
1

dedupv1: Improving Deduplication Throughput
using Solid State Drives (SSD)

Dirk Meister Paderborn Center for Parallel Computing
dmeister@uni-paderborn.de André Brinkmann Paderborn Center for Parallel Computing

brinkman@uni-paderborn.de

Abstract—Data deduplication systems discover and remove
redundancies between data blocks. The search for redundant
data blocks is often based on hashing the content of a block and
comparing the resulting hash value with already stored entries
inside an index. The limited random IO performance of hard
disks limits the overall throughput of such systems, if the index
does not fit into main memory.

This paper presents the architecture of the dedupv1 dedupli-
cation system that uses solid-state drives (SSDs) to improve its
throughput compared to disk-based systems. dedupv1 is designed
to use the sweet spots of SSD technology (random reads and
sequential operations), while avoiding random writes inside the
data path. This is achieved by using a hybrid deduplication
design. It is an inline deduplication system as it performs
chunking and fingerprinting online and only stores new data,
but it is able to delay much of the processing as well as IO
operations.

I. INTRODUCTION

Data deduplication systems discover redundancies between
different data blocks and remove these redundancies to reduce
capacity demands. Data deduplication is often used in disk-
based backup systems since only a small fraction of files
changes from week to week, introducing a high temporal
redundancy [1], [2].

A common approach for data deduplication is based on the
detection of exact copies of existing data blocks. The approach
is called fingerprinting- or hash-based deduplication and works
by splitting the data into non-overlapping data blocks (chunks).
Most systems build the chunks using a content-defined chunk-
ing approach based on Rabin’s fingerprinting method [2],
[3]. For most data sets, content-defined chunking delivers a
better deduplication ratios than simple static-sized chunks [4].
The system checks for each chunk, whether another already
stored one has exactly the same content. If a chunk is a
duplicate, the deduplication system avoids storing the content.
The duplicate detection is usually not performed using a byte-
by-byte comparison between the chunks and all previously
stored data. Instead, a cryptographic fingerprint of the content
is calculated and the fingerprint is compared with all already
stored fingerprints using an index data structure, often called
chunk index.

The size of the chunk index limits the usable capacity of
the deduplication system. With a chunk size of 8 KB and
20 byte fingerprints, the chunk size grows per 1 TB unique
data by around 2.5 GB (without considering any overheads

or additional chunk meta data). A large scale deduplication
system can easily exceed an economical feasible main memory
capacity. Therefore, it can become necessary to store the
fingerprint index on disk. In this case, the limited random IO
performance of disks leads to a significant throughput drop of
the system.

In this paper, we evaluate how solid-state drives (SSDs)
might help to overcome the disk bottleneck. Solid-state drives
promise an order of magnitude more read IOPS and faster
access times than magnetic hard disk. However, most cur-
rent SSDs suffer from slow random writes. We present a
deduplication system architecture that is targeted at solid-state
drives as it relies on the sweat spots of SSDs while avoiding
random writes on the critical data path. We propose using
the concept of an in-memory auxiliary index to move write
operations into a background thread and a novel filter chain
abstraction that makes it easy for developers and researcher to
modify redundancy checks to either improve the security of
the deduplication or to speed up the processing.

II. BACKGROUND AND RELATED WORK

The ability to lookup chunks fingerprints in the chunk
index is usually the performance bottleneck for disk-based
deduplication systems. The bottleneck is caused by the limited
number of IOPS (IO operations per second) possible with
magnetic hard disks. Even enterprise class hard disks can
hardly deliver more than 300 IOPS [5]. Because of that, solid
state drives have gained traction in server environments as they
promise an order of magnitude higher IOPS, high throughput,
and low access times [6], [7].

Current state-of-the-art SSDs are reported to allow 3,000 to
9,000 read IOPS per second, which is equivalent to a disk array
with 10 to 30 high-end disks [5]. In addition, SSDs allow a
high sequential throughput (usually over 100 MB/s). The weak
point of most SSDs is the limited number of random writes.
Narayanan et al. report around 350 random writes per second
for an enterprise SSD [5].

