Indirection Systems for Shingled-Recording Disk
Drives

Yuval Cassuto*, Marco A. A. Sanvido*, Cyril Guyot*, David R. Hall' and Zvonimir Z. Bandic*

Hitachi Global Storage Technologies
* San Jose Research Center
3403 Yerba Buena Road
San Jose, California 95135 USA
t Advanced Magnetic Recording Laboratory
3605 Hwy 52 N
Rochester, Minnesota 55901 USA
Email: {yuval.cassuto, marco.sanvido, cyril.guyot, david.hall, zvonimir.bandic} @hitachigst.com

Abstract—Shingled magnetic recording is a promising
technology to increase the capacity of hard-disk drives
with no significant cost impact. Its main drawback is
that random-write access to the disk is restricted due
to overlap in the layout of data tracks. For computing
and storage systems to enjoy the increased capacity, it
is necessary to mitigate these access restrictions, and
present a storage device that serves unrestricted read/write
requests with adequate performance. This paper proposes
two different indirection systems to mask access restric-
tions and optimize performance. The first one is a disk-
cache based architecture that provides unrestricted access
with manageable drop in performance. A second, more
complex indirection system, utilizes a new storage unit
called S-block. It is shown that the S-block architecture
allows good sustained random-write performance, a point
where the disk-cache architecture fails. The organization
and algorithms of both architectures are specified in detail.
Each was implemented and simulated as a discrete-event
simulation, mimicking its operation on real storage devices.
For the performance evaluation both synthetic workloads
and traces from real workloads were used.

I. INTRODUCTION

AGNETIC hard disk drives have been around for more

than half a century, an unusually long time for an
information-age technology. Their impressive survival as ubig-
uitous devices in various markets is attributed to the wondrous
areal density scaling they have sustained. Each leap in areal
density required significant novelty and effort across the many
employed disciplines, but from the computing and storage
systems’ perspective, the scaling challenges remained latent
deep behind the interface connector. Moreover, each increase
of linear bit density between drive generations has led to higher
read/write data rates, and to better performance observed by
the host. A common wisdom in the disk drive industry is that

978-1-4244-7153-9/10/$26.00 (© 2010 IEEE

the physical scaling processes used so far will soon fail to de-
liver significant additional capacity gains [1]. Newer magnetic
storage technologies, such as bit-patterned media (BPM) [2]
and heat-assisted magnetic recording (HAMR) [3], hold the
promise to scale beyond conventional media, but neither has
yet matured to product-level functionality. A different path
toward higher recording densities is offered by the technology
of shingled magnetic recording (SMR). Without a dramatic
rework of the media, the SMR technology enables the usage of
write heads with stronger fields and higher tolerances, thereby
allowing increasing the grain density without compromising
the stability of the written bits [4, Sec. 3]. The main caveat
of the SMR technology is that it introduces interference
between adjacent tracks. More concretely, because of the wider
signature of the shingled head, data tracks are laid out with
overlap, such that writes to a given track affect bits previously
written in proximate overlapping tracks (hence the adjective
shingled refers to roof shingles, commonly laid out in over-
lapping rows.). Consequently, writing to a randomly chosen
physical block cannot be performed without care to affected
neighboring blocks. Shingled magnetic recording allows even
higher bit densities when combined with two-dimensional
magnetic recording (TDMR) [4], though this paper treats the
case of shingled recording in conjunction with conventional,
random-access read. The details of the interference model and
access limitations of SMR are provided in section II.

The prospect of a double-digit, between 15% to 40%
depending on head and media design, percentage increase of
storage capacity with shingled recording motivates a study on
introducing SMR devices into computing and storage systems.
The premier challenge, from the systems point of view, is
the mitigation of the write-access restrictions, as imposed by
the physical characteristics of the shingled-recording modules.
Depending on the specific storage system/application, the re-
strictions on random-write physical access may be a significant
or minor issue. But in any case, there is a need for a solution
to guarantee the integrity of the written data without assuming

that the logical write access from the host will be appropriately
restricted. The observation that the advent of SMR devices
warrants a system study is not a new one. In a high-level
survey of system ramifications from shingled recording (and
TDMR) [5], Gibson and Polte point to the need to introduce
a software layer to mask access restrictions from the host
system, in a similar way that the flash translation layer (FTL)
masks access restrictions in solid-state storage devices [6].
Such a software layer, specifically designed and evaluated for
magnetic storage devices, is the subject of the current paper.
The general method by which shingled-access restrictions can
be mitigated is by implementing an indirection system, defined
in section IIl. The indirection system can be implemented
either inside the storage device or at a higher layer on the host
(similarly to the JFFS2/UBIFS file systems for flash storage),
though a preferable design would be one that is implemented
by the storage device itself, and will thus have a complete
knowledge of the instantaneous physical layout of data blocks
on disk.

The focus of study in this paper is on achieving good
read/write performance in the presence of shingled-recording
constraints. The fact that SMR drives are likely substitutes of
traditional magnetic disk drives, sets the perfomance of the
latter as the baseline for evaluating the former. The standard
performance criteria for hard-disk drives are mentioned in sub-
section III-A, and are used as a guide for the design and
evaluation of the shingled-recording architectures. The two
proposed indirection architectures: shingled set-associative
disk cache (section IV), and circular buffers with S-blocks
(section V), both use known computer-science concepts that
have appeared before in a variety of applications. Caching
schemes of different structures and flavors are discussed in [7,
Part 1], and circular buffers are commonly used in log-based
file systems [8]. Nevertheless, the manner in which these
concepts are utilized in the proposed indirection systems is
unique to the properties and constraints of shingled magnetic
recording. For each of the two proposed indirection systems,
the discussion consists of architectural details, algorithms, and
simulated-performance results, followed by a short discus-
sion. With a moderate increase in complexity, the S-blocks
architecture is shown to solve key issues of the disk cache
architecture, such as sustained random-write performance,
cache bypass for sequential writes, and data consistency after
power failure. Beyond the introduction and analysis of two
specific indirection architectures, the objective of this paper is
to provide design insight on the general problem of shingled
access in performance-sensitive storage systems.

II. SHINGLED RECORDING ACCESS FUNDAMENTALS
A. Interference profiles

The pivotal manifestation of shingled recording is the
“squeezing” of the tracks below the width of the write
head, hence magnetic field from a write to a given track
may introduce errors to sectors in neighboring tracks. The
resulting interference regime imposes access restrictions upon
the shingled-recording device, causing it to lose the block

random-access property of standard magnetic disk drives. The
interference profile of a shingled-recording device depends on
the particular head and media components that it employs, and
the purpose of this section is to characterize that interference
and propose access restrictions that would prevent data loss in
its presence. The following defines the physical interference
profile of a shingled-recording device.

