
The Linear Tape File System
David Pease∗, Arnon Amir†, Lucas Villa Real‡, Brian Biskeborn§, Michael Richmond¶ and Atsushi Abe‖

∗ IBM Almaden Research
pease@almaden.ibm.com
† arnon@almaden.ibm.com
‡ lucasvr@us.ibm.com
§ bbiskebo@us.ibm.com
¶ mar@almaden.ibm.com

‖ IBM Yamato Lab
piste@jp.ibm.com

Abstract—While there are many financial and practical reasons
to prefer tape storage over disk for various applications, the
difficultly of using tape in a general way is a major inhibitor to
its wider usage. We present a file system that takes advantage of
a new generation of tape hardware to provide efficient access
to tape using standard, familiar system tools and interfaces.
The Linear Tape File System (LTFS) makes using tape as easy,
flexible, portable, and intuitive as using other removable and
sharable media, such as a USB drive.

I. MOTIVATION

In today’s digital world, more and more companies keep all
of their data, including their most valuable assets, in digital
form. The broadcast and movie industries, for example, are
changing to all-digital, file-based workflows as they go through
a major transition. In what is often referred to as the Digital
Media Transformation, traditional film and video tapes are
being replaced with file-based workflows.

This transformation helps drive a burgeoning demand for
storage capacity. More importantly, it creates new challenges
for storage technologies. A detailed report by the Academy of
Motion Pictures Art and Sciences [1] explains the industry’s
mission to keep and preserve digital movies for the next
hundred years. It states that today, no media, hardware or
software exists that can reasonably assure long-term accessi-
bility to digital assets. When it comes to data preservation, the
information technology community can learn from the more
than a century of experience of the movie industry. Hundred
year old film can still be projected and scanned today. In
contrast, data put on floppy disks 20 years ago is already very
hard or impossible to recover.

Within today’s storage technology, data tape is still the
preferred media for archive. Global tape archive capacity in
2008 was 5,210 PB, accounting for 51% of total archive
storage, and is projected to grow 50% annually to 24,400 PB
in 2012 [2]. The capacity of a single, industry-standard Linear
Tape Open Generation 4 (LTO-4) cartridge is 800 GB (without
compression), and will nearly double with the introduction
of LTO Generation 5 this year. A single LTO-4 tape drive
can read and write at a sustained rate of 120 megabyte per
second (140 MB/sec with LTO-5), faster than a single hard

drive. A tape library can host dozens or even hundreds of
drives operating in parallel. A case-study comparison [3] found
the cost ratio for a terabyte stored long-term on SATA disk
versus LTO-4 tape to be about 23:1, and the energy cost
ratio is as high as 290:1. Furthermore, the bit error rate
of a SATA hard drive is at least an order of magnitude
higher than of LTO-4 tape [4]. Tape longevity is typically
rated by customers at thirty years [1] (though one would still
need to keep an operational drive to read the tapes). Tape’s
economy, scalability, robustness, high density and low power
consumption are unmatched.

Despite these many advantages, tape is rarely mentioned in
the same breath with hard drives. Inherent functionality and
usability differences often create the perception that tape is
inferior to hard drives. Hard drives provide random access
to files and blocks within milliseconds, while tapes might
require tens of seconds seek time. More importantly, hard
drives typically contain a file index, managed by a file system.
Applications can access files on a hard drive using standard
sets of APIs common to nearly all operating systems and
programming languages. These file systems can be exported
over local and wide area networks. Multiple files can be
opened and modified simultaneously by multiple users. Hard
drives can be made portable across platforms and operating
systems.

In contrast, tapes can only be written in a linear, sequential
fashion. Because of the way in which tape data is recorded,
update-in-place is not possible. Hence tape is used as an
append-only device, in which new content is added but old
content cannot be modified or purged, and blocks cannot be
reclaimed.

