

PERCS File System and Storage

Roger Haskin Senior Manager, File Systems IBM Almaden Research Center

© 2008 IBM Corporation

Outline

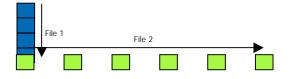
- Background: GPFS, HPCS, NSF Track 1, PERCS architecture, Blue Waters system
- Scaling GPFS to Blue Waters
- Storage Management for Blue Waters

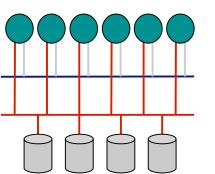
_	_	
_	-	
		Ē

GPFS Concepts

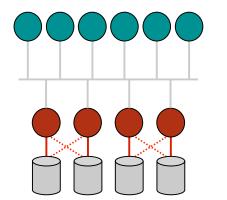
Shared Disks

 All data and metadata on globally accessible block storage


Wide Striping


- All data and metadata striped across all disks
- Files striped block by block across all disks
- ... for throughput and load balancing

Distributed Metadata

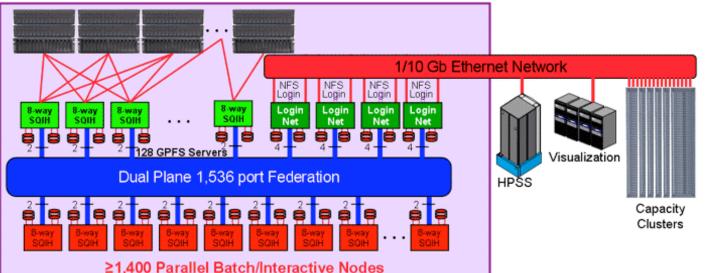

- No metadata node file system nodes manipulate metadata directly
- Distributed locking coordinates disk access from multiple nodes
- Metadata updates journaled to shared disk

Principle: scalability through parallelism and autonomy

GPFS file system nodes Control IP network Disk FC network

GPFS file system nodes

Data / control IP network


GPFS disk server nodes: VSD on AIX, NSD on Linux – RPC interface to raw block devices

	_	

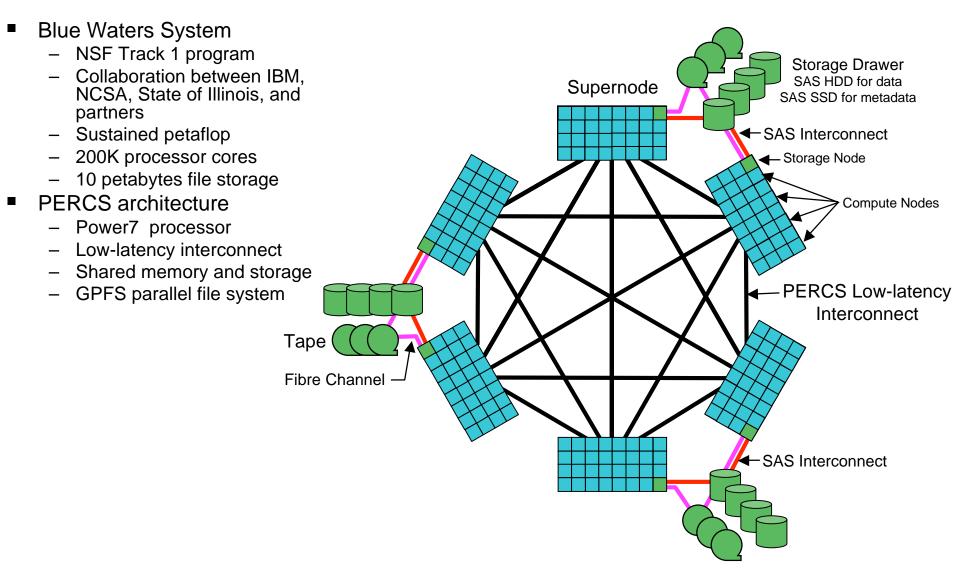
GPFS on ASC Purple/C Supercomputer

Purple System

- At least 1,400 parallel batch/interactive nodes
- 4 Login/network nodes from 2 SQH
- Clustered I/O with 128 SQIH for global I/O
- Dual plane 1,536 port Federation switch
- External networking
 - Login/network nodes for login/NFS/PFTP
 - All external networking is 1-10Gb/s Ethernet