Definition 1 (Physical Interference Profile) A physical in-
terference profile is defined as the quadruple 1, =
[Sid, Sods Pew, Peew |, that specifies, relative to a given write
location, the area affected by the write. s;q and S,q are the
number of tracks affected in the direction of the inner-diameter
(ID) and outer-diameter (OD), respectively, including the
currently written track. Gcw and Gccw are the circumferential-
direction boundaries of the affected area in the neighboring
tracks.

An example of a physical interference model is provided in
Figure 1, with s;q = 3 and s;q = 1. Notes:

1) In a workable shingled device either s;qg > 1 ors,q > 1,
but not both. If both are greater than one, then it is
not possible to utilize all the tracks, even with access
restrictions.

2) The number of affected tracks include the current track
because s;q or 5,4 are sometimes referred to as the head
width in tracks.

3) If s;q > 1 we say that the shingling direction is from
OD to ID. If 5,4 > 1 we say that the shingling direction
is from ID to OD.

4) A physical interference profile is not constant across the
drive. For example, with a proper head design, the drive
can be formatted such that s;3 > 1 in one part and
Sod > 1 in another, and then the shingling direction
changes as well.

5) A non-shingled drive, as a special case, has s;4 = Soq4 =
1.

Fig. 1. Sample physical interference profile of a shingled drive:
Ip = [1/ 3/ d)cw/ ‘;bccw]

The main thrust of this article is to study drive architectures
that mitigate performance degradation due to restricted access
in a general shingled drive. Therefore, it is most convenient
to abstract out the detailed physical properties of the drive,
and adopt a more “logical” viewpoint. The logical viewpoint
assumes that the physical data blocks are numbered as a one-
dimensional sequence of Physical Block Addresses (PBAs).
Moving from two-dimensional layout of data to one dimen-
sion allows for a succinct specification of shingled-recording
constraints. Hence the architectures and algorithms proposed
herein will enjoy sufficient generality to apply to a wide variety
of physical interference profiles. The definition of the (one-
dimensional) block interference profile now follows.

Definition 2 (Block Interference Profile) A block interfer-
ence profile Iy, is defined as the integer number of PBA
addresses, starting from the write location address, that are
affected by the current write.

Figure 2 illustrates the block interference model for the
example of Z, = 6. The block interference profile implicitly

PBA 0 1 2 3 4 5 6 7 8 9

!

Write

Fig. 2. Sample block interference profile of a shingled drive: 7, = 6

assumes that the shingling direction is in the direction of
increasing physical block addresses. A linear ordering of
blocks can capture the parameters s;q or s,q by setting 7
to be the number of blocks in the adjacent s;q or syq tracks.
However, this ordering fails to capture the locality offered by
the parameters ¢cw and ¢ccw. That said, utilizing the angular
locality for better architectures is non-trivial, if one wants to
obtain sequential read/write performance comparable to a non-
shingled drive (employing angular-selective writing implies
non-sequentiality of the physical writing and reading.). In ad-
dition, for some write-PBAs the block interference profile also
adds subsequent blocks on the same track to the interference
profile (while in a real shingled device only blocks on adjacent
tracks are affected). Nevertheless, alleviating the above over-
strengthening of the interference profile introduces an unre-
alistic requirement of having a different interference profile
for each PBA, since the true interference profile changes, for
example, between the first and last blocks of a track.

B. Constrained access in shingled devices

Suppose that a host command requests to modify a small
chunk of data on the shingled drive. Given the interference
profiles above, writing this small chunk of data will erase

subsequent blocks of valid data. So a fundamental limitation of
shingled devices is their inability to carry out simple update-in-
place write operations. The challenge of designing a storage
device that employs shingled recording is then to allow an
unrestricted write access from the host’s perspective, despite
the restrictions on the physical write process.
Read-Modify-Write

A rudimentary solution to the write-access problem above
is the read-modify-write operation. As its name implies, the
read-modify-write operation first reads a portion of data from
the disk, then modifies part of that portion with the host-
provided write data, and finally writes the whole portion back
to disk. The portion size of data used by the read-modify-write
operation is chosen to be the smallest that will not erase valid
data blocks outside the portion. Note that in the worst case,
when all the disk currently stores valid data, read-modify-
writes may require to operate on a full disk surface. The
performance penalty due to large read-modify-write operations
can be bounded by the following introduction of the shingled
region concept.

Shingled Regions

The size of read-modify-write operations can be bounded by
partitioning the disk surface to independent shingled regions.
A shingled region (also called region for short) is a group of
tracks that is separated from neighboring shingled regions by
a guard band. The purpose of the guard band is to prevent a
write in a given region to interfere with data written on other
regions. That isolation of interference guarantees that no read-
modify-write will need to go beyond a region boundary. Small
shingled regions thus improve performance by limiting the
read-modify-write size required for small host writes. On the
other hand, small shingled regions imply large disk capacity
devoted to guard bands instead of data. This tradeoff between
capacity and performance is not unique to read-modify-write
access, but will be a common thread in all architectures
discussed later in the paper.

The read-modify-write approach, even with the implemen-
tation of guarded shingled regions, does not provide a satisfac-
tory solution to the write restrictions due to shingled recording.
This is because the large ratio between the shingled-region size
and the smallest-write size implies significant decrease in write
performance. Consequently, more sophisticated access archi-
tectures are required to mitigate the performance hindrances
associated with shingled recording.

III. SHINGLED-RECORDING ARCHITECTURES WITH
INDIRECTION

The reason for the poor performance of read-modify-write
is that unless the write request is to a block at the end of
the shingled region, many blocks (on average half) need to be
read and re-written. What then if we could organize matters
such that every write will go to the end of the shingled
region? Having no valid data blocks beyond the write address
is obviously desirable, since no additional reading and writing
are needed in addition to the actual write request. Tempting
as it be, given that host writes are completely unrestricted, the

physical layout of data blocks will need to be made dependent
on the write workload into the storage device. No longer can
a host-side Logical Block Address (LBA) be mapped to a
fixed!, statically computable, PBA. Rather, the relationship
between an LBA and PBA becomes indirect. To maintain the
mapping between LBAs and PBAs, an indirection system is
implemented, whose definition now follows.

Definition 3 (Indirection System) An indirection system is
a collection of data structures and algorithms that assigns
physical locations to logical block addresses and retrieves
physical locations of logical block addresses.

All indirection systems provide the same simple functionality
above, but each one is designed to meet specific system-
level objectives, under resource consumption constraints (e.g.
memory used for data structures, time required to map be-
tween logical and physical addresses). In the case of shingled
recording, the indirection system is to be designed to provide
good read/write performance for a wide variety of natural
workloads. More detailed discussion of performance objectives
follows in sub-section III-A. A key component of indirection
systems is garbage collection. This term refers to operations
invoked by the indirection system to reclaim resources, or
transition the system to a more desirable state.

