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Agenda

• Hadoop Overview
• HDFS
• Programming Hadoop

• Architecture
• Examples
• Hadoop Streaming
• Performance Tuning

• Debugging Hadoop Programs
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Hadoop overview

• Apache Software Foundation project
• Framework for running applications on large clusters
• Modeled after Google’s MapReduce / GFS framework
• Implemented in Java

• Includes
• HDFS - a distributed filesystem
• Map/Reduce - offline computing engine
• Recently: Libraries for ML and sparse matrix comp.

• Y! is biggest contributor
• Young project, already used by many
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Hadoop clusters

It’s used in clusters with thousands of nodes at 
Internet services companies
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Who Uses Hadoop?

Amazon/A9
Facebook

Google
IBM

Intel Research
Joost

Last.fm
New York Times

PowerSet
Veoh

Yahoo!
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Hadoop Goals

• Scalable
• Petabytes (1015 Bytes) of data on thousands on nodes
• Much larger than RAM, even single disk capacity

• Economical
• Use commodity components when possible
• Lash thousands of these into an effective compute and 

storage platform
• Reliable

• In a large enough cluster something is always broken
• Engineering reliability into every app is expensive
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Sample Applications
• Data analysis is the core of Internet services.
• Log Processing

• Reporting
• Session Analysis
• Building dictionaries
• Click fraud detection

• Building Search Index
• Site Rank

• Machine Learning
• Automated Pattern-Detection/Filtering
• Mail spam filter creation

• Competitive Intelligence
• What percentage of websites use a given feature?
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Problem: Bandwidth to Data

• Need to process 100TB datasets 
• On 1000 node cluster reading from remote storage 

(on LAN)
• Scanning @ 10MB/s = 165 min

• On 1000 node cluster reading from local storage
• Scanning @ 50-200MB/s = 33s-8 min

• Moving computation to the data enables I/O 
bandwidth scaling
• Network is the bottleneck
• Data size is reduced by the processing

• Need visibility into data placement
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Problem: Scaling Reliably is Hard

• Need to store Petabytes of data
• On 1000s of nodes, MTBF < 1 day
• Many components disks, nodes, switches, ...
• Something is always broken

• Need fault tolerant store
• Handle hardware faults transparently
• Provide reasonable availability guarantees
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Hadoop Distributed File System

• Fault tolerant, scalable, distributed storage system
• Designed to reliably store very large files across 

machines in a large cluster
• Data Model

• Data is organized into files and directories
• Files are divided into uniform sized blocks and distributed 

across cluster nodes
• Blocks are replicated to handle hardware failure
• Corruption detection and recovery:

Filesystem-level checksuming
• HDFS exposes block placement so that computes can be 

migrated to data
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HDFS Terminology

• Namenode
• Datanode
• DFS Client
• Files/Directories
• Replication
• Blocks
• Rack-awareness

11



    MSST Tutorial on Data-Intesive Scalable Computing for Science 
September 08

HDFS Architecture

• Similar to other NASD-based DFSs
• Master-Worker architecture
• HDFS Master “Namenode”

• Manages the filesystem namespace
• Controls read/write access to files
• Manages block replication
• Reliability: Namespace checkpointing and journaling

• HDFS Workers “Datanodes”
•  Serve read/write requests from clients
•  Perform replication tasks upon instruction by Namenode
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Interacting with HDFS

• User-level library linked into the application
• Command line interface
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Map-Reduce overview

• Programming abstraction and runtime support for 
scalable data processing

• Scalable associative primitive:
Distributed “GROUP-BY”

• Observations:
• Distributed resilient apps are hard to write
• Common application pattern

- Large unordered input collection of records
- Process each record
- Group intermediate results
- Process groups

• Failure is the common case
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Map-Reduce

• Application writer specifies 
• A pair of functions called Map and Reduce
• A set of input files

•  Workflow
• Generate FileSplits from input files, one per Map task
• Map phase executes the user map function transforming 

input records into a new set of kv-pairs
• Framework shuffles & sort tuples according to their keys
• Reduce phase combines all kv-pairs with the same key 

into new kv-pairs
• Output phase writes the resulting pairs to files

• All phases are distributed among many tasks
• Framework handles scheduling of tasks on cluster
• Framework handles recovery when a node fails
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Hadoop MR - Terminology