While the price per read IO is usually better for SSDs than
for enterprise-class hard disks, the capacity remains low and
the price per GB high. However, in our deduplication setting
the size of the chunk index – the most performance critical
component of a deduplication system – is too large to be hold
in main memory in a cost effective way, but can be hold on a
single or a low number of SSDs.

978-1-4244-7153-9/10/ $26.00 @2010 IEEE

2

SCST

Chunking & Fingerprinting

Filter Chain

Storage Chunk Index Block Index

HDD

SSD

Log

kernel space

dedupv1d

kernel space

Fig. 1. Architecture of the dedupv1 deduplication system

Research on deduplication systems deals with the dedupli-
cation strategy, the resulting deduplication ratio, as well as the
deduplication performance.

The most prominent deduplication strategies are
fingerprinting-based and delta encoding-based. We focus
on fingerprinting-based deduplication, which is based on
the detection of exact replicas, comparing the fingerprint of
already stored blocks with the fingerprint of a new block.
Static chunking assumes that each block has exactly the
same size [4], while content-defined chunking, which is
based on Rabin’s fingerprinting [8], is able to deliver a better
deduplication ratio [2], [3], [9]. The usage of hash values can
lead to hash collisions, identifying two chunks as duplicates,
even if their contents differ (for a discussion, see [10], [11]).

The main bottleneck of fingerprinting approaches appears,
if the fingerprint index does not fit into main memory and
has to be stored on disk, inducing a strong performance drop.
Using 20 Byte SHA-1 hash values already needs 2.5 GB of
main memory for each TB of unique data, filling up main
memory quite fast. Several heuristics for archiving systems
have been introduced to overcome this drawback. Zhu et al.
use bloom filters to keep a compressed index, simplifying
the detection of unique data [2]. Furthermore, they introduce
locality-preserving caching, where indexes are stored in con-
tainers, which are filled based on the data sequence, preserving
locality in backup streams. Lillibridge et al. do not keep
the complete chunk index in main memory, but divide the
index into “segments” of 10 MB chunks. For each segment,
they choose k champions and the lookup is only performed
inside the champion index [12]. In this case, the authors trade
deduplication ratio (not all duplicates can be detected) for
performance. Trading deduplication ratio for performance has
also been proposed for a parallel setting in [13].

III. ARCHITECTURE OF THE DEDUPV1 SYSTEM

We have developed dedupv1 to evaluate and compare the
performance impact of solid-state technology in deduplication
systems. The high-level architecture of the system is shown in
Figure 1.

The dedupv1 system is based on the generic SCSI target
subsystem for Linux (SCST) [14]. The dedupv1 userspace
daemon communicates with the SCST subsystem via ioctl

calls. Using SCST allows us to export deduplicated volumes
via iSCSI. The data deduplication is therefore transparent to
the user of the SCSI target.

A. Chunking and Fingerprinting

The chunking component splits the request data into smaller
chunks. Each chunk has to be checked whether its data
has already been stored or if the content is new. We have
implemented different, configurable chunking strategies inside
the chunking component. Usually, we use content-defined
chunking (CDC) based on Rabin’s fingerprinting method with
an average chunk size of 8 KB [8] as e.g. in [2].

Each chunk is fingerprinted after the chunking process using
a cryptographic hash function like SHA-1 or SHA-256. Our
default is SHA-1, but our system is not limited to that choice.

B. Filter Chain

The filter chain component decides if the content of a chunk
is a duplicate or if the chunk content has not been stored
before. The filter chain can execute a series of filters. After
each filter step, the result of the filter determines which filter
steps are executed afterwards. Each filter step returns with one
of the following results:

EXISTING:
The current chunk is an exact duplicate, e.g. a filter
that has performed a byte-wise comparison with an
already stored chunk returns the result. The execution
of the filter chain is stopped if a filter step returns
this result.