While new to magnetic disk drives, indirection systems are
commonly used in NAND Flash based storage devices to level
device wear, and to enforce sequential page writes within Flash
blocks [6].

A. Design objectives

The ultimate goal of implementing an indirection system for
shingled recording is to present to the host a storage device
that has essentially the same performance behavior as a non-
shingled drive. If this can be done without a significant added
cost (due to resources required for the indirection system),
then the storage-capacity gain thanks to shingled recording
is deemed attractive to the device user. Unfortunately, the
seemingly innocuous term “performance behavior” turns out
to be very hard to define, as storage devices are used in
different types of systems, under different usage conditions,
and with different performance expectations. With that diffi-
culty in mind, we turn to itemize a list of conditions under
which the shingled recording architecture ought to provide
good performance. This by no means is an exhaustive list
that captures all drive usages, nor we claim that strictly all
of these conditions should be considered. This list merely
reflects the authors’ experience with the interaction between
storage devices and different computing systems. Choosing the
right evaluation criteria is a known challenge in the storage
community [9], but for the sake of completeness, we detail
the main criteria we considered for the work reported here.
Random Read/Write
Random reads/writes, whereby the sequence of read/write

I'Standard non-shingled disk drives can change physical location of LBAs
due to defects, but such re-mappings are rare, small-scale events.

requests from the host has no predictable pattern, is an
important workload to evaluate the performance of a shingled
drive. Different sizes (in blocks) of read/write requests (also
called I/Os) should be considered, and the performance of the
drive will be measured in the average number of host I/Os Per
Second (IOPS) that the drive serves. Two particular random
workloads of interest are one that is localized in space, and
one that is localized in time. A workload localized in space
means that the LBAs in the request sequence are taken from
a sub-range of the drive LBA range. The space locality is
motivated by the large ratio between the total storage device
capacity and the amount of storage accessed by a typical host
application (or even by multiple applications in multi-threaded
or multi-port systems). A workload localized in time means
that a continuous random workload that is spread across the
full LBA range does not last a long time before it changes to a
more structured workload. It is admittedly possible to envision
random workloads that are localized neither in space nor in
time, but such extreme workloads are in the scope of a very
small slice of the storage market that is not the natural target
of shingled-recording drives.

Sequential Read/Write

Sequential reads/writes, whereby the sequence of read/write
requests from the host are addressed to a contiguous sequence
of LBAs, are key workloads to evaluate a shingled drive.
For magnetic disk drives in general, the sequential access
mode provides the best read/write throughput, since it obviates
the need to carry out time-consuming head seeks between
requests. Therefore, any indirection system for a shingled drive
should provide similarly high read/write throughput for the
sequential access mode.

Workloads from Traces

The two previous access modes are used to evaluate the
drive performance using synthetic workloads with well-defined
properties. A complementary way to evaluate performance is
to run “natural” workloads using traces collected from real-
system usage. The advantage of the trace workloads is that
they provide a mix of random and sequential access modes,
as well as less structured access modes. Another benefit from
traces is that they include information on the timing of requests
to the drive, and this can be utilized to optimize the scheduling
of background operations performed by the indirection system.
The main challenge with trace-based performance evaluation
is selecting the right traces to run, and arguing that these traces
are good representatives of real-life workloads.

B. Experimental evaluation

An experimental study of the proposed indirection architec-
tures comes with two objectives.
1) Design: Assist the choice of an architecture and its
parameters.
2) Analysis: Predict the behavior of real shingled-recording
devices under variable workload conditions.
For the experimental results that follow, we use natural
read/write workloads collected from traces, as well as synthetic
random and sequential workloads, to aim at the two research

objectives above. Processing a sequence of read/write com-
mands from these workloads, the resulting physical read/write
commands issued by the proposed indirection systems are
simulated and logged. The experimental method is discrete-
event simulation, whereby the simulator mimics the operation
of the specified indirection system by maintaining its state and
following its actions at all times during the progression of
the workload. A block diagram of the implemented simulator
is given in Figure 3. It comprises two main blocks: the

Indirection Module

R/W LBA R/W PBA Time
Algorithms Drive Model
Throughput
Data
Structures
Statistics
Fig. 3. A block diagram of the simulator used for evaluation of

shingled-recording architectures.

core indirection module mapping LBAs to PBAs (left), and
a physical-drive model to provide access-time information
for the resulting physical commands (right). To compare the
performance of the shingled architecture to a standard non-
shingled drive, the same drive model is also used with LBA
accesses as inputs. The outputs of the simulator are logs of
PBA access, the time those accesses took to execute (or the
average R/W throughput for the workload), and also internal
statistics on the indirection system itself (frequency and size of
garbage-collection operations, memory usage and other state
data). For the quantification of PBA access, three units are
counted, each for read and write. These counts are compared
to the same counts for the LBA access.

1) Number of read/write commands of an arbitrary size in
blocks.

2) Number of block read/writes: the total number of blocks
that are read/written for the workload.

3) Number of adjusted read/writes. Each adjusted
read/write is a read/write of a 1000 or less consecutive
blocks.

Read/write command counter (number 1 above) treats a con-
secutive read/write of an arbitrary length as a single event.
On the other extreme, the block read/write counter (number
2) only counts block accesses without regard to their relative
locations. Neither of these measurements provides a good
insight on the overall excess load of writing to a shingled
architecture, compared to a non-shingled one. On one hand,
the block read/write counter ignores the fact that in magnetic
recording the time cost of accessing sequential blocks is much
smaller than accessing the same number of arbitrarily located

blocks. On the other hand, counting only the number of
commands introduces bias in the other direction, since very
long read/write commands (e.g. a full shingle region) require
significantly more time than single-block commands. The
adjusted read/write counters (number 3), on the other hand,
do capture the performance cost of the workload, hence they
are used to define the write overloading evaluation criterion
defined below. The 1000 blocks/count limit is chosen since
the time to read/write 1000 blocks is in the same order as
a seek time between non-adjacent blocks. The advantage of
the write overloading quantifier is that it can serve as a rough
performance predictor without complex assumptions on seek
times, physical placement of cache regions, and other physical
properties of the disk-drive.

Definition 4 (Write Overloading) For a given architecture
and workload, the write overloading is calculated as

write_overloading =

adj_PBA_write 4+ adj_PBA_read — adj_LBA_read
adj_LBA_write

To the number of adjusted PBA writes we add the difference
between the number of adjusted PBA reads and the number
of adjusted LBA reads. This difference is an estimate to the
excess of adjusted reads used in garbage collection operations.
By counting all the excess reads as outcome of write opera-
tions, we implicitly assume that the read performance of the
shingled architecture is identical to a non-shingled drive. The
overall ratio is thus the number of physical writes and reads
resulting from host write commands divided by the number
of host writes. The write overloading factor is similar to the
write amplification factor used for the wear-analysis of Flash
storage [10], only that here we also count the excess reads in
addition to the excess writes.

