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Abstract—Solid State Drives (SSDs) are now becoming a
part of main stream computers. Even though disk scheduling
algorithms and file systems of today have been optimized to
exploit the characteristics of hard drives, relatively little attention
has been paid to model and exploit the characteristics of SSDs.
In this paper, we consider the use of SSDs from the file system
standpoint. To do so, we derive a performance model for the
SSDs. Based on this model, we devise a file system space
allocation scheme, which we call Greedy-Space, for block or
hybrid mapping SSDs. From the Postmark benchmark results, we
observe substantial performance improvements when employing
the Greedy-Space scheme in ext3 and Reiser file systems running
on three SSDs available in the market.

I. INTRODUCTION

The recently introduced Solid State Drives (or Disks)

(SSDs) are slowly, but surely catching the interest of con-

sumers. They are starting to replace hard drives in laptop

computers and are serious contenders in server computers as

well due to its many favorable characteristics inherited from

Flash memory that are the building blocks of SSDs [1]–[3].

With no mechanical parts, unlike the hard drive, SSDs are

light, shock-resistant, noiseless, low-power consuming, and

they show quite different performance characteristics [4], [5].

Though interest regarding SSDs has started to rise, they have

mostly been directed to the internals of the SSD [6], [7].

Our interest rests on how the file system can make better

use of SSDs. Even though disk scheduling algorithms and

file systems of today have been optimized to exploit the

characteristics of hard drives, relatively little attention has been

paid to model and exploit the characteristics of SSDs from the

file system standpoint.

In this paper, we derive a simple performance model for

block or hybrid mapping SSDs that, in essence, is identical

to that of the hard drive. Using this model, we devise a

file system space allocation scheme for SSDs called Greedy-

Space. Through real implementations on the ext3 and Reiser

file systems and using three SSD products available in the
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market, we show that substantial performance improvements

can be achieved for a wide range of workloads. By employing

the Greedy-Space space allocation scheme, for most of the

workloads, the execution time is substantially reduced with

the reduction rate varying depending on the workload and

environment.

The rest of the paper is organized as follows. In Section II,

we describe the basic characteristics of Flash memory storage

and SSDs as well as other work related to this topic. In

Section III, we derive write cost models for the hard drive and

the SSD. Based on the implications of the model, we devise the

new Greedy-Space allocation scheme for SSDs in Section IV.

In Section V we present the experimental environment as

well as the results obtained from the experiments. Then, we

conclude with a summary and directions for future work in

Section VI.

II. SSD BACKGROUND AND RELATED WORK

A NAND Flash memory chip that is the storage medium

of an SSD has multiple blocks and each block has a set of

pages. Data once written to a page cannot be modified without

erasing the block containing the page. To accommodate the

asymmetric unit sizes and times for read, write, and erase

operations at the Flash memory chip level and to provide a

readable/writable sector disk interface, Flash memory storages

employ a complex software module called the Flash Transla-

tion Layer (FTL) [8], [9].

To achieve high performance and large capacity, an SSD

has numerous Flash memory chips, SRAM, and SDRAM

that are connected through buses [6]. SSDs employ FTLs to

control and schedule all operations of these chips and buses.

In most SSDs, multiple Flash memory chips comprise a single

logical Flash memory chip. All same numbered blocks in

all the chips form a clustered block, and all same numbered

pages in these blocks form a clustered page. As data can be

read/written from/to physical pages of a clustered page in

parallel, performance of an SSD exceeds that of a single Flash

memory chip.



Aside from controlling the chips and buses, another impor-

tant task of the FTL is to map sectors to Flash memory storage.

The two basic forms of mapping in SSDs are page mapping [8]

and block mapping [10]. In block mapping, a physical block

in Flash memory holds a fixed number of sectors (Ns). To

read a sector, the FTL calculates the logical block number by

dividing the sector number by Ns. Then it looks up the map to

convert the logical block number to a physical block number.

If sectors are placed within the block in an ordered manner,

finding the sector is straightforward.

Writing a sector is more complicated. To modify a sector

within a data block b, the FTL writes the new sector data to a

clean page of an over-provisioned block, hereafter called a log

block. Then, subsequent writes for sectors of data block b are

directed to a page of the log block. Later, the FTL consolidates

the original data block and the log block through a merge

operation, which erases another empty log block and copies

all valid sectors to it from the data block and the log block.

