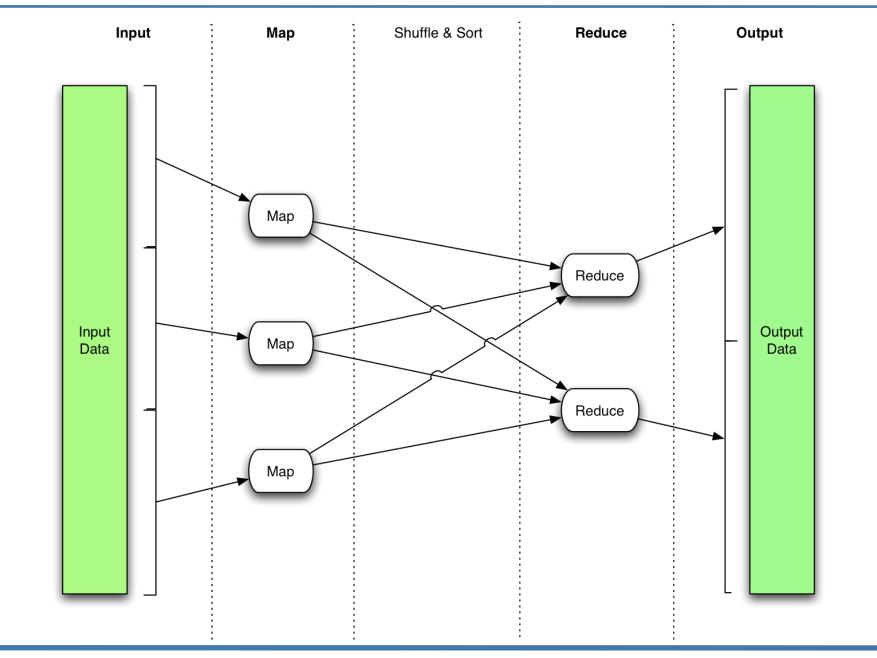
Hadoop MR - Terminology

- Job
- Task
- JobTracker
- TaskTracker
- JobClient
- Splits
- InputFormat/RecordReader

Hadoop M-R architecture

- Map/Reduce Master "Job Tracker"
 - Accepts Map/Reduce jobs submitted by users
 - Assigns Map and Reduce tasks to Task Trackers
 - Monitors task and Task Tracker status, re-executes tasks upon failure
- Map/Reduce Slaves "Task Trackers"
 - Run Map and Reduce tasks upon instruction from the Job Tracker
 - Manage storage and transmission of intermediate output

Map/Reduce Dataflow

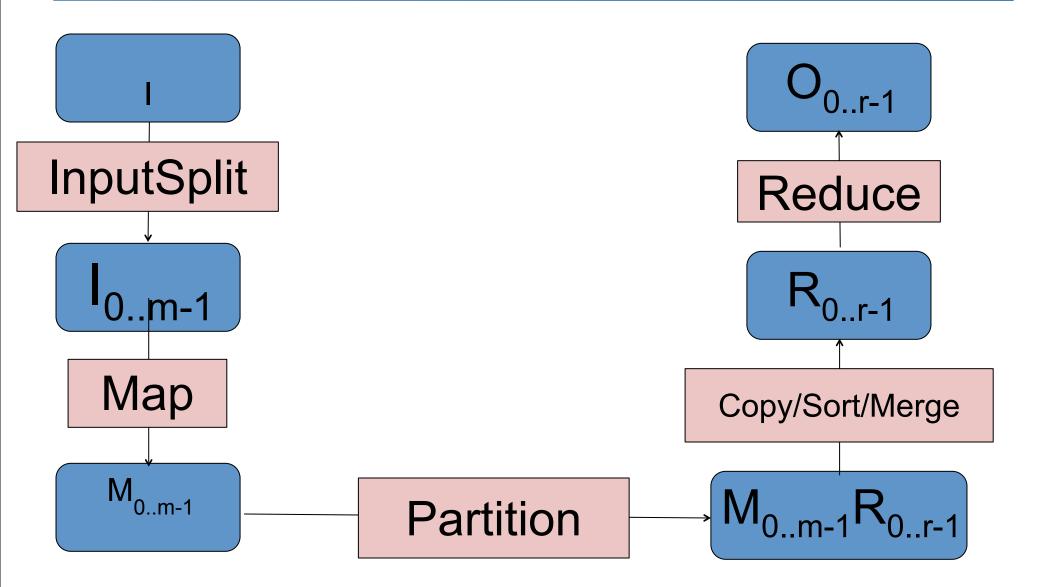


- Input: multi-TB dataset
- Record: Vector with 3 float32_t values
- Goal: frequency histogram of one of the components
- Min and max are unknown, so are the bucket sizes