In addition to PBA statistics, we also use a drive model to mea-
sure the total simulated physical access time (seek+read/write)
of the full workload, and in addition the average throughput
in different-size time windows. It is important to note that
the purpose of this initial experimental study of shingled-
recording is to primarily understand first-order phenomena in
shingled access. For that reason, the reader’s emphasis should
not be the quoted absolute performance values achievable by
shingled drives, but more their performance behaviors and
design tradeoffs.

IV. SHINGLED ACCESS WITH SET-ASSOCIATIVE DISK
CACHE

The objective, stated in the opening of section III, to write
incoming requests beyond valid data in the shingled region,
lends itself well to a disk-cache based solution. In such a solu-
tion, each logical block has a fixed native physical location in a
shingled region, and a chunk of contiguous LBAs is mapped to
a chunk of contiguous PBAs in a native region. Additionally,
a small number of the shingled regions are provisioned to
be used as a cache for incoming writes. In each cache region,

writes will be addressed to consecutive physical blocks starting
from the first block of the region, with no need for auxiliary
reads/writes until the region is filled. Upon filling of the cache
region, the cached blocks are written to their native physical
locations, by invoking read-modify-write events to the regions
that contain their respective native locations. At that point all
the blocks in cache are invalidated, and the cache is vacant
again for new incoming writes. The indirection system tracks
the valid locations of logical blocks, and serves reads from
cache/native locations accordingly. Data caching in general
is a ubiquitous and highly-effective performance boosting
method, implemented in a variety of computing systems [7].
However, disk-cache solutions, whereby data is cached onto
the magnetic media itself has received far less attention in the
literature [11],[12]. Subsequent sub-sections aim to study and
optimize disk-caching for shingled disk drives.

A. Architectural details

To get from the concept of disk-caching to a working
indirection system for shingled drives, one needs to make some
architectural decisions. The first issue to resolve is how to
assign LBASs to cache regions. First, since a filling of a cache-
region results in a read-modify-write of a full native region, all
LBAs in a native region should be assigned to the same cache
region. Second, since the total cache size is much smaller than
the drive capacity, while the cache region is of similar size to a
native region, then multiple native regions should be assigned
to each cache region. To exploit the spatial locality of access
to the drive, the group of native regions assigned to a cache
region span logical addresses from the whole LBA space of the
drive. More precisely, if the ordering of native regions by their
LBA ranges is [Ny, N1, ..., N,_1], then native region N; is
mapped to cache region i mod M, where M is the number of
cache regions. This assignment allows a workload on a local
LBA range to utilize the entirety of cache space. A diagram
of the set-associative cache layout is provided in Figure 4, for
an example with M = 2 cache regions.

Once the assignment policy of native regions to cache
regions is decided, the two parameters that need to be set are
the percentage of disk space provisioned to cache, and the size
of the shingled regions. Both these parameters offer trade-offs
between capacity and performance. A high percentage of cache
provisioning reduces the device capacity, but allows fewer
and less frequent read-modify-write events due to cache fills.
Similarly, a small region size implies shorter read-modify-
write events, but consumes more of the disk surface for
guard bands between regions. To this end, the cache allocation
percentage and region size are left as optimization parameters
of the architecture. In later sub-sections, the performance of
shingled drives will be evaluated under different choices of
these parameters.

ZPre-assigning native blocks to a subset of cache locations is called in the
literature set-associative caching.

LBA O

Nn—l

L. Co

G

Fig. 4. Disk cache layout and association of native regions to cache
regions. Even-numbered native regions are mapped to Cy and odd-
numbered ones are mapped to Cj.

B. Algorithms

Given the organization of the indirection system described
in the previous sub-section, the way it handles read/write
requests is now detailed. The simplicity of the set-associative
disk cache architecture contributes to the simplicity of the
algorithms it employs. The basic algorithms needed to serve
read/write workloads now follow. For a write operation,

Algorithm IV.1: write_block
Input: LBA
i = native_region(LBA) mod M
if is_full(C;) then
garbage_collect(C;)
end
Append(LBA,C;)

described in Algorithm IV.1, if the cache associated with the
region of the input LBA is full, a garbage_collect operation
(specified in Algorithm IV.2) is invoked before appending the
data block at the end of the cache region. Garbage collection
in this architecture is the invocation of read-modify-write
operations on all the native regions that have valid LBAs
present in the cache. After completing the read-modify-write
operations, the cache is cleaned by invalidating all of its
blocks.

Read operations are served by the Algorithm IV.3. The
function cache_lookup returns the cache physical block ad-
dress of LBA if it is valid in the cache, and NOT_IN_CACHE
otherwise. native(LBA) returns the (fixed) native physical
address of block LBA.

Algorithm IV.2: garbage_collect

Input: C

foreach N; present in C do
read_region(N;)
modify_with_cached_blocks(Nj)
write_region(Nj)

end

Invalidate_all_blocks(C)

Algorithm IV.3: read_block

Input: LBA

i = native_region(LBA) mod M

PBA_c = cache_lookup(LBA,C;)

if PBA_c #= NOT_IN_CACHE then
read(PBA_c)

end

else
read(native(LBA))

end

C. Simulation results

We start the experimental study of the set-associative disk
cache architecture with running a workload collected from 24
operation hours of a personal computer serving an individual
employee in a corporate environment. Initially, we provide
sample results for a fixed set of parameters to exemplify the
different performance evaluation criteria introduced in sub-
section III-B. Subsequently, we use the evaluation criteria to
compare the performance of the architecture under different
choices of parameters.

The chosen parameters for the initial results are a shingled
region size of 50000 blocks (25 MB) and 1% of the storage
space used as disk-cache. The total number of physical-
storage (512 Byte) blocks is 6 - 108, amounting to a storage
capacity of 307 GB. The chosen capacity does not necessarily
represent the capacity of real SMR products, but rather, is
used to match the footprint of the simulated benchmarks. With
those parameters, the results are summarized in Table 1. The
results of the shingled set-associative disk cache architecture
are listed in the right-most column, in comparison to the
results in the center column, of a standard non-shingled device
running the same workload. As the results show, employing the

Measurement non-shingled | set-associative disk cache
reads 435,285 438,758
writes 75,615 77,713
block reads 8,394,244 112,343,297
block writes 2,889,969 105,787,800
adjusted reads 435,565 542,968
adjusted writes 75,615 180,613
[total time [sec] | 623.24 [2172.81
TABLE I

COMPARISON BETWEEN SHINGLED SET-ASSOCIATIVE 1% DISK CACHE
AND NON-SHINGLED ARCHITECTURES FOR A SAMPLE PARAMETER SET.

shingled architecture with these parameters results in a write
overloading factor of 3.8 and total-time slowdown> of factor
3.48. This reasonable performance degradation is in stark favor
compared to a pure read-modify-write architecture that results
in 3-4 orders of magnitude degradation for the same region
size.