• Job
• Task
• JobTracker
• TaskTracker
• JobClient
• Splits
• InputFormat/RecordReader
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Hadoop M-R architecture

• Map/Reduce Master “Job Tracker”
• Accepts Map/Reduce jobs submitted by users
• Assigns Map and Reduce tasks to Task Trackers
• Monitors task and Task Tracker status, re-executes tasks 

upon failure 
• Map/Reduce Slaves “Task Trackers”

• Run Map and Reduce tasks upon instruction from the Job 
Tracker

• Manage storage and transmission of intermediate output
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Map/Reduce Dataflow
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M-R Example

• Input: multi-TB dataset
• Record: Vector with 3 float32_t values
• Goal: frequency histogram of one of the components
• Min and max are unknown, so are the bucket sizes
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M-R Example (cont.)

• Framework partitions input into chunks of records
• Map function takes a single record

- Extract desired component v
- Emit the tuple (k=v, 1)

• Framework groups records with the same k.
• Reduce function receives a list of all the tuples 

where for a given k
- Sum the value (1) for all the tuples
- Emit the tuple (k=v, sum)
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M-R features

• There’s more to it than M-R: Map-Shuffle-Reduce
• Custom input parsing and aggregate functions
• Input partitioning & task scheduling
• System support:

• Co-location of storage & computation
• Failure isolation & handling
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Hadoop Dataflow (I2O)

Partition

I

I0..m-1

M0..m-1

InputSplit

Map

M0..m-1R0..r-1

O0..r-1

R0..r-1

Copy/Sort/Merge

Reduce
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Input => InputSplits

• Input specified as collection of paths (on HDFS)
• JobClient specifies an InputFormat
• The InputFormat provides a description of splits
• Default: FileSplit

• Each split is approximately DFS’s block
- mapred.min.split.size overrides this

• Gzipped files are not split
• A “split” does not cross file boundary

• Number of Splits = Number of Map tasks
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InputSplit => RecordReader

• Record = (Key, Value)
• InputFormat

• TextInputFormat
• Unless 1st, ignore all before 1st 

separator
• Read-ahead to next block to complete 

last record

Byte 0

EOF
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Partitioner

• Default partitioner evenly distributes records 
• hashcode(key) mod NR

• Partitioner could be overridden
• When Value should also be considered

- a single key, but values distributed
• When a partition needs to obey other semantics

- Al URLs from a domain should be in the same file
• Interface Partitioner

• int getPartition(K, V, nPartitions)
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Producing Fully Sorted Output

• By default each reducer gets input sorted on key
• Typically reducer output order is the same as input
• Each part file is sorted
• How to make sure that Keys in part i are all less 

than keys in part i+1 ?
• Fully sorted output
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Fully sorted output (contd.)

• Simple solution: Use single reducer
• But, not feasible for large data
• Insight: Reducer input also must be fully sorted
• Key to reducer mapping is determined by partitioner
• Design a partitioner that implements fully sorted 

reduce input
• Hint: Histogram equalization + Sampling
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Streaming

• What about non-Java programmers?
• Can define Mapper and Reducer using Unix text filters
• Typically use grep, sed, python, or perl scripts

• Format for input and output is: key \t value \n
• Allows for easy debugging and experimentation
• Slower than Java programs

bin/hadoop jar hadoop-streaming.jar -input 
in_dir -output out_dir -mapper 
streamingMapper.sh -reducer 
streamingReducer.sh

• Mapper: sed -e 's| |\n|g' | grep .
• Reducer: uniq -c | awk '{print $2 "\t" $1}'
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Key-Value Separation in Map Output
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Secondary Sort
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Pipes (C++)