- Framework partitions input into chunks of records
- Map function takes a single record
 - Extract desired component v
 - Emit the tuple (k=v, 1)
- Framework groups records with the same k.
- Reduce function receives a list of all the tuples where for a given k
 - Sum the value (1) for all the tuples
 - Emit the tuple (k=v, sum)

- There's more to it than M-R: Map-Shuffle-Reduce
- Custom input parsing and aggregate functions
- Input partitioning & task scheduling
- System support:
 - Co-location of storage & computation
 - Failure isolation & handling

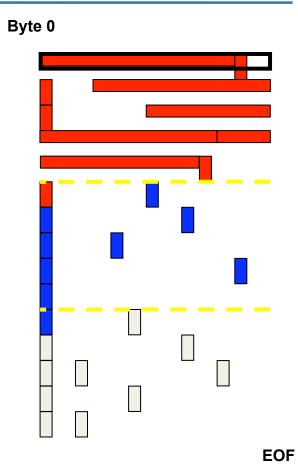
Hadoop Dataflow (I₂O)



- Input specified as collection of paths (on HDFS)
- JobClient specifies an InputFormat
- The InputFormat provides a description of splits
- Default: FileSplit
 - Each split is approximately DFS's block
 - mapred.min.split.size overrides this
 - Gzipped files are not split
 - A "split" does not cross file boundary
- Number of Splits = Number of Map tasks

InputSplit => RecordReader

- Record = (Key, Value)
- InputFormat
 - TextInputFormat
 - Unless 1st, ignore all before 1st separator
 - Read-ahead to next block to complete last record



Partitioner

- Default partitioner evenly distributes records
 - hashcode(key) mod NR
- Partitioner could be overridden
 - When Value should also be considered
 - a single key, but values distributed
 - When a partition needs to obey other semantics
 - AI URLs from a domain should be in the same file
- Interface Partitioner
 - int getPartition(K, V, nPartitions)

Producing Fully Sorted Output

- By default each reducer gets input sorted on key
- Typically reducer output order is the same as input
- Each part file is sorted
- How to make sure that Keys in part i are all less than keys in part i+1 ?
- Fully sorted output

Fully sorted output (contd.)

- Simple solution: Use single reducer
- But, not feasible for large data
- Insight: Reducer input also must be fully sorted
- Key to reducer mapping is determined by partitioner
- Design a partitioner that implements fully sorted reduce input
- Hint: Histogram equalization + Sampling

- What about non-Java programmers?
 - Can define Mapper and Reducer using Unix text filters
 - Typically use grep, sed, python, or perl scripts
- Format for input and output is: key \t value \n
- Allows for easy debugging and experimentation
- Slower than Java programs

bin/hadoop jar hadoop-streaming.jar -input in_dir -output out_dir -mapper streamingMapper.sh -reducer streamingReducer.sh

- Mapper: sed -e 's| |\n|g' | grep .
- Reducer: uniq -c | awk '{print \$2 "\t" \$1}'

Key-Value Separation in Map Output

\$HADOOP_HOME/bin/hadoop jar \$HADOOP_HOME/hadoop-streaming.jar \

-input myInputDirs \

-output myOutputDir \

- -mapper org.apache.hadoop.mapred.lib.IdentityMapper \
- -reducer org.apache.hadoop.mapred.lib.IdentityReducer \
- -jobconf stream.map.output.field.separator=. \
- -jobconf stream.num.map.output.key.fields=4

Secondary Sort

\$HADOOP_HOME/bin/hadoop jar \$HADOOP_HOME/hadoop-streaming.jar \

```
-input myInputDirs \
```