We next wish to examine the effect of the total size of
the shingled disk cache on read/write performance. For that
we take a similar workload, which is more write intensive
than the one used for Table I's results. We fix the architecture
parameters as above (drive size, region size), and vary the
percentage of storage used as disk cache from 1% to 10% in
steps of 1%. We expect the write overloading and slowdown
factors to be smaller for larger cache sizes, since read-modify-
writes of native regions are amortized over more LBA writes.
The results of that experiment are given in Figure 5, where
both the write overloading (solid line) and the total-time
slowdown (dashed line) are plotted. The two curves in Figure 5

15 T T T T T 15
Write overloading —*—
14 Total-time slowdown ——&-— | 14
13 i 13
12 12
1 11
3 10 10
E 9 9 %
3 8 -
g 7 [
= 6 6
5 5
4 4
S s . 3
R
2 e 2
1 1
0 1 2 3 4 5 6 7 8 9 10 M
cache size [%]
Fig. 5. Write overload (solid) and total-time slowdown (dashed), as

a function of cache size.

show that both measures of performance degradation have
a similar monotone decrease as the cache size increases.
Moreover, the convexity of the curves testifies that as we keep
increasing the cache size, the return we achieve in performance
improvement diminishes. Note that it is possible to make the
curves closer to each other by changing the threshold for
adjusted read/writes from 1000 to a lower value. However, we
refrain from doing so to avoid the danger of fitting to specific
seek model or workload.

Moving to analyze the random-write behavior, we fix the
cache size to 1% and issue a workload of 4 KB (8x 512 Byte
blocks) write requests, to randomly chosen LBAs uniformly
distributed across the LBA space. The request size of 4 KB
is chosen as a typical access unit, with the expectation that
a different unit would change the absolute results, but not

3Note that comparing the total execution time assumes a continuous
workload with no idle time (which is not true in reality knowing that the
workload amounts to 24 hours of drive access)

their core characteristics. We measure the average number of
4 KB IO (write) operations per second (IOPS) served by the
shingled drive. The IOPS values are measured in windows of
10[sec] (all time units are in workload time and not simulation
time). As the plot in Figure 6 shows, the first 780 seconds of
the workload enjoy a very high write throughput, until the
cache regions fill up, at which point the performance drops
dramatically to values under 50 IOPS. Worse yet, there are
many 10-second intervals with O IOPS values, meaning that
no host writes were served at these time intervals. When
the indirection system ‘“catches up” with garbage collection
operations, the original performance is regained, until the next
drop. The reason for the high variation in performance is that

1000

900

800

700

600

I0PS

500

400

300

200

100 T -L I Prs

0
0 1000 2000 3000 4000 5000

Time [sec]

6000 7000 8000

Fig. 6. Random write 4 KB IOPS in 10[sec] intervals.

in a random workload, the cache regions are likely to have
contributions from all of the associated native regions (in the
case of 1% cache allocation, each cache region is shared by
99 native regions), and upon cache fill-up, very many read-
modify-write operations need to be performed prior to accep-
tance of new write commands. This problem can be partially
mitigated by reducing the region size, hence shortening the
time of individual garbage collection operations. To see the
effect of smaller region size, the same experiment is repeated
with the shingled region size changed from 50000 to 10000.
The difference between the two region sizes can be seen by
comparing Figure 7 to Figure 8. The results in Figure 7 are the
same as Figure 6, zoomed on the low IOPS range. In summary,
reducing the region size does not improve the overall average
IOPS for the total test time, but improves the drive response
by eliminating instances of 0 IOPS.

Our next goal is to examine the performance of read, and
more specifically, sequential read workloads. Recall that the
shingled-recording model considered in this paper assumes no
restrictions on physical reads. However, the read performance
may still depend on the indirection system’s physical orga-
nization of data. This issue is epitomized by sequential read
workloads, which exhibit different behavior in the presence
of disk cache. To study this issue, we pre-filled the cache

9000 10000

2

o

é
‘ |
N }H il HH il H Ll H (I il ’u” |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time [sec]
Fig. 7. Low IOPS with region size of 50000.
20 ~|| | I l‘ I
T
(1 | ' M ; “ il 1 I‘H ?‘ i ” Il
I l u ‘\ ’ w
é \|“‘"|”V ‘ l\ '|‘ |||\ I “" } H 'M H‘I“ M i
' i H “ “ u|‘w n”\ h ‘" \l |||\ |I ' | , ! H
il \
“ I“‘um‘ llll ' ".l ||"‘w U‘ ‘!| mm‘i I | ‘
f "] el

0 1000 2000 3000 4000 5000 8000

Time [sec]

6000 7000 9000 10000

Fig. 8. Low IOPS with region size of 10000.

regions with randomly written LBAs, and subsequently issued
a pure sequential read workload. The average read throughput
in [MB/s] was measured, and the experiment was repeated
for 6 different amounts of cache fill between 0% (empty)
and 100% (full). The results, found in Figure 9, indicate that
sequential read performance suffers from the cached random
writes, even for fairly low percentage of cache fill. Admittedly,
the scenario of pure sequential read after pure random write
is not a highly realistic one in practice. Therefore, the results
of Figure 9 should be taken as an extreme worst case not
representing the behavior under typical workloads. We note
that if the test is performed after sequential pre-filling of the
caches, then the performance is similar to a non-shingled drive,
with negligible dependence on the mount of cache fill.

D. Discussion

The main claim of this section is that employing a simple
indirection architecture can move shingled recording from
the impractical realm of read-modify-write operations, to a
more manageable regime of trading off (a small amount of)

100

80

60

40

Data Rate [MB/s]

20

\

0 20 40 60 80
cache fill [%]

100

Fig. 9. Sequential read after random write with different amounts of
cache fill.

disk-cache space with performance. Going beyond this initial
study of shingled disk-cache indirection architectures, many
interesting research problems lie ahead. For example, it is
possible to improve performance by departing from the fixed
associativity of the caches, and allowing a dynamic, workload
dependent, association of native regions to cache regions.
There is also a plethora of practical issues not addressed
herein, such as protecting the consistency of data in cases
of power failure. A read-modify-write of a native region may
result in inconsistent data if interrupted prematurely.