After copying the sectors, the empty log block now becomes

the new data block and the old data and log blocks become

empty log blocks. Note also that there are situations, such as

when the log block is written to sequentially, where the merge

operation may require only a small number of copies.

Contrary to block mapping FTL, page mapping FTL re-

locates each modified sector (or multiple sectors in a page)

separately to any available page in an over-provisioned block.

Its operation is similar to the log-structured approach [11] in

that write requests are appended to an empty over-provisioned

block. Like LFS (Log-structured File System) [11], it needs

to recycle used blocks to make empty blocks for further

write requests. This recycling mechanism is similar to segment

cleaning in LFS except that blocks are reclaimed instead

of segments [12]. Numerous hybrid mapping schemes that

combine the advantages of block mapping and page mapping

have also been proposed [13]–[16].

There are other works related to SSD design and charac-

terization. Chen et al. analyze the performance characteristics

of state-of-the-art SSDs through wide range of experiments

providing insight to system designers [4]. Agrawal et al. gives

a taxonomy of the many design choices that are available

to SSD designers and, through simulations, analyses how

these choices would affect performance [6]. Kim et al. pro-

pose a methodology for extracting essential parameters from

SSDs [17]. In a Linux based study, Kim et al. considers disk

schedulers for block or hybrid mapping SSDs [18].

A point to make here is that as each SSD manufacturer

develops their own proprietary FTL and does not provide

much information regarding their design, one cannot definitely

conclude what type of scheme is being used for each SSD.

However, if one has a solid understanding of the internal

workings of the FTL, one may be able to fairly safely guess the

general design. Based on our understanding and experience,

the SSDs that we have experimented with in this paper employ

either block or hybrid mapping schemes.

III. WRITE COST MODELS

In this section, we derive a write cost model for file systems

when the underlying storage is an SSD that employ the block

mapping technique. (As read cost is constant for SSDs, we do

not consider the read cost model.) To derive a cost model for

the SSD, we start off from the simple performance model of

what Wang et al. refer to as the Overwrite approach [19].

A simple performance model for writing a sector in a hard

drive is given as T1sect = Tpos +
S
B

where Tpos is the sum

of the average seek time and the average rotational latency,

B is the write bandwidth of the disk, and S is the sector

size in bytes [19]. In reality, however, writes to disks are

requested in groups through a sync operation from the file

system. Assuming n write requests are requested together, we

can generalize T1sect in two ways. First is the worst case

scenario where every write request goes to a different cylinder

from the previous one and the performance cost model will

be nT1sect. The best case scenario is writing all n sectors

to the same cylinder and the write cost can be modeled as

Tnsect = Tpos + n S
B

where 1 ≤ n ≤ C, where C is

the number of sectors in a cylinder. (If n is larger than C,

the request can be regarded as two independent sub-requests

without compromising the model.)

Now, we derive the write cost model for an SSD. Observe

the write performance shown in Figure 1. This figure shows the

response time for each write request of the corresponding data

size when requesting a total of 1GB to one of the SSDs that we

describe later. These values were those obtained by devising

an application to synchronously write raw data directly to

the SSD. The y-axis in the figures is the response time in

milliseconds, while the x-axis is the request sequence. Observe

from all the graphs of Figure 1 that a relatively thick band

forms along the x-axis meaning that the majority of requests

are serviced in that time frame. Above the band, there are

numerous “spikes” (shown as dots), that is, response times

that are out-of-band. In the lower figures for the sequential

writes, we see that these spikes are few. However, in the

upper figures when writes are random, we see a much higher

number of spikes of a wider range. This observation is quite

similar to one that would be observed in a hard drive. With

random writes, positioning delay will be more variant than for

sequential writes.

