
Data-Intensive Computing with Hadoop

Thanks to:
Milind Bhandarkar <milindb@yahoo-inc.com>
Yahoo! Inc.

mailto:milindb@yahoo-inc.com
mailto:milindb@yahoo-inc.com

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Agenda

• Hadoop Overview
• HDFS
• Programming Hadoop

• Architecture
• Examples
• Hadoop Streaming
• Performance Tuning

• Debugging Hadoop Programs

2

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Hadoop overview

• Apache Software Foundation project
• Framework for running applications on large clusters
• Modeled after Google’s MapReduce / GFS framework
• Implemented in Java

• Includes
• HDFS - a distributed filesystem
• Map/Reduce - offline computing engine
• Recently: Libraries for ML and sparse matrix comp.

• Y! is biggest contributor
• Young project, already used by many

3

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Hadoop clusters

It’s used in clusters with thousands of nodes at
Internet services companies

4

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Who Uses Hadoop?

Amazon/A9
Facebook

Google
IBM

Intel Research
Joost

Last.fm
New York Times

PowerSet
Veoh

Yahoo!

5

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Hadoop Goals

• Scalable
• Petabytes (1015 Bytes) of data on thousands on nodes
• Much larger than RAM, even single disk capacity

• Economical
• Use commodity components when possible
• Lash thousands of these into an effective compute and

storage platform
• Reliable

• In a large enough cluster something is always broken
• Engineering reliability into every app is expensive

6

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Sample Applications
• Data analysis is the core of Internet services.
• Log Processing

• Reporting
• Session Analysis
• Building dictionaries
• Click fraud detection

• Building Search Index
• Site Rank

• Machine Learning
• Automated Pattern-Detection/Filtering
• Mail spam filter creation

• Competitive Intelligence
• What percentage of websites use a given feature?

7

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Problem: Bandwidth to Data

• Need to process 100TB datasets
• On 1000 node cluster reading from remote storage

(on LAN)
• Scanning @ 10MB/s = 165 min

• On 1000 node cluster reading from local storage
• Scanning @ 50-200MB/s = 33s-8 min

• Moving computation to the data enables I/O
bandwidth scaling
• Network is the bottleneck
• Data size is reduced by the processing

• Need visibility into data placement

8

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Problem: Scaling Reliably is Hard

• Need to store Petabytes of data
• On 1000s of nodes, MTBF < 1 day
• Many components disks, nodes, switches, ...
• Something is always broken

• Need fault tolerant store
• Handle hardware faults transparently
• Provide reasonable availability guarantees

9

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Hadoop Distributed File System

• Fault tolerant, scalable, distributed storage system
• Designed to reliably store very large files across

machines in a large cluster
• Data Model

• Data is organized into files and directories
• Files are divided into uniform sized blocks and distributed

across cluster nodes
• Blocks are replicated to handle hardware failure
• Corruption detection and recovery:

Filesystem-level checksuming
• HDFS exposes block placement so that computes can be

migrated to data

10

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

HDFS Terminology

• Namenode
• Datanode
• DFS Client
• Files/Directories
• Replication
• Blocks
• Rack-awareness

11

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

HDFS Architecture

• Similar to other NASD-based DFSs
• Master-Worker architecture
• HDFS Master “Namenode”

• Manages the filesystem namespace
• Controls read/write access to files
• Manages block replication
• Reliability: Namespace checkpointing and journaling

• HDFS Workers “Datanodes”
• Serve read/write requests from clients
• Perform replication tasks upon instruction by Namenode

12

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Interacting with HDFS

• User-level library linked into the application
• Command line interface

13

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Map-Reduce overview

• Programming abstraction and runtime support for
scalable data processing

• Scalable associative primitive:
Distributed “GROUP-BY”

• Observations:
• Distributed resilient apps are hard to write
• Common application pattern

- Large unordered input collection of records
- Process each record
- Group intermediate results
- Process groups

• Failure is the common case

14

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Map-Reduce

• Application writer specifies
• A pair of functions called Map and Reduce
• A set of input files