V. SHINGLED ACCESS WITH S-BLOCKS

The disk-cache based architecture proposed in section IV
has the merits of conceptual clarity and implementation sim-
plicity. However, for workloads that are not spatially local, it
suffers the shortcoming of requiring many full-region read-
modify-write operations upon filling of a cache region. This
implies that the drive will not be able to serve an additional
write command before completing all the read-modify-write
operations for the destination cache region. Shortening the
outage time by invoking read-modify-write on only some of
the regions does not solve the problem, since blocks from
different native regions are interspersed in the cache. This issue
raises the need to devise an architecture that exhibits more
graceful garbage collection events. The ungraceful behavior
of the shingled disk-cache architecture arguably stems from
the large gap between the storage unit in the disk cache
(single blocks) and the region size (order of 50K blocks).
This gap limits the flexibility of the indirection system and
results in abrupt transitions from very good performance to
very bad one, or even complete irresponsiveness. The solution
to this problem is to add an intermediate storage layer in
between single blocks and full regions, which we call S-blocks
— short for Shingled Blocks. S-blocks store multiple blocks
with consecutive LBA addresses on a continuous range of PBA
addresses. The mapping between the start LBA and start PBA
of an S-block is not fixed, and is managed by the indirection

system to optimize performance. Like other parameters in the
system, the size of the S-blocks is set as a performance vs.
resource tradeoff. A small S-block allows more flexibility, and
potentially better performance, but consumes more memory
resources for the indirection system to track S-block locations.
S-block size of order 1000 blocks may serve good balance
between flexibility and resource parsimony.

On a high level, the proposed S-block architecture is not
conceptually dissimilar to the shingled disk-cache architecture
of section IV. Similarly it stores data blocks either in a cache
area of the disk, or in their native location, which is now
an S-block. So the main difference is that in the S-blocks
architecture the native physical locations of logical blocks
can change, as part of the full S-block unit. On a lower
level, when considering the mapping of S-blocks and cache
areas to physical shingled regions, the S-blocks architecture
departs considerably from the shingled disk-cache architecture.
In order to reap the promised flexibility and tunability of S-
block usage, S-blocks and cache blocks need to be laid out
onto shingled regions in a way that will allow their efficient
relocation while maintaining the access constraints of shingled
recording. For that purpose, the shingled regions will no longer
be a pure sequentially-written entities, and will instead be
managed as circular buffers with maintained guard bands. The
details of the S-blocks architecture, including description of
circular-buffer use are given in the next sub-section.

A. Architectural details

As noted earlier in the section, organizing data in S-blocks is
beneficial if S-blocks can be relocated without compromising
other S-blocks due to shingled-recording interference. The
plain sequential shingled region used in the disk-cache archi-
tecture of section IV is too rigid to allow individual-S-block
relocation without a read-modify-write operation. Therefore,
to mitigate the rigidity of the sequential shingled region, we
instead manage it as a circular buffer with maintained guard
band, as in the following definition.

Definition 5 A circular buffer with guard band N\ is a con-
tiguous range of M blocks with pointers head and tail that
satisfy

(tail — head) mod M > A

As its name suggests, a circular buffer is most conveniently
depicted as a circle, shown in Figure 10. The shaded blocks
represent blocks in use and the white blocks represent vacant
ones. The empty shaded blocks are blocks that are in use
and valid. The shaded blocks crossed with an x are used
but invalid blocks. Used invalid blocks are ones that are not
needed (since, for example, a newer version of the block
is stored elsewhere), but cannot be reused without a proper
manipulation of the head and tail pointers. Addition to the
circular buffer is done at the head pointer, and removal is done
from the tail pointer. Both pointers move in the clockwise
direction: head upon addition and tail upon removal of blocks.
Because of the guard-band requirement, once head is /A blocks

tail

Fig. 10. A circular buffer has head and tail pointers. New blocks are
written at the head, old blocks are removed from the tail.

away from tail in the counter-clockwise direction, no new
blocks can be written before removal of used blocks from the
tail. If A is set to be at least the block interference profile
7Ty (from section II), then managing a shingled region as a
circular buffer clearly guarantees that written blocks do not
affect the integrity of existing blocks in the region.

A key element in the proposed S-blocks architecture is to
maintain two separate circular buffers: one for block writes
(cache) and one for S-blocks (native locations). The orders
of magnitude size difference between blocks and S-blocks
suggests that different policies and algorithms may be appro-
priate for one over the other. Hence separating them yields a
layered design that is flexible to optimize the circular-buffer
management separately for blocks and S-blocks. Another
architectural decision is to divide the full LBA range of the
drive into a number of sub-ranges, called sections, each of
which independently manages a pair of block and S-block
circular buffers. Such a division can be seen as treating the
full storage device as multiple independent devices, and has
the advantage of saving memory resources, and bounding the
severity of performance drops for worst-case workloads that
are relatively local in space. As illustrated in Figure 11, the
section’s two circular buffers are the cache buffer that stores
block writes, and the S-block buffer that stores native data
in S-blocks. The S-block buffer is initialized to sequentially
store all the section’s range of LBAs in units of S-blocks.
The cache buffer is initialized empty. All the white areas in
Figure 11 represent physical storage that is provisioned beyond
the reported device capacity to serve the indirection system.
Over-provisioned storage in the S-block architecture comes in
two forms: space to store additional copies of S-blocks in the
S-block buffer, and the space used for the cache buffer. Each
of the two buffers is assumed to be managed independently

10

tail

Fig. 11. A drive section with two circular buffers: S-block buffer for
native data stored in S-blocks, cache buffer for caching individual-
block writes.

from the other, and also from buffers of other sections. Hence
every buffer shall be separated from others with a guard band.

The parameters that govern the implementation of the S-
blocks architecture are now listed.

o Total physical storage

e Percent of total storage used for over-provisioned S-

blocks

o Percent of total storage used for cache buffers

e Number of sections

e Size of S-block
These 5 parameters define a specific instance of the archi-
tecture. Different assignments to these parameters result in
different storage capacities and different performance profiles.
The problem of choosing the parameters is discussed with an
experimental lens in sub-section V-D.

B. Algorithms

The purpose of introducing more flexible data organization
in the S-blocks architecture is to allow its management to be
tailored to a variety of workload conditions. This implies that
a wider space of indirection-handling algorithms can — and

should — be explored in the design. The response to read/write
commands, as well as to internal need of garbage collection,
can be made dependent on the type of workload we wish to
optimize for. The behavior can also change and evolve to fit
an instantaneous workload whose properties are not known a
priori. Before delving into the details of specific algorithmic
decisions, we present the general operation of the S-blocks
indirection system.

