
Zest I/O
Paul Nowoczynski, Jared Yanovich

Advanced Systems, Pittsburgh Supercomputing Center

MSST '08 Baltimore, MD

Parallel I/O system designed to optimize the compute
I/O subsystem for checkpointing / application
snapshotting.

 Write() focused optimizations – transitory cache with no
application read() capability.

 Expose about 90% of the total spindle bandwidth to the
application, reliably.

 Emphasizes the use of commodity hardware

 End-to-end design.
 Client to the disk and everything in between.

Zest – What is it?
Pittsburgh Supercomputing Center

 Designed and implemented by the PSC Advanced Systems
Group (Nowoczynski, Yanovich, Stone, Sommerfield).

 Work began in September '06.

 Prototype development took about one year.

 Currently most major features are implemented and in test.

Zest: Background
Pittsburgh Supercomputing Center

Checkpointing is the dominant I/O activity on most
HPC systems.

Its characteristics lead to interesting opportunities to
for optimization:

 'N' checkpoint writes for every 1 read.

 Periodic, heavy bursts followed by long latent periods.

 Data does not need to be immediately available for reading.

Zest – Why checkpointing?
Pittsburgh Supercomputing Center

Compute performance is greatly outpacing storage
system performance.

As a result.. Storage system costs are consuming an
increasing percentage of the overall machine budget.

Over the last 7-8 years performance trends have not been
in favor of I/O systems

 Memory capacities in the largest machines have increased
by~25x

 Disk bandwidth by ~4x

Zest – The impetus.
Pittsburgh Supercomputing Center

Opportunities for optimization in today's parallel I/O
systems – do they exist? YES

Current systems deliver end-to-end performance which is a
fraction of their aggregate spindle bandwidth.

If this bandwidth could be reclaimed it would mean:

 Fewer storage system components

 Less failures
 Lower maintenance, management, and power costs

 Improved cost effectiveness for HPC storage systems.

Zest: What can be optimized today?
Pittsburgh Supercomputing Center

Several reasons have been observed:
 Aggregate spindle bandwidth is greater than the bandwidth of

the at least one of the connecting busses.

 Parity calculation engine is a bottleneck.

 Sub-optimal LBA request ordering caused by the filesystem
and/or the RAID layer.

The first two factors may be rectified with better storage
hardware..

The last is the real culprit and is not as easily remedied!

Zest: Why is spindle efficiency poor?
Pittsburgh Supercomputing Center

Today's storage software architectures (filesystems / raid)
generally do not enable disk drives to work in their most
efficient mode.

Overly deterministic data placement schemes result in loss of
disk efficiency due to seek'ing.

 Pre-determined data placement is the result of inferential
metadata models employed by:

 Object-based parallel filesystems

 Raid Systems

 These models are extremely effective at their task but result in
data being forced to specific regions on specific disk drives.

 Results in disk work queues which are not sequentially ordered.

Zest: Software stacks aren't helping.
Pittsburgh Supercomputing Center

Current data placement schemes complicate performance in
degraded scenarios.

In HPC environments, operations are only as fast as the slowest
component...

 Object-based metadata and RAID subsystems expect data to be
placed in a specific location.

 Difficult or impossible to route write requests around a slow or
failed server once I/O has commenced.

 In the current parallel I/O paradigm, these factors have the
potential to drastically hurt scalability and performance
consistency.

Zest: Other negative side-effects
Pittsburgh Supercomputing Center

Zest uses several methods to minimize seeking and
optimize write performance.

 Each disk is controlled by single I/O thread.

 Non-deterministic data placement. (NDDP)

 Client generated parity.

 No Leased locks

Zest: Methods for optimized writes.
Pittsburgh Supercomputing Center

One thread per-disk.

 Exclusive access prevents thrashing.

 Rudimentary scheduler for managing data reconstruction
requests, incoming writes, and reclamation activities.

 Maintains free block map
 Capable of using any data block at any address

 Facilitates sequential access through non-determinism

 Pulls incoming data blocks from a single or multiple queues
called “Raid Vectors”.

Zest: Disk I/O Thread
Pittsburgh Supercomputing Center

Queues on which incoming write buffers are placed to be
consumed by the disk threads.

 Ensures that blocks of differing parity positions are not placed on
the same disk.

 Multiple drives may be assigned to a RV.

 Blocks are pulled from the queue as the disks are ready.

 Slow devices do less works, failed devices are removed.

 > 1 disk per RV creates a second degree of non-determinism.

Zest: Raid Vectors
Pittsburgh Supercomputing Center

1 P2 3

4 5 6 7 P2 31

1 2 7 8 9 10 11 12 13 14 15 P3 4 5 6

Raid Vectors
3+1
7+1

15+1

Disk Drives

Non-determinism on many levels:

 Any parity stripe or group may be handled by any ZestION.
 Slow nodes may be fully or partially bypassed

 Any disk in a Raid Vector may process any block on that vector.

 Assumes that ndisks > (2 x raid stripe width)

 Disk I/O thread may place data block at the location of his choosing.