Programming/Usage Model

- Application launch over all compute nodes
- · 1 MPI task/CPU and Shared Memory, full 64b support
- Scalable MPI (MPI_allreduce, buffer space) to 8,192 tasks
- Likely usage
 - •multiple MPI tasks/node with 2-4 OpenMP/MPI task
- Single STDIO interface
- Parallel I/O to single file, multiple serial I/O (1 file/MPI task)
- 1536-node, 100 TF pSeries cluster at Lawrence Livermore National Laboratory
- 2 PB GPFS file system (one mount point)
- 500 RAID conroller pairs, 11000 disk drives
- 126 GB/s parallel I/O measured to a single file (134GB/s to multiple files)

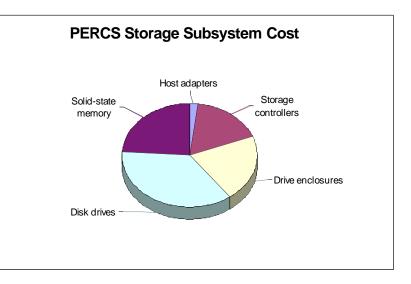

	_	

Peta-scale systems: DARPA HPCS, NSF Track 1

- U.S. Government investing heavily in HPC as a strategic technology
 - DARPA HPCS goal: "Double value every 18 months"
 - NSF Track 1 goal: at least a *sustained* petaflop for actual science applications
- Technical challenges for storage systems
 - Technology curves (flops/core, bytes/drive, bytes/second/drive) are flattening
 - How to make reliable a system with 10-100x today's number of moving parts?
 - How to do the above at an acceptable cost?

	$^{40x} ^{40x}$							0x	\sim
System	Year	TF	GB/s	N	odes	(Cores	Storage	Disks
Blue Pacific	1998	3	3		1464		5856	43 TB	5040
White	2000	12	9		512		8192	147 TB	8064
Purple/C	2005	100	122		1536		12288	2000 TB	11000
HPCS (rough est.)	2011	6000	6000		65536		512K	120000+ TB	200000+

Blue Waters at NCSA



GPFS and **PERCS**

- HPCS file system requirements (a subset)
 - "Balanced" capacity and performance
 - (100 PB file system, 6 TB/s file I/O)
 - Reliability in the presence of localized failures
 - Support for full-up PERCS system (~64K nodes)
 - One trillion files to a single file system
 - 32K file creates per second
 - Streaming I/O at 30GB/s full duplex (for data capture)

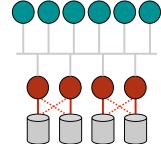
Storage Requirements

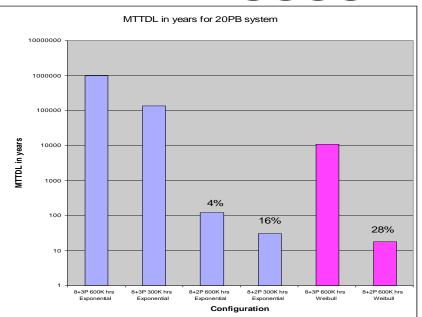
- Reasonable cost 10-20% of system cost
 - Large number of disk drives makes this difficult to achieve
 - Metadata performance requires substantial amount of expensive NVRAM or SSD
- Reliability system must continue to be available in spite of component failures
 - One or more drives continually in rebuild
 - Hard error rate between 10⁻¹⁴ and 10⁻¹⁶
 - "Silent" data corruption
- Productivity non-disruptive repair and rebuild
 - Goal: rebuild overhead in the 2-3% range
 - Standard RAID rebuild can affect performance 30%
 - Parallel file system with wide striping: x% hit on one LUN causes same x% hit to entire file system

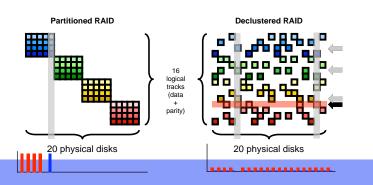
5 years of iTunes music in 32 min!