STRONG-MAYBE:
There is a very high probability that the current
chunk is a duplicate. This is a typical result after
a fingerprint comparison. Other filter that cannot
provide any better result than STRONG-MAYBE are
not able provide a better information than that it is
very likely that the chunk is a duplicate. Therefore
after this result, it only makes sense to execute filters
that can return EXISTING. STRONG-MAYBE filters
are skipped.

WEAK-MAYBE:
The filter cannot make any statement about the
duplication state of the chunk. All filter steps later
in the chain are executed.

NON-EXISTING:
The filter rules out the possibility that the chunk
is already known, e.g. after a chunk index lookup
returns a negative result. The execution of the filter
chain is canceled if a filter returns this result.

If the chain classifies a chunk as new, the system runs a second
time through the filter chain so that filters can update their
internal state.

This flexible duplicate detection enables the development
and evaluation of new approaches and requires minimal im-
plementation efforts. The currently implemented filters are:

Chunk Index Filter:
The chunk index filter (CIF) is the basic dedupli-
cation filter. It checks for each chunk whether the

3

fingerprint of the chunk is already stored in the
chunk index. The filter returns STRONG-MAYBE, if
a chunk fingerprint is found in the chunk index. Oth-
erwise, the chunk is unknown and the filter returns
NOT-EXISTING. Afterwards, during the update-run,
the chunk index filter stores the new fingerprint
inside the index structures.
This filter performs an index lookup for each check,
which often hits the SSD or the disk storing the
chunk index. If possible, other filters should be
executed before the chunk index filter so that this
filter is only executed if no other filter returns a
positive answer.

Block Index Filter:
The block index filter (BIF) checks the current chunk
against the block mapping of the currently written
block that is already present in main memory. If the
same chunk is written to the same block as before,
the block index filter is able to avoid the chunk index
lookup.
In a backup scenario, we are able to clone the blocks
of the previous backup run using a fast server-side
copy approach to the volume that will hold the new
backup data. When the current backup data is written
to the clone volume and if the data stays at the same
block, the block index filter is able to avoid some
chunk index checks.

Byte Compare Filter:
The byte compare filter (BCF) performs an exact
byte-wise comparison of the current chunk and an al-
ready stored chunk with the same fingerprint. While
this introduces additional load on the storage sys-
tems, it also eliminates the possibility of unnoticed
hash collisions.

Bloom Filter:
We have implemented this and the container cache
filter described next to test the flexibility of the filter
chain concept and to show how easy deduplication
optimizations can be implemented using this pro-
gramming abstraction. Both optimizations have been
presented by Zhu et al. [2].
A bloom filter is a compact data structure to represent
sets. However, a membership test on a bloom filters
has a certain probability of an false positive [15],
[16]. In the context of data deduplication, bloom
filter can be applied as follows: The fingerprint of
each known chunk is inserted into the bloom filter.
For each chunk, the bloom filter is checked for
the fingerprint. If the membership test is negative,
we are sure that the chunk is unknown and NON-
EXISTING is returned. If the membership test is
positive, the filter returns WEAK-MAYBE, as there
is the possibility of false positives. The bloom filter
helps to accelerate the writing of unknown chunks,
e.g. in a first backup generation because expensive
chunk index lookups are avoided.

Container Cache Filter:
The container cache filter is also an implementation

Bloom
Filter

Chunk
Index
Filter

Byte
Compare

Filter

Chunk is new

Chunk is known

WEAK-MAYBE

STRONG-MAYBE

EXISTING

NOT-EXISTING

NOT-EXISTING

Block
Index
Filter

WEAK-MAYBESTRONG-MAYBE

Fig. 2. Illustration of the filter chain control flow (example)

of concepts presented by Zhu et al. [2]. It compares
a fingerprint with all entries of a LRU read cache.
The read cache uses containers, where each container
includes a set of fingerprints. If the check is suc-
cessful, a STRONG-MAYBE result is returned and
other filters, especially the chunk index filter, are not
executed.
If the check is negative, a WEAK-MAYBE result
is returned. After the filter chain is finished and the
result has been a STRONG-MAYBE (e.g. based on
a chunk index lookup), a last artificial filter claiming
that it allows an EXISTING result is responsible for
loading the fingerprint data of the container of the
chunk into the cache. The result of this post process
filter is also a STRONG-MAYBE.