• Workflow
• Generate FileSplits from input files, one per Map task
• Map phase executes the user map function transforming

input records into a new set of kv-pairs
• Framework shuffles & sort tuples according to their keys
• Reduce phase combines all kv-pairs with the same key

into new kv-pairs
• Output phase writes the resulting pairs to files

• All phases are distributed among many tasks
• Framework handles scheduling of tasks on cluster
• Framework handles recovery when a node fails

15

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Hadoop MR - Terminology

• Job
• Task
• JobTracker
• TaskTracker
• JobClient
• Splits
• InputFormat/RecordReader

16

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Hadoop M-R architecture

• Map/Reduce Master “Job Tracker”
• Accepts Map/Reduce jobs submitted by users
• Assigns Map and Reduce tasks to Task Trackers
• Monitors task and Task Tracker status, re-executes tasks

upon failure
• Map/Reduce Slaves “Task Trackers”

• Run Map and Reduce tasks upon instruction from the Job
Tracker

• Manage storage and transmission of intermediate output

17

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Map/Reduce Dataflow

18

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

M-R Example

• Input: multi-TB dataset
• Record: Vector with 3 float32_t values
• Goal: frequency histogram of one of the components
• Min and max are unknown, so are the bucket sizes

19

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

M-R Example (cont.)

• Framework partitions input into chunks of records
• Map function takes a single record

- Extract desired component v
- Emit the tuple (k=v, 1)

• Framework groups records with the same k.
• Reduce function receives a list of all the tuples

where for a given k
- Sum the value (1) for all the tuples
- Emit the tuple (k=v, sum)

20

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

M-R features

• There’s more to it than M-R: Map-Shuffle-Reduce
• Custom input parsing and aggregate functions
• Input partitioning & task scheduling
• System support:

• Co-location of storage & computation
• Failure isolation & handling

21

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Hadoop Dataflow (I2O)

Partition

I

I0..m-1

M0..m-1

InputSplit

Map

M0..m-1R0..r-1

O0..r-1

R0..r-1

Copy/Sort/Merge

Reduce

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Input => InputSplits

• Input specified as collection of paths (on HDFS)
• JobClient specifies an InputFormat
• The InputFormat provides a description of splits
• Default: FileSplit

• Each split is approximately DFS’s block
- mapred.min.split.size overrides this

• Gzipped files are not split
• A “split” does not cross file boundary

• Number of Splits = Number of Map tasks

23

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

InputSplit => RecordReader

• Record = (Key, Value)
• InputFormat

• TextInputFormat
• Unless 1st, ignore all before 1st

separator
• Read-ahead to next block to complete

last record

Byte 0

EOF

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Partitioner

• Default partitioner evenly distributes records
• hashcode(key) mod NR

• Partitioner could be overridden
• When Value should also be considered

- a single key, but values distributed
• When a partition needs to obey other semantics

- Al URLs from a domain should be in the same file
• Interface Partitioner

• int getPartition(K, V, nPartitions)

25

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Producing Fully Sorted Output

• By default each reducer gets input sorted on key
• Typically reducer output order is the same as input
• Each part file is sorted
• How to make sure that Keys in part i are all less

than keys in part i+1 ?
• Fully sorted output

26

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Fully sorted output (contd.)

• Simple solution: Use single reducer
• But, not feasible for large data
• Insight: Reducer input also must be fully sorted
• Key to reducer mapping is determined by partitioner
• Design a partitioner that implements fully sorted

reduce input
• Hint: Histogram equalization + Sampling

27

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Streaming

• What about non-Java programmers?
• Can define Mapper and Reducer using Unix text filters
• Typically use grep, sed, python, or perl scripts

• Format for input and output is: key \t value \n
• Allows for easy debugging and experimentation
• Slower than Java programs

bin/hadoop jar hadoop-streaming.jar -input
in_dir -output out_dir -mapper
streamingMapper.sh -reducer
streamingReducer.sh

• Mapper: sed -e 's| |\n|g' | grep .
• Reducer: uniq -c | awk '{print $2 "\t" $1}'

28

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Key-Value Separation in Map Output

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Secondary Sort

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Pipes (C++)