1PB of metadata!

MTTDL 2 mo for RAID-5, 56 yr for RAID-6


Scaling GPFS metadata operations


- Metadata: the on-disk data structures that represent hierarchical directories, storage allocation maps, file attributes and data pointers, recovery journals, etc.
- Why is it a problem? Structural integrity of the file system requires metadata read/writes to be properly synchronized with each other and with data I/O. Performance is sensitive to the latency of these (small) I/O's.
- Techniques for scaling metadata performance
 - Scaling synchronization (distributing the lock manager)
 - Segregating metadata from data to reduce queuing delays
 - Separate disks
 - Separate fabric ports
 - Different RAID levels for metadata to reduce latency, or solid-state memory
 - Adaptive metadata management (centralized vs. distributed)
 - GPFS currently provides for all these to some degree; work always ongoing
 - Fine-grained directory locking (multiple nodes creating in same directory)
 - Solid-state metadata storage

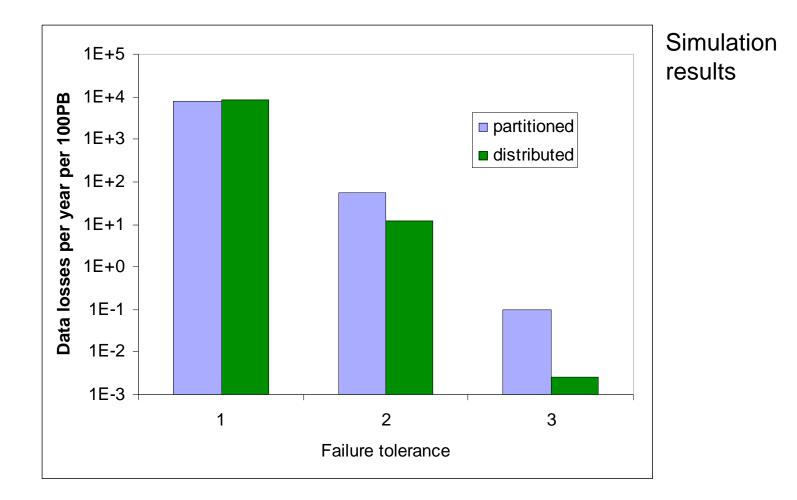

I USDANA I DEMANDA	and the second se	بالاستعاد والمستعاد والمستعاد والمستعاد والمستعاد والمستعاد والمستعاد
IBM General P		al second and a second as a second as the se
IKIVI (-anaral -	arallal Fila	Svetam
		OVSIGIT

PERCS Storage Subsystem (Perseus)

- Use PERCS nodes, direct-attached JBOD, and software RAID vs. conventional RAID controllers
 - Parallel file system already use I/O nodes to connect to storage
 - Forwards data between RAID controller and the cluster fabric
 - Typically a powerful node with almost nothing to do
 - Example: GPFS NSD server, Lustre OSS
 - Use the I/O nodes to repalce the RAID controllers!
 - Conventional SAS JBOD Host Bus Adapters
 - Special JBOD storage drawer for very dense drive packing
 - Solid-state drives for metadata storage (1-2% of total)
 - Software RAID
 - Save 20-30% of the storage subsystem cost
 - Freedom to pick more appropriate algorithms for petascale system
- Software RAID strong codes for better MTTDL
 - Reed Solomon erasure code, "8+3P"
 - ~10⁵ year MTDDL for 100PB file system
- End-to-end, disk-to-GPFS-client data checksums
 - Generated and checked by compute node, stored on disk
 - Necessary to overcome silent data corruption
- Declustered RAID for non-disruptive repair and rebuild
 - spread 8+3 parity groups and spare space randomly across large numbers of drives
 - Allows drive rebuild with only ~2% performance degradation