It is difficult to derive the exact reasons for each of these

spikes as there are many factors that influence the design of

an SSD [6]. However, based on our understanding of Flash

memory and FTL software described in Section II, we know

that write operations incur merge operations to make available

free blocks. Hence, we can conjecture with high confidence

that the key factor that induces such spikes is closely related

to the merge operation. Depending on the merge operation,

different responses can occur. Thus, with much simplification,

we consider the spikes to be equivalent to the merge cost;

the shorter spikes being those incurred by merges with small

number of copy operations, while the larger spikes being for

those of merges with numerous copy operations.
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Fig. 1. Appearances of spikes mainly due to merge operations for particular request sizes

The key observation here is that there is an analogy between

the merge times (Tmerge) of an SSD and the positioning time

Tpos of a hard drive. Based on this, we can argue that the worst

case write performance model to write a single sector in an

SSD is T1sect = Tmerge +
S
B

where B is the write bandwidth

of an SSD and S is the sector size in bytes.

A similar argument can be made for the best case with

SSDs which happens when the n sectors are written with an

overhead of a single merge operation. Hence, the write cost to

write all n sectors with an overhead of a single merge can be

modeled as Tnsect = Tmerge + n S
B

where 1 ≤ n ≤ L, where

L is the number of sectors in a “cylinder” of an SSD.

Now the question that arises here is that of L. What is L?

In a hard drive, this was simply the cylinder group size, which

could be easily visualized as a hardware concept. In an SSD,

there is no concept of a cylinder but there is something similar

to it (as we show later), and we will refer to this cylinder

counterpart in the hard drive as the logical block in SSD. And

for now, let us just say that for every SSD this L exists. We

will later show how this L can be obtained.

The write cost model for SSDs that we just derived gives

us insights for optimizing file systems and disk scheduling

algorithms for SSDs. The model implies write behavior of

an SSD is similar to that of a hard drive, thus implying

that sequential writes are preferable to random writes in both

drives. However, this does not imply that hard drives and SSDs

are the same. In fact, there is a key difference between the

two drives. That is, reads are more or less constant for SSDs,

while this is not true for hard drives. As a result, given a

logical block, increasing n is more amenable in SSDs as read

cost, which we can safely assume to be constant irrelevant to

location, is no longer a factor to be considered. Hence, blocks

(that is, multiple sectors from the file system viewpoint) may

be placed anywhere instead of at particular cylinders as is done

for hard drives.

Another thing to note is that of logical blocks. Though we

described a logical block of an SSD to be analogous to a

cylinder of a hard drive, a logical block does not posses a

concrete notion of a physical “cylinder” as in hard drives.

Hence, the size of a logical block is a unit that may be freely

determined by the file system. The question is, then, how to

choose this logical block size.

For this let us return to Figure 1. As discussed previously,

Figure 1 shows spikes in response time due to merge oper-

ations within the SSD. However, note that for Figures 1(c)

and (f), which is when the write request size is 2MB, large

intermittent spikes are not observed. This is true for both the

sequential and random requests. This tells us that, ideally, there

is an “optimal” size that maximizes the utility of the resources

that the SSD has, possibly leading to maximized performance.

We refer to a block of this size to be the logical block and

discuss the empirical aspect of a logical block in the next

section.

IV. SPACE ALLOCATION FOR SSD

This section describes the space allocation scheme that we

develop. In order for this scheme to work, we first need to

make concrete the notion of a logical block [17], [18].

A. The logical block

Ideally, a logical block of an SSD is the write unit where

write cost is optimized. That is to say, if every write could

be made in logical block units, then the minimum number of

merge operations for writing the given blocks are incurred as

evident in Figure 1(c) and (f).
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Many design decisions affect the performance of SSDs [6],

[7]. To optimize performance FTL designers take great efforts

to design FTL software to make full use of all available

hardware resources and features such as the planes, chips,

buses, and buffers through interleaving and parallelism. Find-

ing the logical block size through product specifications is vir-

tually impossible due to the complicated interactions between

hardware and software, and more so as this information is

proprietary and undisclosed.

The logical block size, though, can be obtained through

a simple set of experiments as follows. First, we open the

device file that maps with the SSD with the O DIRECT option

to avoid the disk cache effect. Then, starting from a small

write block size that is a power of 2 (and smaller than the

Flash memory block size), say 8KB, we do the following.

First, sequentially write 1GB into the device file obtaining its

throughput. Then, we do the same thing again, only this time

writes are done randomly making sure there is no overlap in

the requests so that all 1GB is written to. (1GB is an ad hoc

but fairly safe size in current implementations of SSDs such

that all log blocks managed by the FTL are safely consumed.)