 Encourages sequential I/O patterns.

Performance is not negatively impacted by the number of clients or
the degree of randomization within the incoming data streams.

Zest: Non-deterministic placement
Pittsburgh Supercomputing Center

Much of the hard work is placed onto the client preventing the
ZestION from being a bottleneck.

 Data blocks are Crc'd and later verified by the ZestION during
the post-processing phase.

 Data verification can be accomplished without read back of the
entire parity group.

 Client computed parity eliminates the need for backend raid
controllers.

 Client caches are not page based but vector-based.

 No global page locks needed.

 Further eliminates server overhead and complexity.

Zest: Client Parity, CRC, and Cache
Pittsburgh Supercomputing Center

Clients

Rpc ThreadsRaid
Vector

Disk
Threads

Increasing entropy allows for more flexibility but more
bookkeeping is required.

NDDP destroys two inferential systems, one we care about the
other is not as critical (right now).

 Block level Raid is no longer semantically relevant.

 Tracking extents, globally, would be expensive.

Zest: NDDP – the cost..
Pittsburgh Supercomputing Center

Declustered Parity Groups

 Parity group membership can no longer be inferred.

 Data and parity blocks are tagged with unique identifiers
that prove their association.

 Important for determining status upon system reboot.

 Parity group state is maintained on separate device.
 Lookups are down with diskID, blockID pair.

Zest: NDDP – the cost..
Pittsburgh Supercomputing Center

File Extent Management
Object-based parallel file systems (i.e. Lustre) use file-object maps to

describe the location of a file's data.

 Map is composed of the number of stripes, the stride, and the starting
stripe.

 Given this map, the location of any file offset may be computed.

Zest has no such construct!

 Providing native read support would require the tracking of a file's
offset, length pairs.

 Extent storage is parallelizable.

Zest: NDDP – the cost..
Pittsburgh Supercomputing Center

Since any parity group may be written to any I/O
server:

 Failure of a single I/O server does not create a hot-spot in the
storage network.

 Requests bound for the failed node may be evenly redistributed to
the remaining nodes.

 Checkpoint bandwidth partitioning on a per-job basis is possible.

Zest: NDDP – additional benenfits.
Pittsburgh Supercomputing Center

Begins once the data ingest phase has halted or
slowed.

 Current post-processing technique rewrites the data into a
lustre filesystem. (syncing)

 In the future, other data processing routines could make use
of the same internal infrastructure..

Zest: Post-processing
Pittsburgh Supercomputing Center

How does Zest sync file data?

 Zest files are 'objects' identified by their Lustre inode
number.

 These are hardlinked to their lustre equivalents on create().

 On write() the client:
 The data buffer

 Metadata slab containing:

 Inode number, Crc, Extent list, etc.

 Syncing is done using the hardlinked immutable path, the
inode, and the extent list.

Zest: Post-processing / Syncing
Pittsburgh Supercomputing Center

Zest provides reliability on par with a typical HPC I/O
system.

 Data redundancy through Raid.

 Recoverability via multi-homed disk configuration.

Zest supports hardware configurations such as the
following.

Zest: Reliability
Pittsburgh Supercomputing Center

4

4

4

4

4

4

4

4
Disk Drive Shelves

Zest I/O Node
Dual Qual-Core

Service and I/O

SAS Links

PCIe

 No single point of failure

IB Links SATA drives

 Scalable Unit

 Support for failover pairs.

 Zest superblocks are tagged with UUIDs to avoid confusion in shared
disk configurations.

 On reboot, corrupt or missing data is rebuilt,
unsynchronized data is rectified.

 Certain modes of disk failure are easily detected and the I/O
thread is quarantined.

 'Fast rebuild' is supported.

 When a disk fails, the Zest server has an list, in memory, of all the active
blocks. Those blocks can rebuilt immediately without scanning the
entire set.

Zest: Reliability Features
Pittsburgh Supercomputing Center

 Test consisted of sequentially writing from each PE into a
separate file.

 Clients used a 7+1 Raid5 parity scheme (12.5% overhead)

Zest Server Hardware
 2 x 4 Core Intel Processors

 Multiple PCI-e Busses

 1 Sas Controllers

 1 IB Interface (DDR)

 12 Drives (@75MB/s per)

Zest: Performance Result
Pittsburgh Supercomputing Center

Zest: Single Disk Rate
Pittsburgh Supercomputing Center

By itself, the Zest backend can easily reach 90%
efficiency.

 12 disks@860MB/s

 Very low CPU utilization due to zero-copy and scsi
generic I/O (sg)

 About 5% of 8 cores.

Zest: Performance Result
Pittsburgh Supercomputing Center

Zest Performance – Linux cluster

 Best case (120pe's), application saw
75% of spindle bandwidth.

 If parity overhead is ignored the
transfer rate represents 89.6% of the
spindle bandwidth!

16pe 40pe 60pe 100pe 120pe

0

100

200

300

400

500

600

700

800

900

App BW

(MB/s)

App BW +

Parity