To illustrate the filter chain concept, let us consider an
example configuration for the filter chain that consists of a
bloom filter, a block index filter, chunk index filter, and a
byte compare filter. An already known chunk will be detected
by the bloom filter. However, since the bloom filter might
return a false positive, this only leads to a WEAK-MAYBE.
Therefore, the block index filter is executed. If the previous
block mapping of the current block also contains a chunk with
the same fingerprint, the filter returns a STRONG-MAYBE and
the chunk index filter and any other filter that can at best return
a STRONG-MAYBE result are skipped because it would not
provide any new information and we can be reasonably sure
that the chunk is known. If a chunk with the same fingerprint is
not been used in the block before, WEAK-MAYBE is returned.

If that is the case, the chunk index filter performs an index
lookup, finds the chunk index entry for the given fingerprint
and returns STRONG-MAYBE together with the container id
of the container that stores the chunk (see the next subsection
for a description of containers). If the byte compare filter is
executed and it reads the container data of the chunk and
performs a byte-wise comparison, which probably leads to an
EXISTING result.

4

Figure 2 illustrate the possible control flow with the example
configuration.

C. Storage

The chunk data is stored using a subsystem called chunk
storage. The chunk storage collects chunk data until a con-
tainer of a specific size (often 4 MB) is filled up and then
writes the complete container to disk. The chunk storage is
therefore similar to the chunk container of Zhu et al. [2] and
Lillibridge et al. [12].

If a currently open container becomes full, the container is
handed over to a background thread that writes the data to
the attached storage devices. The background thread notifies
the system about the committed container using the log. Other
components, e.g. the chunk index, can now assume that the
data is stored persistently. The chunks of containers that are
not yet committed to disk have to be stored in the auxiliary
index and must not be stored persistently until the chunk index
receives a notification from the container store.

D. Chunk Index

A major component of the system is the chunk index that
stores all known chunk fingerprints and other chunk meta data.
The lookup key of the index is a (20 byte for SHA-1, 32
byte for SHA-256) fingerprint. In addition, each chunk entry
contains the storage address of the chunk in the chunk store
and a usage counter used by the garbage collection.

The chunk index uses two index structures, the persistent
index that uses a paged disk-based hash table and an in-
memory auxiliary index.

The auxiliary chunk index stores chunk entries for all
chunks whose containers are not yet written to disk (non-
committed chunks) as such chunk entries are only allowed
to be stored persistently after the chunk data is committed. In
addition, the in-memory auxiliary index is used to take index
writes out of the critical path. It also stores chunk entries that
are ready to be committed, but are not yet written to disk.
If the auxiliary index grows beyond a certain limit or if the
system is idle, a background thread moves chunk metadata
from the auxiliary index to the persistent index. In case of a
system crash, the chunk index is recovered by importing the
recently written chunks from the chunk store.

The design of the chunk index is influenced by the LSM
tree data structure that also maintains a persistent and an in-
memory index [17], [18]. However, the goals are different.
The goal of an LSM tree is to minimize the overall IO costs,
e.g. by optimizing the merging of the in-memory index and
the persistent index using a special on-disk format. This is
important in an OTLP setting where no idle times can be
assumed. Our goal is to delay the IO such that the update
operations can be done outside the critical path or for highly
redundant backups even after the backup itself.

E. Block Index

The block index stores the metadata that is necessary to map
a block of the iSCSI device to the chunks of varying length

Block 1 Block 2

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 1

(a) Illustration of a data stream split up into blocks of a fixed length
and chunks of variable length

Block Chunk Offset Size Container
Block 1 Chunk 1 0 9 –

Chunk 2 0 6 –
Chunk 3 0 1 –

block 2 Chunk 3 1 5 –
Chunk 4 0 7 –
Chunk 1 0 4 –

(b) Visualization of the block mapping that results from the
data stream shown above

Fig. 3. Example of a block mapping

that from the most recent version of the block data. We call
such a mapping the “block mapping”. The size of a block
can be set independently from the device block size of the
iSCSI device (often 4 KB). Usually a much higher block size
is chosen (64 KB to 1 MB) so that a block mapping contains
multiple full chunks.