• C++ API and library to link application with
• C++ application is launched as a sub-process
• Keys and values are std::string with binary data
• Word count map looks like:
class WordCountMap: public HadoopPipes::Mapper {
public:
  WordCountMap(HadoopPipes::TaskContext& context){}

  void map(HadoopPipes::MapContext& context) {
    std::vector<std::string> words = 
      HadoopUtils::splitString(context.getInputValue(), " ");
    for(unsigned int i=0; i < words.size(); ++i) {
      context.emit(words[i], "1");
    }
  }
};



    MSST Tutorial on Data-Intesive Scalable Computing for Science 
September 08

Pipes (C++)
The reducer looks like:
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class WordCountReduce: public HadoopPipes::Reducer {
public:
  WordCountReduce(HadoopPipes::TaskContext& context){}
  void reduce(HadoopPipes::ReduceContext& context) {
    int sum = 0;
    while (context.nextValue()) {
      sum += HadoopUtils::toInt(context.getInputValue());
    }
    context.emit(context.getInputKey(), 

HadoopUtils::toString(sum));
  }
};
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Pipes (C++)
• And define a main function to invoke the tasks:
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int main(int argc, char *argv[]) {
  return HadoopPipes::runTask(
     HadoopPipes::TemplateFactory<WordCountMap, 

                              WordCountReduce, void,
                            WordCountReduce>());

}
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Deploying Auxiliary Files

• Command line option: -file auxFile.dat
• Job submitter adds file to job.jar
• Unjarred on the task tracker
• Available as $cwd/auxFile.dat
• Not suitable for more / larger / frequently used files 
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Using Distributed Cache

• Sometimes, you need to read “side” files such as 
“in.txt”

• Read-only Dictionaries (e.g., filtering patterns)
• Libraries dynamically linked to streaming programs
• Tasks themselves can fetch files from HDFS

• Not Always! (Unresolved symbols)
• Performance bottleneck
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Caching Files Across Tasks

• Specify “side” files via –cacheFile
• If lot of such files needed

• Jar them up (.tgz coming soon)
• Upload to HDFS
• Specify via –cacheArchive

• TaskTracker downloads these files “once”
• Unjars archives
• Accessible in task’s cwd before task even starts
• Automtic cleanup upon exit
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How many Maps and Reduces

• Maps
• Usually as many as the number of HDFS blocks being 

processed, this is the default
• Else the number of maps can be specified as a hint
• The number of maps can also be controlled by specifying 

the minimum split size
• The actual sizes of the map inputs are computed by:

max(min(block_size, data/#maps), min_split_size)
• Reduces

• Unless the amount of data being processed is small:
0.95*num_nodes*mapred.tasktracker.tasks.maximum
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Map Output => Reduce Input

• Map output is stored across local disks of task 
tracker

• So is reduce input
• Each task tracker machine also runs a Datanode
• In our config, datanode uses “up to” 85% of local 

disks
• Large intermediate outputs can fill up local disks 

and cause failures
• Non-even partitions too
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Performance Analysis of Map-Reduce

• MR performance requires
• Maximizing Map input transfer rate
• Pipelined writes from Reduce
• Small intermediate output
• Opportunity to Load Balance
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Map Input Transfer Rate

• Input locality
• HDFS exposes block locations
• Each map operates on one block

• Efficient decompression
• More efficient in Hadoop 0.18

• Minimal deserialization overhead
• Java deserialization is very verbose
• Use Writable/Text
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Performance Example

• Count lines in text files totaling several hundred GB
• Approach:

• Identity Mapper (input: text, output: same text)
• A single Reducer counts the lines and outputs the total 

• What is wrong ?
• This happened, really!
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Intermediate Output

• Almost always the most expensive component
• (M x R) transfers over the network
• Merging and Sorting

• How to improve performance:
• Avoid shuffling/sorting if possible
• Minimize redundant transfers
• Compress
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Avoid shuffling/sorting

• Set number of reducers to zero
• Known as map-only computations
• Filters, Projections, Transformations

• Beware of number of files generated
• Each map task produces a part file
• Make map produce equal number of output files as input 

files
- How? Variable indicating current file being processed
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Minimize Redundant Transfers