• C++ API and library to link application with
• C++ application is launched as a sub-process
• Keys and values are std::string with binary data
• Word count map looks like:
class WordCountMap: public HadoopPipes::Mapper {
public:
 WordCountMap(HadoopPipes::TaskContext& context){}

 void map(HadoopPipes::MapContext& context) {
 std::vector<std::string> words =
 HadoopUtils::splitString(context.getInputValue(), " ");
 for(unsigned int i=0; i < words.size(); ++i) {
 context.emit(words[i], "1");
 }
 }
};

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Pipes (C++)
The reducer looks like:

32

class WordCountReduce: public HadoopPipes::Reducer {
public:
 WordCountReduce(HadoopPipes::TaskContext& context){}
 void reduce(HadoopPipes::ReduceContext& context) {
 int sum = 0;
 while (context.nextValue()) {
 sum += HadoopUtils::toInt(context.getInputValue());
 }
 context.emit(context.getInputKey(),

HadoopUtils::toString(sum));
 }
};

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Pipes (C++)
• And define a main function to invoke the tasks:

33

int main(int argc, char *argv[]) {
 return HadoopPipes::runTask(
 HadoopPipes::TemplateFactory<WordCountMap,

 WordCountReduce, void,
 WordCountReduce>());

}

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Deploying Auxiliary Files

• Command line option: -file auxFile.dat
• Job submitter adds file to job.jar
• Unjarred on the task tracker
• Available as $cwd/auxFile.dat
• Not suitable for more / larger / frequently used files

34

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Using Distributed Cache

• Sometimes, you need to read “side” files such as
“in.txt”

• Read-only Dictionaries (e.g., filtering patterns)
• Libraries dynamically linked to streaming programs
• Tasks themselves can fetch files from HDFS

• Not Always! (Unresolved symbols)
• Performance bottleneck

35

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Caching Files Across Tasks

• Specify “side” files via –cacheFile
• If lot of such files needed

• Jar them up (.tgz coming soon)
• Upload to HDFS
• Specify via –cacheArchive

• TaskTracker downloads these files “once”
• Unjars archives
• Accessible in task’s cwd before task even starts
• Automtic cleanup upon exit

36

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

How many Maps and Reduces

• Maps
• Usually as many as the number of HDFS blocks being

processed, this is the default
• Else the number of maps can be specified as a hint
• The number of maps can also be controlled by specifying

the minimum split size
• The actual sizes of the map inputs are computed by:

max(min(block_size, data/#maps), min_split_size)
• Reduces

• Unless the amount of data being processed is small:
0.95*num_nodes*mapred.tasktracker.tasks.maximum

37

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Map Output => Reduce Input

• Map output is stored across local disks of task
tracker

• So is reduce input
• Each task tracker machine also runs a Datanode
• In our config, datanode uses “up to” 85% of local

disks
• Large intermediate outputs can fill up local disks

and cause failures
• Non-even partitions too

38

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Performance Analysis of Map-Reduce

• MR performance requires
• Maximizing Map input transfer rate
• Pipelined writes from Reduce
• Small intermediate output
• Opportunity to Load Balance

39

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Map Input Transfer Rate

• Input locality
• HDFS exposes block locations
• Each map operates on one block

• Efficient decompression
• More efficient in Hadoop 0.18

• Minimal deserialization overhead
• Java deserialization is very verbose
• Use Writable/Text

40

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Performance Example

• Count lines in text files totaling several hundred GB
• Approach:

• Identity Mapper (input: text, output: same text)
• A single Reducer counts the lines and outputs the total

• What is wrong ?
• This happened, really!

41

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Intermediate Output

• Almost always the most expensive component
• (M x R) transfers over the network
• Merging and Sorting

• How to improve performance:
• Avoid shuffling/sorting if possible
• Minimize redundant transfers
• Compress

42

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Avoid shuffling/sorting

• Set number of reducers to zero
• Known as map-only computations
• Filters, Projections, Transformations

• Beware of number of files generated
• Each map task produces a part file
• Make map produce equal number of output files as input

files
- How? Variable indicating current file being processed

43

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Minimize Redundant Transfers

• Combiners
• Goal is to decrease size of the transient data

• When maps produce many repeated keys
• Often useful to do a local aggregation following the map
• Done by specifying a Combiner
• Combiners have the same interface as Reducers, and

often are the same class.
• Combiners must not have side effects, because they run

an indeterminate number of times.
• conf.setCombinerClass(Reduce.class);