The purpose is very similar to the data block pointers of a
file in a file system. In a file system the data block pointers
denote which data blocks contain the logical data of a file.
A block mapping denotes which chunks represent the logical
data of a block. In contrast to a file system where usually all
data blocks have the same length, the chunks have different
lengths and often there is no alignment between chunks and
blocks. So a block mapping consists of an ordered list of
chunk fingerprints and an offset / size pair denoting the data
range within the chunk that is used by the block. Additionally,
we store the container id in the block mapping item, which
is the foundation of the block index filter and a high read
performance. Figure 3 illustrates how an example data stream
is split into static-sized blocks and variable sized chunks (a)
and how the block mapping for such a data stream looks like
(b).

As the chunk index, the block index consists of a persistent
and an in-memory index. The in-memory index stores all
block mappings that are updated, but are not yet allowed to
be committed since referenced chunk data are not committed
to disk. We also hold fully committed block mappings in
the auxiliary index to avoid expensive write operations in
the critical path. It should be noted that consistency is still
guaranteed because all operations are written in the operations
log.

F. Log

The log is a shared operations log that is used for two
purposes: To recover from system crashes and to delay write
operations.

If the dedupv1 system crashes, a replay of the operations log
ensures a consistent state, meaning especially, but not limited
to this, that no block references a chunk that is not stored
in the chunk index and that no chunk index entry references
container storage data that has not been written to disk. The log

5

also helps to delay may write operations so that the amount of
IO operations in the critical path is minimized because the log
assures that the delayed operations can be recovered either in
case of an crash and because the system can process logged
operations during a background log replay, e.g. the garbage
collection must not update its state inline.

IV. EVALUATION

In this section, we first describe the methodology and the
environment used to evaluate the SSD-based deduplication
architecture proposed in the previous section. Afterwards, we
present performance benchmarks with various index configu-
rations.

We distinguish the first backup generation and further
backup generations. The storage system has not stored any
data before the first backup generation and the first backup
run cannot utilize any temporal redundancy. In the second
(and later) generations, the deduplication system can use chunk
fingerprints already stored in the index. For the first backup
generation, we used a 128 GB subset of files stored on a file
server used at our institute. The file system contains scientific
scratch data as well as workgroup data in the first data
generation. The second generation data is randomly generated
based on the first generation data and trace informations from a
recent study [1]. The traffic data files contain on average 32.5%
redundancy within a single backup run (internal redundancy)
and 97.6% redundancy, if previous backup runs are also
utilized (temporal redundancy). A full description of the trace
generation process can be found in the extended technical
report version of this paper [19]. Since we only benchmark the
first and the second generations, we are not able to observe
long-term effects.

The evaluation hardware consists of a server with an 8-
core Intel Core i7 CPU, 16 GB main memory, a fibre channel
interconnect to a SAN with 11 disks a 1 TB configured as
RAID-5 with one spare disk, a 10 GB network interconnect,
and four 2nd generation Intel X25-M SSDs with 160 GB
capacity each. We limited the available main memory capacity
to 8 GB to be more comparable with previous reported results
about the throughput of deduplication systems.

Up to four worker nodes are concurrently writing backup
data to the deduplication system using a 1 GB network.

The configuration is based on Content-defined Chunking
(CDC) with an expected chunk size of 8 KB, a container size
of 4 MB using no compression, and a chunk index initiated
with a size 32 GB and 2 KB pages. The size is chosen large
enough to hold over 750 million chunks, which is equivalent
over 5 TB of raw data when we consider a maximum fill ratio
of 70% and 32 byte data per chunk. The chunk index, the
block index, and the operations log are spread to all SSDs.
The chunk data is always stored on attached SAN. We allow
the auxiliary (in-memory) chunk index to contain all chunks of
a run. The only filter we use in this setting is the chunk index
filter. We performed five measurements for each configuration
and calculated the confidence intervals using 0.95 confidence
level. All values are reported as averages in its steady state.