Typically, a tape contains no general-purpose file index
(which would need to be updated often). Rather, an index
is often kept in an external database, stored on a hard drive
and managed by a storage system running on a host com-
puter. Applications can only interface with this storage system
through its special APIs, or access files which are staged by
a hierarchical storage management (HSM) system. Therefore,
data stored on an individual tape cannot be recovered without
the presence of external databases and proprietary storage

978-1-4244-7153-9/10/$26.00 c© 2010 IEEE

systems. Not only does this model diminish tape portability,
it is often a major concern when it comes to recovery after a
major catastrophe, such as when a storage system, its server,
or its database go down. All of these components need to be
rebuilt or recovered in order to regain access to the data on
tapes.

Alternatively, files can be packaged in groups prior to
writing them to tape, and a file index can be added and
encapsulated within the data. This is commonly done using
the ancient tape archive (tar) format. Access to individual
files requires retrieval of the entire ”tarball” (assuming one
has a way of knowing which tar contains the files), and
then accessing its internal index and unpacking the files. In
discussions with customers who use tar on tapes, it is often
considered cumbersome, inefficient, unreliable (“sometimes
the tar header gets corrupted and we lose the entire set of
files”), and incompatible (there is no universal tar standard).

Hence data tapes are much less portable than one would
imagine, and are typically kept inside large automated tape
libraries, managed by storage management systems and con-
trolled by experienced system administrators. Even more strik-
ing is the comparison to digital video tapes, which have
no external dependencies, require only a video tape recorder
(VTR) to play, are portable, ubiquitous, and can be operated
by anyone. Video tapes can be archived in a vault for many
years and the content can be retrieved at any time.

Is there a way to make data tapes independent, portable, and
as simple to use as removable hard drives or video tapes? This
question led us to create the Linear Tape File System (LTFS).
Simply put, our goal is to make data tape an equal member in
the family of portable storage devices. Towards that goal we
identified and addressed several key requirements:

• A self-describing tape cartridge, containing an index of
its contents and sufficient information to allow complete
recovery of the files from the tape without any additional
external information.

• An index that includes a hierarchical directory structure,
and files with attributes such as file name, date, and size.
An extent list allowing for multiple file extents, and file
modification through block relocation.

• An index that is easily accessible and updatable, inde-
pendent of the data files stored on the tape.

• Access to tape data using standard utilities and programs
through file system interfaces.

• Support for user- or application-specified extended at-
tributes on files.

• Support for small, special-purpose data files close to the
beginning of the tape. These files are expected to be
domain-specific, and defined by the user’s application.
They are quickly available after loading and mounting
the tape.

• Support for more than just individual tape drives, but also
for library automation.

II. RELATED WORK

Early work on tape file system was mainly around the log-
structured file system (LFS)[5], [6], utilizing linear block-
based writing for optimal write performance. It was later
extended to tertiary storage systems by work such as Kohl’s
HighLight [7]. These however did not aim at making tapes
self-describing but only to provide an efficient file system
access to tapes, first directly and later through tiers of stor-
age. However in this work we particularly focus on a self-
describing, stand-alone portable tape cartridge.

In [8] the authors describe a file system for a hybrid of tapes
and RAID arrays. This work is more related to HSM systems,
as it implements the file system in a global fashion, and does
not allow for removal tapes from the system in order to use
them in other environments.

Our work is most closely related to the work of Zhang et al.
on the High Performance Tape File System (HPTFS) [9]. The
authors describe a single-partition self-describing tape format
with an index at the end of the data segment. They developed
the file system using FUSE, and measured performance in
several usage scenarios. In contrast, LTFS uses a dual-partition
tape and leverages it in many ways, including rapid loading
at mount time, the ability to keep multiple index versions and
roll back to an earlier version, saving metadata files on the
index partition, and more.