-output myOutputDir \

- -mapper org.apache.hadoop.mapred.lib.IdentityMapper \
- -reducer org.apache.hadoop.mapred.lib.IdentityReducer \
- -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner \

```
-jobconf stream.map.output.field.separator=. \
```

```
-jobconf stream.num.map.output.key.fields=4 \
```

```
-jobconf map.output.key.field.separator=. \
```

```
-jobconf num.key.fields.for.partition=2 \
```

-jobconf mapred.reduce.tasks=12

Pipes (C++)

- C++ API and library to link application with
- C++ application is launched as a sub-process
- Keys and values are std::string with binary data
- Word count map looks like:

```
class WordCountMap: public HadoopPipes::Mapper {
  public:
```

```
WordCountMap(HadoopPipes::TaskContext& context){}
```

```
void map(HadoopPipes::MapContext& context) {
   std::vector<std::string> words =
    HadoopUtils::splitString(context.getInputValue(), " ");
   for(unsigned int i=0; i < words.size(); ++i) {
      context.emit(words[i], "1");
   }
}</pre>
```


The reducer looks like:

```
class WordCountReduce: public HadoopPipes::Reducer {
public:
    WordCountReduce(HadoopPipes::TaskContext& context){}
    void reduce(HadoopPipes::ReduceContext& context) {
        int sum = 0;
        while (context.nextValue()) {
            sum += HadoopUtils::toInt(context.getInputValue());
        }
        context.emit(context.getInputKey(),
        HadoopUtils::toString(sum));
    }
};
```


• And define a main function to invoke the tasks:

Deploying Auxiliary Files

- Command line option: -file auxFile.dat
- Job submitter adds file to job.jar
- Unjarred on the task tracker
- Available as \$cwd/auxFile.dat
- Not suitable for more / larger / frequently used files

- Sometimes, you need to read "side" files such as "in.txt"
- Read-only Dictionaries (e.g., filtering patterns)
- Libraries dynamically linked to streaming programs
- Tasks themselves can fetch files from HDFS
 - Not Always! (Unresolved symbols)
- Performance bottleneck

Caching Files Across Tasks

- Specify "side" files via -cacheFile
- If lot of such files needed
 - Jar them up (.tgz coming soon)
 - Upload to HDFS
 - Specify via –cacheArchive
- TaskTracker downloads these files "once"
- Unjars archives
- Accessible in task's cwd before task even starts
- Automtic cleanup upon exit

How many Maps and Reduces

- Maps
 - Usually as many as the number of HDFS blocks being processed, this is the default
 - Else the number of maps can be specified as a hint
 - The number of maps can also be controlled by specifying the minimum split size
 - The actual sizes of the map inputs are computed by: max(min(block_size, data/#maps), min_split_size)
- Reduces
 - Unless the amount of data being processed is small: 0.95*num_nodes*mapred.tasktracker.tasks.maximum

Map Output => Reduce Input

- Map output is stored across local disks of task tracker
- So is reduce input
- Each task tracker machine also runs a Datanode
- In our config, datanode uses "up to" 85% of local disks
- Large intermediate outputs can fill up local disks and cause failures
 - Non-even partitions too

Performance Analysis of Map-Reduce

- MR performance requires
 - Maximizing Map input transfer rate
 - Pipelined writes from Reduce
 - Small intermediate output
 - Opportunity to Load Balance

Map Input Transfer Rate

Input locality

- HDFS exposes block locations
- Each map operates on one block
- Efficient decompression
 - More efficient in Hadoop 0.18
- Minimal deserialization overhead
 - Java deserialization is very verbose
 - Use Writable/Text

Performance Example

- Count lines in text files totaling several hundred GB
- Approach:
 - Identity Mapper (input: text, output: same text)
 - A single Reducer counts the lines and outputs the total
- What is wrong ?
- This happened, really!