The throughputs for the sequential and random writes are

compared. If the values are close enough, then 8KB is the

logical block size, and we are done. (In our case, we consider

the two numbers to be close enough if the whole numbers

of the reported numbers are the same.) Otherwise, we double

the write size and start the process over. This is done until

we find a write size where the sequential and random write

throughputs meet the terminating condition.

Figure 2 shows results after going through the process

just described for the three SSDs in Table I. Note how the

random write throughput converges towards the sequential

write throughput eventually becoming the same at some point.

These results represent typical characteristics of SSDs that

employ block mapping FTL. Sequential write performance

is much better than random write. However, at a specific

request size, merge overhead minimizes resulting in random

and sequential write performance becoming almost the same.

B. Design of the Greedy-Space allocation scheme

Now that the notion of a logical block has been clarified, we

can now view the file system space as a collective sequence of

logical blocks. Given this viewpoint, we propose a new space

allocation scheme for file systems that employ SSDs based

(a) Traditional scheme (b) Proposed scheme

Fig. 3. Comparison of space allocation schemes

on the performance model presented in the previous section.

Note from the write cost model of an SSD that, to reduce the

write cost, the number of sector writes per merge, n, should

be maximized as the other parameters are all fixed values.

The key idea of the scheme that we propose is summarized

in Figure 3. There are five files A, B, C, D, and E with their

blocks being represented with subscripts. We then have new

write requests A3, A4, A5, C5, C4, C3, E2, E3, E4, E5 arriving

at sync. Of these, A3, C4, C3 are to existing blocks. Then,

in traditional file systems such as ext3, a new block would

be allocated to the cylinder group where the metadata and

the rest of the its file resides (Figure 3(a)). In contrast, the

key idea of our scheme is to allocate all the new blocks to

the logical block that has the most free blocks as depicted in

Figure 3(b). That is, blocks A4, A5, C5, E2, E3, E4, E5 are all

allocated to the same logical block so as to maximize n. This

does not incur any penalty for reads as reads in SSDs are near

constant, unlike hard drives.

Let us now discuss the Greedy-Space scheme in detail. The

name comes from the fact that the scheme takes a greedy

approach and allocates the logical block with the most free

space when space is needed. It simply keeps track of how

much free space is available at each logical block. When

applications make new write requests, the file system selects

the logical block with the most free space for space allocation.

Once a logical block has been selected, then for subsequent

new writes, space is allocated from the same logical block

until all free space is consumed. By sending new write request

sequences to the same logical block, the Greedy-Space scheme

maximizes n, the number of sector writes per merge, on the

next sync.

Unlike the hard drive environment this approach does not

need to consider the geometrical adjacency of logical blocks,

that is, the selected logical blocks need not be consecutive as

there is no performance penalty for jumping between logical

blocks as there would be in a hard drive when moving between

cylinders. The only requirement is that the write requests are

grouped within the logical block boundary.

TABLE I
MEMORY OVERHEAD FOR GREEDY-SPACE SCHEME

SSD No. of Entries Total Overhead
(Capacity/LBS) (Entry size: 36B)

SanDisk (SDU5B-032G-102501) 8K (32G/4M) 36×8K = 288KB
Samsung (MCCOE64G5MPP-0VA) 8K (64G/8M) 36×8K = 288KB

Mtron (MSP-SATA7035-064) 32K (64G/2M) 36×32K = 1152KB
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Fig. 4. Postmark benchmark: CVFS-Large
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V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The Greedy-Space allocation scheme is implemented into

two file systems, namely, the ext3 and Reiser file systems that

come with Linux version 2.6.27. Hence, there are two sets of

ext3 and ReiserFS, that is, the original implementation and the

implementation that incorporates the Greedy-Space allocation

scheme. For all cases, journalling is set to the ordered mode.

For ReiserFS, we mount the file system with the notail option

set.