44

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Compress Output
• Compressing the outputs and intermediate data will often

yield huge performance gains
• Specified via a configuration file or set programatically
• Set mapred.output.compress=true to compress job output
• Set mapred.compress.map.output=true to compress map output

• Compression types:
• mapred.output.compression.type
• “block” - Group of keys and values are compressed together
• “record” - Each value is compressed individually
• Block compression is almost always best

• Compression codecs:
• mapred.output.compression.codec
• Default (zlib) - slower, but more compression
• LZO - faster, but less compression

45

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Opportunity to Load Balance

• Load imbalance inherent in the application
• Imbalance in input splits
• Imbalance in computations
• Imbalance in partition sizes

• Load imbalance due to heterogeneous hardware
• Over time performance degradation

• Give Hadoop an opportunity to do load-balancing
• How many nodes should I allocate ?

46

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Load Balance (contd.)

• M = total number of simultaneous map tasks
• M = map task slots per tasktracker * nodes
• Chose nodes such that total mappers is between

5*M and 10*M.

47

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Configuring Task Slots

• mapred.tasktracker.map.tasks.maximum
• mapred.tasktracker.reduce.tasks.maximum
• Tradeoffs:

• Number of cores
• Amount of memory
• Number of local disks
• Amount of local scratch space
• Number of processes

• Consider resources consumed by TaskTracker &
Datanode processes

48

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Speculative execution

• The framework can run multiple instances of slow
tasks
• Output from instance that finishes first is used
• Controlled by the configuration variable

mapred.speculative.execution=[true|false]
• Can dramatically bring in long tails on jobs

49

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Performance

• Is your input splittable?
• Gzipped files are NOT splittable

• Are partitioners uniform?
• Buffering sizes (especially io.sort.mb)
• Do you need to Reduce?
• Only use singleton reduces for very small data

• Use Partitioners and cat to get a total order
• Memory usage

• Do not load all of your inputs into memory.

50

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Debugging & Diagnosis

• Run job with the Local Runner
• Set mapred.job.tracker to “local”
• Runs application in a single process and thread

• Run job on a small data set on a 1 node cluster
• Can be done on your local dev box

• Set keep.failed.task.files to true
• This will keep files from failed tasks that can be used for

debugging
• Use the IsolationRunner to run just the failed task

• Java Debugging hints
• Send a kill -QUIT to the Java process to get the call

stack, locks held, deadlocks
51

• Takeaway: Changing algorithm to suit architecture
yields best implementation

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Example: Computing Standard Deviation

€

σ =
1
N

(xi − x)
2

i=1

N

∑

52

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Implementation 1

• Two Map-Reduce stages
• First stage computes Mean
• Second stage computes std deviation

53

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Implementation 1 (contd.)

• Stage 1: Compute Mean
• Map Input (xi for i = 1 ..Nm)
• Map Output (Nm, Mean(x1..Nm))
• Single Reducer
• Reduce Input (Group(Map Output))
• Reduce Output (Mean(x1..N))

54

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Implementation 1 (contd.)

• Stage 2: Compute Standard deviation
• Map Input (xi for i = 1 ..Nm) & Mean(x1..N)
• Map Output (Sum(xi – Mean(x))2 for i = 1 ..Nm
• Single Reducer
• Reduce Input (Group (Map Output)) & N
• Reduce Output (Standard Deviation)

• Problem: Two passes over large input data

55

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Implementation 2
• Second definition algebraic equivalent

• Be careful about numerical accuracy, though

€

σ =
1
N

xi
2 − Nx

2

i=1

N

∑

56

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Implementation 2 (contd.)

• Single Map-Reduce stage
• Map Input (xi for i = 1 ..Nm)

• Map Output (Nm, [Sum(x2
1..Nm),Mean(x1..Nm)])

• Single Reducer
• Reduce Input (Group (Map Output))
• Reduce Output (σ)
• Advantage: Only a single pass over large input

 MSST Tutorial on Data-Intesive Scalable Computing for Science
September 08

Q&A

58