Cache Buffer

Incoming writes are added to the head of the cache buffer.
At some point in time, a process is invoked to invalidate used
blocks in the cache buffer by re-writing them, with their full
S-block unit, in the S-block buffer. This process is referred to
as group destage. On or before the instance when no more
writes can be added to the cache buffer due to head-tail
proximity, the cache buffer invokes a process called buffer
defrag. The purpose of buffer defrag is to push the tail pointer
farther clockwise from the head pointer by removing used
blocks from the buffer. When tail points to a valid block,
this block is copied to the head and both head and tail are
progressed clockwise. Space is actually freed up when tail
reaches an invalid block, which allows progressing the tail
pointer without copying a block and moving the head pointer.
S-block Buffer

An S-block is added to the S-block buffer as a result of a
group destage operation in the cache buffer. On or before the
instance when no more S-blocks can be added to the S-block
buffer due to head-tail proximity, the S-block buffer invokes
a buffer defrag operation, similarly to the cache buffer. The
difference is that in the S-block buffer there is no explicit
destage operation, since re-writing an S-block automatically
invalidates the existing copy of the S-block.

With the understanding of the general functionality of the
cache and S-block buffers, it is now possible to provide a
detailed description of the indirection system’s algorithms. In
the presentation below, Algorithms V.1-V.2 describe operations
in the cache buffer. Algorithms V.4-V.5 describe operations in
the S-block buffer, and Algorithm V.3 describes moving data
from the cache buffer to the S-block buffer.

Algorithm V.1: write_block
Input: LBA
i = section(LBA)
if is_full(C_buff;) then
cache_buffer_defrag(C_bulff;)
end
Add(LBA,C_buff))

For a write operation shown in Algorithm V.1, if C_buff;,
the cache buffer of the section, is full (due to head-tail
proximity), a cache_buffer_defrag operation (specified in Al-
gorithm V.2) is invoked before adding the block to the cache
buffer. During defrag of the cache buffer in Algorithm V.2,
if there are no invalid blocks in the cache buffer, a group
destage is first run on a chosen S-block. When there are

11

Algorithm V.2: cache_buffer_defrag

Input: buff
if num_invalid(buff)==0 then
S_BIk = choose_S_block_to_destage()
group_destage(S_BIk)
end
while is_valid(tail) do
blk = read(tail)
write(head blk)
tail = tail +1

head = head + 1
end

tail = tail +1

invalid blocks, valid blocks at the tail are copied to the head
until an invalid block is encountered, at which time the tail
pointer is incremented without copying. The implementation
of group_destage is illustrated in Algorithm V.3. The S-block

Algorithm V.3: group_destage
Input: S_BIlk
read(S_BIk)
foreach block of S_BIk present in cache buffer do
read(block)

invalidate(block)
end

modify_with_cached_blocks(S_Blk)
write_S_block(S_BIk)

is read, as well as all blocks in the cache that belong to it.
Then the S-block is modified in memory with the contents of
the cached blocks and written to the S-block buffer. Writing
an S-block to the S-block buffer, detailed in Algorithm V.4,
is essentially the same as writing blocks to the cache buffer
in Algorithm V.1. The defrag operation on the S-block buffer

Algorithm V.4: write_s_block
Input: S_BIlk
i = section(S_BIk)
if is_full(S_buff;) then
S_block_buffer_defrag(S_buff;)
end
Add(S_BIk,S_buff;)

in Algorithm V.5 is similar to the defrag of the cache buffer
in Algorithm V.2, only without the need to check for the
existence of invalid S-blocks (All S-blocks natively reside
in the S-block buffer so the written S-block automatically
invalidates an existing S-block). Note that all the units in
Algorithm V.5 are S-blocks, hence tail + 1 points to the next
S-block (and not next block) in the clockwise direction.

Finally, read operations are served by Algorithm V.6, which
is very similar to the read operation in Algorithm IV.3 of the
previous section.

Algorithm V.5: S_block_buffer_defrag

Input: S_buff

while is_valid(tail) do
S_blk = read(tail)
write(head,S_blk)
tail = tail +1

head = head + 1
end

tail = tail +1

Algorithm V.6: read_block

Input: LBA

i = section(LBA)

PBA_c = cache_lookup(LBA,C_buff;)

if PBA_c # NOT_IN_CACHE then
read(PBA_c)

end

else
read_from_S_block(LBA)
end

The inclusion of detailed pseudo-code above clearly helps
elucidating the operation principles of the S-block archi-
tecture’s indirection system. However, to obtain a working
system, which serves real read/write commands, there is a
need to fill some important implementation decisions that
are missing from the provided pseudo-code. Some of the
decisions will have significant impact on performance, and
are the subject of the next sub-section.

C. Destage and defrag policies

Given an outstanding write request and a state of the cache
and S-block buffers, the indirection system needs to decide
what actions to take to satisfy the write request. If the cache
buffer is too full to contain the request, then defrag, and
potentially destage operations are needed. In particular, the
following questions should be decided to optimize access time.

1) How many S-blocks to destage before cache-buffer
defrag?

2) How to choose the S-block for group destage?

3) How many invalid blocks/S-blocks to reclaim during
buffer defrag?

We now attempt to answer the questions above, or at least
reason on how to answer them.

1) A destage will not be necessary at all if there are
sufficient used-invalid blocks in the cache buffer. How-
ever, destaging more than the required minimum may
invalidate blocks close to the tail of the cache buffer,
thereby reducing the overall write time.

Some options: the one with the most blocks in the
cache buffer (best amortization of S-block write over
invalidated blocks), one that contains blocks close to
the tail of the cache buffer (most efficient cache buffer
defrag), one that is close to the tail of the S-block buffer

2)

12

(most efficient S-block buffer defrag). A combination of
these criteria can also be sought for optimal write time.
Unlike question 1 above, here there is little motivation
to continue the defrag beyond the required minimum.
In fact, if we postpone defrags as much as possible,
more blocks may be invalidated in the meantime, and
the defrag will be more efficient.

3)

D. Simulation results

The S-blocks indirection architecture shares some of the
performance behaviors of the disk-cache architecture of sec-
tion IV. Both store block writes in temporary (cache) loca-
tions, which results in a varying performance that depends
on the instantaneous state of the caches. Splitting the data
blocks between cache and native locations also implies some
degradation in sequential-read performance (consecutive LBAs
no longer map to consecutive PBAs), as was illustrated in
Figure 9. For concern to the presentation efficiency, we focus
in this sub-section on results that demonstrate the unique
behavior of the S-blocks architecture. In particular, it is shown
that the S-blocks architecture solves the cardinal performance
issue of the disk-cache architecture, and achieves good sus-
tained random-write throughput.