Greedy-Space maintains all the logical blocks in ordered

fashion using the Red-Black tree data structure provided in

Linux, so that the block with the most free space may be

efficiently found. Associated with each logical block is a

36B data structure consisting of information such as the

logical group number, the offset with the logical block, and

pointers for the data structure. Overhead for maintaining this

information for each of the SSDs used in our experiments is

calculated and shown in Table I. Experiments were conducted

in a system with an Intel Core 2 Duo 2.20Ghz CPU with 2GB

of memory.

We use the Postmark benchmark for evaluating our scheme

and set the Postmark parameters to those used by Traeger et

al. in their study [20]. The I/O unit is set to 4KB and all other

parameters not stated here are set to default values. Here, we

take two of these benchmarks, CVFS-Large and FSL; though

we have experimented with the third benchmark CVFS, we

omit this because it is too small and does not provide any

unique insight.

The results are presented in Figures 4 and 5, where the y-

axis is the elapsed time (in seconds) to execute the benchmark,

while the x-axis is the utilization of the disk observed from

the file system standpoint. (Note that the y-axis scales are all

different.) Utilization is initialized by randomly filling up the

file system with files whose size ranges between 1KB and

16MB until the desired utilization is met. This was done to

randomly spread out the valid blocks. For all experiments of

the same utilization, the same set of files in the same sequences

are used to fill up the file system.

Let us now discuss the results starting off with those for

the CVFS-Large benchmark depicted in Figure 4. Here we

see that, in general, the original ReiserFS does somewhat

better than the ext3. The same file systems with the Greedy-

Space scheme deployed performs much better than the original

completing in roughly half the time.

Now consider the results for the FSL benchmark depicted

in Figure 5. Here we notice that the results are different from

those of the CVFS-Large benchmark. For this benchmark, we

observe a similar trend, that is, as utilization increases the

performance of the original file system improves. We even

observe that in some cases the original file systems perform

better than the Greedy-Space versions. This is more so for

ReiserFS, and especially for the SanDisk SSD.

The fact that performance actually improves as utilization

increases, at first glance, is contrary to conventional knowl-

edge. However, we must note that utilization here is that of

the file system and not the SSD. In SSDs, the FTL has its own



view of what blocks are valid and what are not. When a sector

is deleted in the file system, this knowledge is not reflected

into the SSD until that specific sector gets overwritten. Hence,

utilization from the SSD standpoint would be nearly 100% for

every utilization data point once the blocks in the SSD fills up

(as would be in our case as numerous experiments filling up

the SSDs were conducted on these SSDs). Hence, the SSD is

not directly influenced by file system utilization.

This, however, does not explain why the original file

systems, especially ReiserFS, is doing so much better as

utilization increases. The reason for this, we conjecture, is

mainly due to the workload characteristics of FSL. FSL is a

benchmark that accesses small-sized files and that is metadata

operation intensive. Such a benchmark makes the environment

ripe for locality-based optimization, which is a strength of the

original ext3 and ReiserFS, especially the latter. As the SSD

is initially filled up with files irrelevant to the benchmark to

meet the utilization setup, this effect is exacerbated by the

fact that all operations of the benchmark are concentrated

to those files that the benchmark generates after the initial

fill up of the SSD. In contrast, the Greedy-Space scheme

does not consider any form of locality, hence the stable,

flat performance. Incorporating locality to the Greedy-Space

scheme does appear to be another promising direction of

research. However, in this study, we do not consider this and

leave it for the future.

VI. CONCLUSION

SSDs have recently been introduced into the market but

little interest has been paid to making efficient use of SSDs

in terms of file system performance. In this paper, we derived

a write performance model of SSDs that gave insight to how

space allocation should be done. Based on this observation and

making use of a characteristic unique to SSDs, we presented

the Greedy-Space space allocation scheme. From the Post-

mark benchmark results, we observed substantial performance

improvements when employing the Greedy-Space allocation

scheme in the ext3 and Reiser file systems running on three

SSDs available in the market.

There is still much to be done. Our study has been lim-

ited to SSDs that we conjecture to employ block or hybrid

mapping FTL schemes. In the future, our model and approach

will have to be extended to accommodate SSDs with page

mapping FTLs. Also, our model indicates that an LFS-style

file system could be beneficial. Whether that should be the

LFS scheme itself or something totally new tailored to SSDs

is an interesting question that should also be pursued.
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