We evaluated the system by varying the storage system of
the index. Besides the base configuration with four X-25M

1 SSD 2 SSD 4 SSD RAM
0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t

M
B

/s

Generation 1
Generation 2

Fig. 4. Throughput using different index storage systems

SSDs, we also evaluated the system using only one and two
SSDs of the same kind. Additionally, we also evaluated a
configuration with a completely main-memory based chunk
index and a SAN-based block index.

Figure 4 shows the average throughput using the floating
traffic and the block traffic for different index storage systems.

The base configuration with 4 SSDs achieves 167.2 MB/s
(+/− 3.4 MB/s) in the first data generation and slightly less
with 160.3 MB/s (+/− 4.3 MB/s) in the second generation.
The four SSDs provide 2,848 (+/− 64) read IOPS per SSD
during the deduplication. Additionally to the raw SSD speed,
the throughput is increased by caching effects due to the
OS page cache and the auxiliary chunk index that allows
chunk index checks for around 30% of the chunks (internal
redundancy). With 2 SSDs, the throughput is reduced to
88.4 MB/s (+/− 1.2 MB/s) and 83.3 (+/− 1.5 MB/s) for the
two inspected backup generations.

Interestingly, the throughput with only a single SSD is
not significantly lower than using two SSDs. The first gen-
eration is written with an average throughput of 87.8 MB/s
(+/− 1.8 MB/s) and the second generation is written with
an average throughput of 82.3 MB/s (+/− 1.7 MB/s). This is
caused by a much higher number of performed read IOPS in
that configuration.

The reason for this quite unexpected behavior is that instead
of around 3,000 IOPS per SSD executed by the 2- and 4-SSD
system, the single-SSD system executed 5,375 (+/− 54) reads
per second. In additional raw IO measurements we noticed that
a higher IO queue length – that is the number of concurrent
requests that are issued to the disk – leads to a much higher
number of performed requests per second for the Intel X25-M
SSDs (around 9−12 on average). Since all requests are split to
multiple SSDs in the other configuration, the IO queue length
is smaller (around 5− 6 on average) here.

If the complete chunk index fits in memory and the block
index is stored on disk, the system achieves a throughput of
162 MB/s (+/− 8.5 MB/s) for the first generation, respectively
242.7 MB/s (+/− 4.4 MB/s) for the second generation. Sur-
prisingly, this is not much faster than the SSD-based system.
In that configuration, the block index builds the bottleneck.

The bottlenecks of all four setups are visible in the profiling
data, which is shown in Figure 5. The figure shows the shares
of different system components on the overall wall clock time
on the data path. In all SSD-based configurations, the chunk
index is the major bottleneck. In the RAM-based system, other

6

1 SSD 2 SSD 4 SSD RAM

T
h
re

a
d
 w

a
ll

cl
o
ck

 t
im

e
Chunking
Chunk Index
Block Index
Storage
Log
Lock

Fig. 5. Average ratios of system components on the overall runtime in the
data path. The left bars denote the first generation runs, the right bars denote
the second generation runs

bottlenecks become dominant: The disk-based block index and
the storage component.

Zhu et al. presented various techniques to avoid expensive
index lookups including a bloom filter and special caching
schemes [2]. They assume that in every backup run the data
is written in nearly the same order. This request order locality
is only given in backup scenarios. They achieved a throughput
of 113 MB/s for a single data stream and 218 MB/s for 4
data streams on a system with 4 cores, 8 GB RAM and
16 disks with a deduplication ratio of 96%. The throughput
would degenerate in low-locality settings. Lillibridge et al.
presented a deduplication approach using sampling and sparse
indexing. They reported a throughput of 90 MB/s (1 stream)
and 120 MB/s (4 streams) using 6 disks and 8 GB RAM [12]
based on similar assumptions as Zhu et al.. We achieve more
than 160 MB/s without depending on locality.