While both HPTFS and LTFS are file system implementa-
tions, only LTFS supports a hierarchical directory structure on
tape, allowing preservation of the original directory structure
and the file organization of users’ data. LTFS also supports
extended attributes for files and for directories. HPTFS works
only at the single tape level; it does not support automated
libraries. A major difference impacts the performance of
seek(), a function commonly used for partial file retrieval
or update. Because HPTFS uses block headers to associate
blocks with files, its index does not contain a list of extents
for each file. This approach requires the system to first find
the beginning of a file, then read linearly while identifying
and counting the relevant blocks and skipping the others,
until the desired seek point is located. With LTFS, the block
number of a seek command can be calculated from the index
alone, before the tape is moved. The tape can then be moved
directly to the beginning of that block, saving considerable
time. An advantage of HPTFS is in the handling of streaming
by interleaving files.

III. TAPE BACKGROUND

In order to understand some of the details of the LTFS
implementation, it is helpful to understand something about
modern linear tape. Because LTFS was written to work
on linear tape such as LTO (Linear Tape Open))[10], our
description will use the LTO format as its model. LTO is
an open tape standard, and several companies produce and
market compatible LTO drives and media. All members of
the LTO Consortium must approve any changes to the LTO
specification.

In general a new generation of LTO is introduced every 18-
24 months, and typically brings increased recording density
and an accompanying increase in tape capacity (and often in
speed).

The current generation of LTO is Generation 4 (LTO-4).
However, by the time this paper appears, Generation 5 (LTO-5)
will be available. LTO-5 will have an uncompressed capacity
of 1.5TB. As in the current generation, it will support both
compression and encryption of data in the drive. Its maximum
streaming data rate will be 140MB/second.

Unlike tapes of old, LTO tape is not written from the
beginning to the end in a single pass. Rather, the tape is
recorded in what is referred to as a serpentine fashion: a
set of tracks is written from the beginning of the tape to the
end, then the read/write head is moved some distance across
the tape, and the tape is written back from the end to the
beginning. Each end-to-end pass is referred to as a ”wrap”.
So, writing 2 wraps returns the tape to its starting point. The
current generation of linear tape records 80 wraps across the
tape.

Due to requirements for backwards compatibility with ear-
lier LTO generations, current (and future) generation of LTO
write in a mode called shingling. Shingling means that the
tape head erases a wider path than it records. This shingling
effect (along with some other peculiarities of tape behavior)
guarantees that tape data cannot be overwritten in place
without affecting the data around it. Even if the tape drive
could guarantee to rewrite a block in the same place and for the
same length as an existing block (which it cannot), shingling
would cause adjacent data to be erased.

As a result of the inability of tape to update blocks in place,
tape is an append-only medium. Data cannot be written to
other than the logical end of the tape (end of data) without
destroying some data that follows. This means that any file
system (or other scheme) that writes data to a tape must be
designed so that updating data involves writing to the end of
the tape, then changing any references to the old data block(s)
to point to the updated one(s).

A major enhancement to the LTO specification in LTO
Generation 5 is the addition of partitions. LTO-5 supports
up to two partitions on tape; each partition can be written
completely independently of the other. The smallest partition
size allowed is 2 wraps, for a nominal capacity of 37.5GB. On
a dual-partition tape, the largest partition can be a maximum
of the tape size minus 4 wraps (2 wraps for the second, small
partition, and two more that are automatically set aside as a
guard area between the two partitions).

LTFS has been designed specifically to take advantage of the
dual-partition tapes and drives available with LTO Generation
5. (Much of the original prototype work was done on LTO-4
drives with microcode modified to allow two partitions.)

IV. LINEAR TAPE FILE SYSTEM

A. What is LTFS?

In a nutshell, LTFS is a file system that makes a tape as easy
to use as a removable hard drive. After an LTFS tape cartridge

with data on it is loaded into a drive and mounted by the file
system, a user can see the directories and files stored on the
tape through the standard tools available on their system (for
example, a graphical file explorer, application open menus,
command-line tools, etc.). They can traverse the directories (or
folders), read and modify files from within their applications,
and open applications by double-clicking file icons. Files can
be updated, and in general can be used as if they were on disk.