The sample parameters with which the experimental results
were obtained are now provided. The size of an S-block was
set to 2000 blocks. The total amount of over-provisioned
storage is 2% of the physical storage space, divided to 1% for
cache buffers and 1% for extra S-blocks in S-block buffers.
The 4 KB random-write throughput was measured for a
workload duration of 1000[sec], in intervals of 1[sec]. The
measured IOPS values are shown in Figure 12. Starting with

500

450

400
350*% qﬁ !l

300

I0PS

250

200

150

ae_Gt0———S00———¢ ¢

100

50

0 i i

0 200 400 600
Time [sec]

800

Fig. 12. Random write 4 KB IOPS in 1[sec] intervals.

empty cache buffers, the initial performance is high and flat.
Then, when cache buffers fill up, a drop occurs — but unlike
before — the lower performance still serves around 50x4 KB
requests per second, with no 1[sec] intervals with 0 IOPS.
From the drop point on, the performance slowly improves,
until it reaches a steady average of around 80 IOPS. So at

1000

all times during the continuous workload, the drive is able
to respond to write requests at a reasonable rate. The slow
convergence to the steady value attests to the time it takes
to accumulate enough invalid blocks in the cache buffer to
allow for more efficient cache-buffer defrags. When garbage
collection (defrags) starts, the invalid blocks in the cache
buffer are on average half-way between head and tail, and thus
require relatively long defrag time. When garbage collection
progresses, the probability of finding invalid blocks near the
tail increases, and the defrag is faster. A quicker convergence
can be obtained by destaging more than the necessary number
of S-blocks, at a price of a deeper temporary drop.

For the final set of results, we wish to explore how the
choice of S-block for destage affects the random-write per-
formance. For this purpose, we take two of the suggested
policies in sub-section V-C, and compare them in terms of their
command-completion-time histograms. The first policy, also
used for the results of Figure 12, is to choose the S-block with
cached blocks that is closest to the tail of the S-block buffer.
The second policy is to choose the S-block with the largest
number of cached blocks. For a random workload, we logged
the time to complete each 4 KB write command, and plotted
the histogram. We repeated the test two times, once for each
of the S-block selection policies. The results for the closest-to-
tail policy are found in Figure 13. The results for the largest-
number-of-cached-blocks policy are found in Figure 14. Note
that the time axis used in the figures is not linear, but rather
consists of four different time scales, separated by grid lines:
milli-seconds, hundredths, tenths, and full seconds. Comparing
the results reveals a much more favorable behavior of the
closest-to-tail policy, since the longest it took to serve a 4
KB command is under 50[msec]. On the other hand, the
largest-number-of-cached-blocks policy exhibits a very long
tail, showing completion times of more than 7 full seconds.
The reason for the long tail is that if the S-block with the
largest number of cached blocks is close to the head of the S-
block buffer, then the defrag of the S-block buffer will require
a significant amount of time. Although for random workloads
the closest-to-tail policy is a clear winner, for different, less
balanced workloads, considering the number of cached blocks
in the S-block choice may improve performance.

E. Discussion

The S-blocks architecture proposed and studied in this sec-
tion offers a substantial improvement over the more naive disk-
cache architecture of the previous section. This is achieved
with a moderate amount of additional complexity. Anther ad-
vantage of the S-blocks architecture is that it allows bypassing
the cache buffer altogether for sequential writes, by writing
large (but not necessarily very large) chunks of data directly
as S-blocks. Moreover, since the S-blocks architecture does
not update data “in place”, but always appends to the buffer
head, terminating writes prematurely does not cause a data
consistency problem. It is clear that the optimization avenues
explored here are only a tiny part of the complete optimization
space. More studies are needed to refine the architecture and

13

1200

1000

800

600

Commands

400

200

L
P
6,
%

.

o, o ENEACAE
‘9, “x, ‘%, ~0, %0, %, 9
L P Y D DD

Time [sec]

Fig. 13. Command completion time histogram for closest-to-tail
destage policy.

1200

1000

800

600

Commands

400

200

S v, 6,
"9, 7, %9, %0
Y Y %

Time [sec]

Fig. 14. Command completion time histogram for largest-number-
of-cached-blocks destage policy.

capture its best operation modes for different workload types.

REFERENCES

[1] D. Thompson and J. Best, “The future of magnetic data storage
technology,” IBM Journal of Research and Development, vol. 44, no. 3,
pp. 311-322, May 2000.

E. Dobisz, Z. Bandic, T. Wu, and T. Albrecht, “Patterned media:
nanofabrication challenges of future disk drives,” Proceedings of the
IEEE: Advances in Magnetic Data Storage Technologies, vol. 96, no. 11,
pp- 1836-1846, 2008.

M. Kryder, E. Gage, T. McDaniel, W. Challener, R. Rottmayer, J. Gan-
ping, H. Yiao-Tee, and M. Erden, “Heat assisted magnetic recording,”
Proceedings of the IEEE: Advances in Magnetic Data Storage Tech-
nologies, vol. 96, no. 11, pp. 1810-1835, 2008.

R. Wood, M. Williams, A. Kavcic, and J. Miles, “The feasibility of
magnetic recording at 10 terabits per square inch on conventional
media,” IEEE Transactions on Magnetics, vol. 45, no. 2, pp. 917-923,
Feb. 2009.

G. Gibson and M. Polte, “Directions for shingled-write and two-
dimensional magnetic recording system architectures: synergies with
solid-state disks,” Carnegie Mellon University Parallel Data Lab Tech-
nical Report, Tech. Rep. CMU-PDL-09-104, 2009.

[2]

[3]

[4]

[5]

[6]

[10]

[11]

[12]

E. Gal and S. Toledo, “Mapping structures for flash memories: tech-
niques and open problems,” in Proc. of the IEEE International Con-
ference on Software, Science, Technology and Engineering, 2005, pp.
83-92.

B. Jacob, S. Ng, and D. Wang, Memory systems. Cache, DRAM, Disk.
Burlington, MA, USA: Morgan Kaufmann Publishers, 2008.

M. Rosenblum and J. Ousterhout, “The design and implementation of
a log-structured file system,” ACM Transactions on Computer Systems,
vol. 10, no. 1, 1992.

A. Traeger, N. Joukov, C. Wright, and E. Zadok, “A nine year study of
file system and storage benchmarking,” ACM Transactions on Storage
(TOS), vol. 4, no. 2, pp. 25-80, May 2008.

X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
amplification analysis in flash-based solid state drives,” in Proceedings of
The Israeli Experimental Systems Conference "SYSTOR 2009”. Haifa,
Israel: ACM, 2009.

Y. Hu and Q. Yang, “DCD—Disk Caching Disk: a new approach for
boosting I/O performance,” in The 23rd Annual International Symposium
on Computer Architecture, Philadelphia, PA, May 1996.

D. Hall, “Write-twice method of fail-safe write caching,” United States
Patent 6,378,037, 2002.

14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