This comparison shows that it is possible to build a dedupli-
cation system using solid-state drives that are able to provide a
performance that is on-par with state-of-the-art deduplication
systems.

V. CONCLUSION

The evaluation shows that current SSD technology can build
the basis for high-throughput fingerprint-based data deduplica-
tion. Without depending on locality, the system achieves over
160 MB/s in all backup generations with a single node system.
The system is build around the specific characteristics of SSDs
such as using additional in-memory index structures that are
inspired by LSM trees to avoid random writes. The system
can easily be extended by a flexible and powerful filter chain
approach.

Our future research focus may lie on the long-term behavior
of deduplication systems considering aging effects as well as
further scaling aspects.

REFERENCES

[1] D. Meister and A. Brinkmann, “Multi-level comparison of data dedu-
plication in a backup scenario,” in Proceedings of 2nd The Israeli
Experimental Systems Conference (SYSTOR’09), May 2009.

[2] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the
Data Domain deduplication file system,” in Proceedings of 6th UNENIX
Conference on File and Storage Technologies (FAST ’08), February
2008.

[3] P. Kulkarni, F. Douglis, J. Lavoie, and J. M. Tracey, “Redundancy
elimination within large collections of files,” in Proceedings of the
USENIX Annual Technical Conference (USENIX ’04), 2004.

[4] S. Quinlan and S. Dorward, “Venti: a new approach to archival storage,”
in Proceedings of the 1st USENIX Conference on File and Storage
Technologies (FAST ’02), 2002.

[5] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,
“Migrating server storage to ssds: Analysis of tradeoffs,” in Proceedings
of 4th ACM European conference on computer systems (EuroSys ’09),
April 2009.

[6] “Solid state 101 - an introduction to solid state storage,” White Paper,
Storage Networking Industry Association, January 2009.

[7] D. Myers, “On the use of nand flash memory in high-performance
relational databases,” Master’s thesis, MIT, February 2008.

[8] M. O. Rabin, “Fingerprinting by random polynomials,” TR-15-81,
Center for Research in Computing Technology, Tech. Rep., 1981.

[9] U. Manber, “Finding similar files in a large file system,” in Proceedings
of the USENIX Winter 1994 Technical Conference, San Fransisco, CA,
USA, 1994, pp. 1–10.

[10] V. Henson, “An analysis of compare-by-hash,” in HOTOS’03: Pro-
ceedings of the 9th conference on Hot Topics in Operating Systems.
Berkeley, CA, USA: USENIX Association, 2003, p. 3.

[11] J. Black, “Compare-by-hash: a reasoned analysis,” in Proceedings of the
USENIX Annual Technical Conference (USENIX ’06), 2006, p. 7.

[12] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and
P. Camble, “Sparse indexing: large scale, inline deduplication using
sampling and locality,” in Proccedings of the 7th USENIX Conference
on File and Storage Technologies (FAST ’09), 2009.

[13] D. Bhagwat, K. Eshghi, D. Long, and M. Lillibridge, “Extreme bin-
ning: Scalable, parallel deduplication for chunk-based file backup,” in
Proceedings of the 17th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS 2009), Sep. 2009.

[14] V. Bolkhovitin, “Generic scsi target middle level for linux,” http://scst.
sourceforge.net/, 2003.

[15] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[16] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scal-
able wide-area web cache sharing protocol,” IEEE/ACM Transactions
on Networking, vol. 8, no. 3, pp. 281–293, June 2000.

[17] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, “The log-
structured merge-tree (lsm-tree),” Acta Inf., vol. 33, no. 4, pp. 351–385,
1996.

[18] J. Stender, B. Kolbeck, M. Hgqvist, and F. Hupfeld, “Babudb: Fast and
efficient file system metadata storage using lsm-trees,” in Proceedings of
the 6th IEEE International Workshop on Storage Network Architecture
and Parallel I/Os (SNAPI), May 2010.

[19] D. Meister and A. Brinkmann, “dedupv1: Improving deduplication
throughput using solid state drives (technical report version),” University
of Paderborn, Tech. Rep., 2010.