The performance of tape files in random-access applications
can be significantly different from that of disk-resident files,
and users should realize that tape and disk are fundamentally
different. Nonetheless, LTFS makes it possible to use tape-
resident files from standard applications and utilities without
worrying about the fact that they are on tape, and without
having to copy files from tape to disk. Perhaps equally
importantly, it also creates self-describing tapes, and makes
it possible to view the contents of tapes using the tools that
users are familiar with.

The LTFS technology consists of two major components:
the on-tape index format and the file system implementation.
LTFS requires the multi-partition capability found in tape
systems like LTO generation 5; however, it is not LTO-specific.
(In fact, it has already been shown running on an non-LTO
drive modified to provide dual-partition capability.)

In a basic LTFS implementation, one partition, typically a
comparatively small one referred to as the index partition, is
used to record the tape index; another partition, made up of the
remainder of the tape and referred to as the the data partition,
is used to store file data blocks.

B. On-tape XML schema

An important aspect of the design of LTFS was to make the
format of the data on tape open, accessible, and easy to use.
Our goal in this respect was to make it easy for others to write
applications that read LTFS-formatted tape or to write tapes
in a format that LTFS implementations can load and use. (Our
group has already modified one existing IBM tape utility to
write LTFS-compatible tapes.)

To that end, the format of the LTFS index has been designed
with considerable attention to its ease of interpretation and
processing. We have chosen to represent the index in a simple
XML schema in which all values are represented in a human-
readable format. As an example, we represent file timestamps
in a yyyy-mm-dd hh:mm:ss.mmmmmmmm format rather
than in the more common seconds since the beginning of an
epoch that file systems often use internally; while this takes
a few more characters for each timestamp, it makes it easy
for anyone to interpret the values in the XML schema. It also
helps support another goal of LTFS, platform independence
and interchangeability.

In order to be truly useful, an LTFS tape written on any
operating system platform must be able to be read on any other
OS platform. (This is the same type of interchangeability that
we take for granted when using USB flash storage, due to the
universal use of the FAT [11] format on such devices.) Our
file system supports constructs that are common to all modern

<?xml version="1.0" encoding="UTF-8"?>
<index version="0.9">

<creator>IBM LTFS 0.20 - Linux - ltfs</creator>
<volumeuuid>9710d610-5598-442a-8129-48d87824584b</volumeuuid>
<generationnumber>3</generationnumber>
<directory>

<name>LTFS Volume Name</name>
<creationtime>2010-01-28 19:39:50.715656751 UTC</creationtime>
<modifytime>2010-01-28 19:39:55.231540960 UTC</modifytime>
<accesstime>2010-01-28 19:39:50.715656751 UTC</accesstime>
<contents>

<directory>
<name>directory1</name>
<contents>

<file>
<name>binary_file.bin</name>
<length>10485760</length>
<extentinfo>

<extent>
<partition>b</partition>
<startblock>8</startblock>
<byteoffset>0</byteoffset>
<bytecount>720000</bytecount>

</extent>
<extent>

<partition>b</partition>
<startblock>18</startblock>
<byteoffset>0</byteoffset>
<bytecount>9765760</bytecount>

</extent>
</extentinfo>
<extendedattributes>

<xattr>
<key>uservalue</key>
<value>fred</value>

</xattr>
</extendedattributes>

</file>
<file>

<name>read_only_file</name>
<length>0</length>
<readonly/>

</file>
</contents>

</directory>
</contents>

</directory>
</index>

Figure 1. Sample LTFS XML Schema

file system implementations, such as hierarchical directories,
long file names, file timestamps, and extended attributes. It
does not support attributes that tend to be platform-specific,
such as UNIX-style user and group permissions or Windows
ACLs.

Figure 1 shows an abbreviated example of the XML schema
used in the LTFS directory. It tries to adhere to the idea that
simpler is better. For example, a directory entry can consist
of as little as a directory name, under which can be files and
other directories. File entries can contain as little as a file
name, timestamps, a file length, and the extent information
that identifies the location of the blocks of the file on tape.