• Combiners
• Goal is to decrease size of the transient data

• When maps produce many repeated keys
• Often useful to do a local aggregation following the map
• Done by specifying a Combiner
• Combiners have the same interface as Reducers, and 

often are the same class.
• Combiners must not have side effects, because they run 

an indeterminate number of times.
• conf.setCombinerClass(Reduce.class);
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Compress Output
• Compressing the outputs and intermediate data will often 

yield huge performance gains
• Specified via a configuration file or set programatically
• Set mapred.output.compress=true to compress job output
• Set mapred.compress.map.output=true to compress map output

• Compression types:
• mapred.output.compression.type
• “block” - Group of keys and values are compressed together
• “record” - Each value is compressed individually
• Block compression is almost always best

• Compression codecs:
• mapred.output.compression.codec
• Default (zlib) - slower, but more compression
• LZO - faster, but less compression
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Opportunity to Load Balance

• Load imbalance inherent in the application
• Imbalance in input splits
• Imbalance in computations
• Imbalance in partition sizes

• Load imbalance due to heterogeneous hardware
• Over time performance degradation

• Give Hadoop an opportunity to do load-balancing
• How many nodes should I allocate ?
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Load Balance (contd.)

• M = total number of simultaneous map tasks
• M = map task slots per tasktracker * nodes
• Chose nodes such that total mappers is between 

5*M and 10*M.
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Configuring Task Slots

• mapred.tasktracker.map.tasks.maximum
• mapred.tasktracker.reduce.tasks.maximum
• Tradeoffs:

• Number of cores
• Amount of memory
• Number of local disks
• Amount of local scratch space
• Number of processes

• Consider resources consumed by TaskTracker & 
Datanode processes
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Speculative execution

• The framework can run multiple instances of slow 
tasks
• Output from instance that finishes first is used
• Controlled by the configuration variable 

mapred.speculative.execution=[true|false]
• Can dramatically bring in long tails on jobs
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Performance

• Is your input splittable?
• Gzipped files are NOT splittable

• Are partitioners uniform?
• Buffering sizes (especially io.sort.mb)
• Do you need to Reduce?
• Only use singleton reduces for very small data

• Use Partitioners and cat to get a total order
• Memory usage

• Do not load all of your inputs into memory.
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Debugging & Diagnosis

• Run job with the Local Runner
• Set mapred.job.tracker to “local”
• Runs application in a single process and thread

• Run job on a small data set on a 1 node cluster
• Can be done on your local dev box

• Set keep.failed.task.files to true
• This will keep files from failed tasks that can be used for 

debugging
• Use the IsolationRunner to run just the failed task

• Java Debugging hints
• Send a kill -QUIT to the Java process to get the call 

stack, locks held, deadlocks
51



• Takeaway: Changing algorithm to suit architecture 
yields best implementation
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Example: Computing Standard Deviation

€ 

σ =
1
N

(xi − x)
2

i=1

N

∑
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Implementation 1

• Two Map-Reduce stages
• First stage computes Mean
• Second stage computes std deviation
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Implementation 1 (contd.)

• Stage 1: Compute Mean
• Map Input (xi for i = 1 ..Nm) 
• Map Output (Nm, Mean(x1..Nm))
• Single Reducer
• Reduce Input (Group(Map Output))
• Reduce Output (Mean(x1..N))
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Implementation 1 (contd.)

• Stage 2: Compute Standard deviation
• Map Input (xi for i = 1 ..Nm) & Mean(x1..N)
• Map Output (Sum(xi – Mean(x))2 for i = 1 ..Nm
• Single Reducer
• Reduce Input (Group (Map Output)) & N
• Reduce Output (Standard Deviation)

• Problem: Two passes over large input data  
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Implementation 2
• Second definition algebraic equivalent

• Be careful about numerical accuracy, though
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Implementation 2 (contd.)

• Single Map-Reduce stage
• Map Input (xi for i = 1 ..Nm) 

• Map Output (Nm, [Sum(x2
1..Nm),Mean(x1..Nm)])

• Single Reducer
• Reduce Input (Group (Map Output))
• Reduce Output (σ)
• Advantage: Only a single pass over large input
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Q&A
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