Intermediate Output

- Almost always the most expensive component
 - (M x R) transfers over the network
 - Merging and Sorting
- How to improve performance:
 - Avoid shuffling/sorting if possible
 - Minimize redundant transfers
 - Compress

Avoid shuffling/sorting

- Set number of reducers to zero
 - Known as map-only computations
 - Filters, Projections, Transformations
- Beware of number of files generated
 - Each map task produces a part file
 - Make map produce equal number of output files as input files
 - How? Variable indicating current file being processed

Minimize Redundant Transfers

- Combiners
 - Goal is to decrease size of the transient data
- When maps produce many repeated keys
 - Often useful to do a local aggregation following the map
 - Done by specifying a Combiner
 - Combiners have the same interface as Reducers, and often are the same class.
 - Combiners must not have side effects, because they run an indeterminate number of times.
 - conf.setCombinerClass(Reduce.class);

Compress Output

- Compressing the outputs and intermediate data will often yield huge performance gains
 - Specified via a configuration file or set programatically
 - Set mapred.output.compress=true to compress job output
 - Set mapred.compress.map.output=true to compress map output
- Compression types:
 - mapred.output.compression.type
 - "block" Group of keys and values are compressed together
 - "record" Each value is compressed individually
 - Block compression is almost always best
- Compression codecs:
 - mapred.output.compression.codec
 - Default (zlib) slower, but more compression
 - LZO faster, but less compression

Opportunity to Load Balance

- Load imbalance inherent in the application
 - Imbalance in input splits
 - Imbalance in computations
 - Imbalance in partition sizes
- Load imbalance due to heterogeneous hardware
 - Over time performance degradation
- Give Hadoop an opportunity to do load-balancing
 - How many nodes should I allocate ?

- M = total number of simultaneous map tasks
- M = map task slots per tasktracker * nodes
- Chose nodes such that total mappers is between 5*M and 10*M.

Configuring Task Slots

- mapred.tasktracker.map.tasks.maximum
- mapred.tasktracker.reduce.tasks.maximum
- Tradeoffs:
 - Number of cores
 - Amount of memory
 - Number of local disks
 - Amount of local scratch space
 - Number of processes
- Consider resources consumed by TaskTracker & Datanode processes

Speculative execution

- The framework can run multiple instances of slow tasks
 - Output from instance that finishes first is used
 - Controlled by the configuration variable mapred.speculative.execution=[true|false]
 - Can dramatically bring in long tails on jobs

Performance

- Is your input splittable?
 - Gzipped files are NOT splittable
- Are partitioners uniform?
- Buffering sizes (especially io.sort.mb)
- Do you need to Reduce?
- Only use singleton reduces for very small data
 - Use Partitioners and cat to get a total order
- Memory usage
 - Do not load all of your inputs into memory.

Debugging & Diagnosis

- Run job with the Local Runner
 - Set mapred.job.tracker to "local"
 - Runs application in a single process and thread
- Run job on a small data set on a 1 node cluster
 - Can be done on your local dev box
- Set keep.failed.task.files to true
 - This will keep files from failed tasks that can be used for debugging
 - Use the IsolationRunner to run just the failed task
- Java Debugging hints
 - Send a kill -QUIT to the Java process to get the call stack, locks held, deadlocks

Example: Computing Standard Deviation

 Takeaway: Changing algorithm to suit architecture yields best implementation

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$

Implementation 1

- Two Map-Reduce stages
- First stage computes Mean
- Second stage computes std deviation

Implementation 1 (contd.)

- Stage 1: Compute Mean
 - Map Input (xi for i = 1 ..Nm)
 - Map Output (Nm, Mean(x1..Nm))
 - Single Reducer
 - Reduce Input (Group(Map Output))
 - Reduce Output (Mean(x1..N))

Implementation 1 (contd.)

- Stage 2: Compute Standard deviation
 - Map Input (xi for i = 1 ..Nm) & Mean(x1..N)
 - Map Output (Sum(xi Mean(x))2 for i = 1 ..Nm
 - Single Reducer
 - Reduce Input (Group (Map Output)) & N
 - Reduce Output (Standard Deviation)
- Problem: Two passes over large input data

Implementation 2

- Second definition algebraic equivalent
 - Be careful about numerical accuracy, though

$$\sigma = \sqrt{\frac{1}{N} \left(\sum_{i=1}^{N} x_i^2 - N \overline{x}^2\right)}$$

Implementation 2 (contd.)

- Single Map-Reduce stage
- Map Input $(x_i \text{ for } i = 1 ... N_m)$
- Map Output (N_m, [Sum(x²_{1..Nm}),Mean(x_{1..Nm})])
- Single Reducer
- Reduce Input (Group (Map Output))
- Reduce Output (σ)
- Advantage: Only a single pass over large input

Q&A