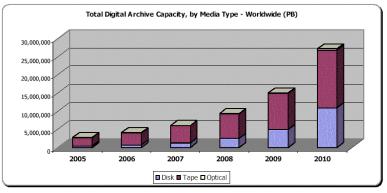
		_	
	_	_	_

Better Data Distribution through Declustered RAID


Partitioned RAID Declustered RAID 16 logical tracks (data + parity) 20 physical disks Relative reed and write throughput for rebuild

- Conventional *Partitioned* RAID partitions drives into arrays, then creates LUNs on top of the arrays
 - Drives must be added in partition quanta
 - Spare space on unused physical drives
 - Work to rebuild concentrated on the remaining drives in the array

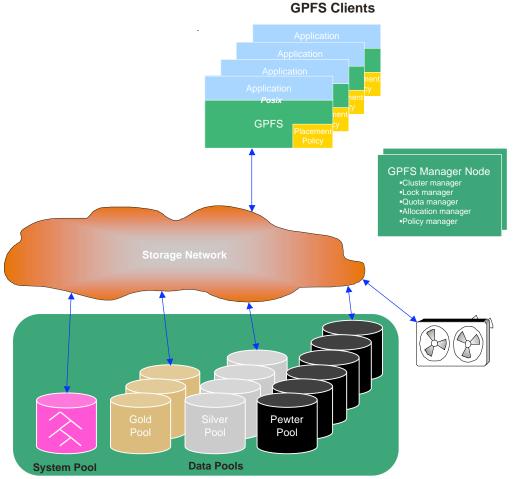
- Declustered RAID distributes data and parity strips of logical tracks evenly across all drives
 - Arbitrary number of drives in the array
 - Individual drives can be added/removed
 - Spare space is also distributed evenly
 - Rebuild spread evenly


Declustered vs. Partitioned RAID Reliability

_	

Hierarchical Storage Management

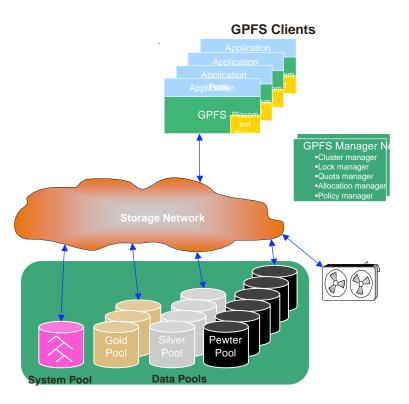
- Increased differentiation in storage hardware
 - Ten years ago....
 - "disks is disks"
 - Tape will soon be dead
 - Now, solid-state, "enterprise" disk, SATA, tape
 - Performance differences (IOPS, throughput, power)
 - ... all with different cost curves!
- Compute cycles are getting cheaper relative to storage
 - Efficient use of storage is becoming more important
- As a result, hierarchical storage management is more important than ever
- Unfortunately, HSM is hard to scale
 - How to make it fast?
 - How to optimize the use of various storage technologies?
 - How to make it reliable?



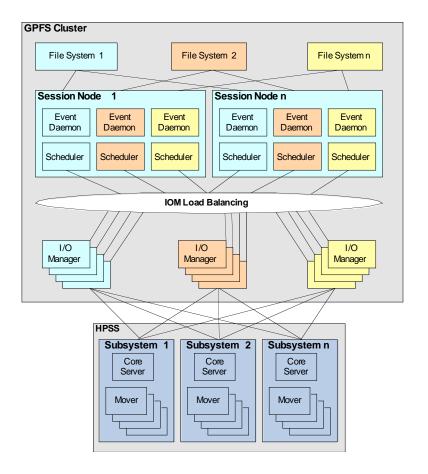
Source: Enterprise Storage Group, January 2006

_	_	_	_
		_	
_	_	_	-

GPFS Information Lifecycle Management (ILM)

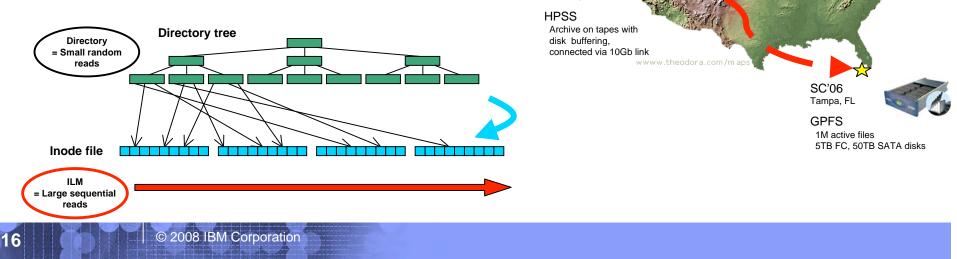

- GPFS ILM abstractions:
 - Storage pool a group of storage volumes (disk or tape)
 - Policy rules for placing files into storage pools
- GPFS policy rules much richer than conventional HSM "how big is the file and when was it last touched"
 - Tiered storage create files on fast, reliable storage (e.g. solid state), move files as they age to slower storage, then to tape (a.k.a. HSM)
 - Differentiated storage place media files on storage with high throughput, database on storage with high IO's per second
 - Grouping keep related files together, e.g. for failure containment or project storage

Policies


- Policy rules control the placement, migration, and retention of files
 - Declarative SQL-like language
 - Rule types:
 - Disk pools: placement, migration, deletion
 - External (tape) pools: premigrate, migrate, recall, purge, list
- Policy rule evaluation
 - Rules evaluated according to schedule, event (e.g. low space in a pool), or explicit command
 - Policy rules applied in turn to each file's metadata
 - Scan file names, order by inode number
 - Join result with inode file records
 - Apply policy rule predicate to each (inode #, name, metadata) tuple
 - If file matches, apply the policy rule's action (e.g. migration)

			_
	_		
	_	_	
_	_	-	

GPFS + HPSS


- HPSS provides a highly-scalable tape archive integrated with GPFS ILM
 - 10s of petabyte to an exabyte of data.
 - 10s of millions to 100s of billions of files
- External HPSS pools provide:
 - HSM services for GPFS.
 - Backup/restore services for GPFS.
 - Both services are tightly coupled for better tape management.
- Files move between GPFS and HPSS using:
 - Scalable HPSS I/O Manager architecture inside the GPFS cluster.
 - Intelligent load balancing logic.
 - Scalable HPSS Mover architecture.
- High performance data movement via:
 - Tape striping for parallel movement of huge files to tape.
 - File aggregation to stream small files to tape.

_			
	_		
		_	
_		-	

Integrated GPFS/HPSS for Scalable HSM

- Prior to integrating HPSS with GPFS policy scans
 - HSM performance limited the size to which the file system could be scaled
 - The problem: HPSS determined HSM candidates by "tree walk" of the file system - recursive readdir() and stat()
 - Sequential stat() calls kill performance (small, random, sequential reads from disk)
 - For large (>1B file) file systems, tree walk can take days
- New Integrated GPFS/HPSS uses GPFS ILM policy scans
 - Readdir/stat replaced by parallel sort/merge
 - Conceptually similar to map-reduce
 - 2B files in 2 hours measured in the lab
 - SC06 demo: 275M files per hour over WAN

NERSC Oakland, CA

Questions?