We expect that most LTFS files will initially be written
sequentially and in a single pass. Thus, most files will initially
have a single extent entry with a byte offset in the first block of
zero, and a byte count equal to the file length. Files are initially
written in fixed-size blocks of one megabyte in length, with
the last block typically being a short block 1. However, our
extent list format supports short blocks anywhere in the file,
as well as blocks in which not all bytes represent current file
data.

1The one megabyte block size is the default, and can be changed at tape
format time.

As an example of the use of this capability, imagine a single-
extent file where one byte in the middle of a one-megabyte
block is updated. One approach to this would scenario be to
read the entire modified block, update the byte in question,
append the updated block to the physical end of the tape, and
split the single-extent file into three extents. However, this
could involve considerable seeking across the tape to find and
read the block being modified and then repositioning to the
end of tape. Our approach would simply write the modified
byte as a short block at the end of the tape, then split the
file into three extents. If many updates are made to a file, our
scheme allows new data to be written to the end of the tape
without any intervening tape movement, and is thus far more
efficient.

Another thing to note in the extent list format is the presence
of a partition field. This field exists for two reasons. First,
while LTO generation 5 supports only two partitions tapes
in the future could support more, and since each partition
starts with relative block number of zero, it is necessary to
identify the partition to which an extent refers. Second, our
implementation supports storing small data files in the index
partition for caching at tape mount time (more information on
this capability is presented below). Also note that this system
allows different extents of a file to be in different partitions if
that becomes necessary or useful.

A final comment on the XML schema concerns the presence
of an index generation number in the schema. When using
LTFS in a mode where tape index information can be cached
on a hard drive (such as in Library Mode, described below),
it is possible for the cached and on-tape versions of the index
to get out of synch. A simple timestamp is not suitable for
determining the latest version of the index, since the tape might
have been updated on a system whose clock is wildly different
from the system on which the tape was previously written.
Instead, we use a monotonically increasing index version to
resolve questions of index currency.

C. Extended attributes

An important feature of our index schema is support of
user metadata for files, in the form of extended attributes.
These extended attributes are key/value pairs that can be set
or queried using standard POSIX xattr [12] system calls (as
well as Windows system calls).

As an example, extended attributes could be used in car-
tridges that contain multimedia streams to indicate the offset
in a file where certain events can be found, or to provide
indices so that the user can seek back and forth in time on
a video stream. They could also be used to hold frequently
accessed information related to a file, which could then be
accessed without seeking to the file data.

In order to provide efficient access to metadata, LTFS
stores extended attributes in the XML schema as part of the
file description. Once a tape cartridge is loaded and parsed
by LTFS, such information becomes instantly available for
reading with no need for additional tape I/O operations.

D. Architecture and Implementation

Our first LTFS file systems have been implemented on
Linux and Mac OS X. On both of these platforms, the file
systems use the FUSE [13] framework, and implement the
actual file system logic in user space. The use of the FUSE
infrastructure allowed us to build and debug the file system
logic much more quickly than would have been possible with
kernel-level development. Figure 2 illustrates the relationships
between user applications, the VFS layer, the FUSE module,
LTFS, and the tape device driver.

Our two initial implementations share most of their code.
The major difference between the Linux and Mac OS X
implementations is at the device driver level. For Linux, an
open source tape driver, LinTape [14], that supports LTO drives
exists. Unfortunately, no such driver yet exists for OS X, and
we were forced to use raw SCSI CDBs [15] to interface with
the drives on that platform.

There is no reason we could not port our implementations
to native kernel-level file systems. However, unless there are
significant performance gains to be realized from such a
port, there is not much incentive to do so. Unfortunately,
there are many commercial UNIX variants for which FUSE
implementations do not exist; for those systems a kernel-level
file system would appear to be the only choice (short of
porting FUSE). There is also currently no complete, working
implementation of FUSE for Windows (though one appears to
be under serious development).

Until we finish development of a Windows implementation,
our current approach for Windows (as well as for other UNIX
variantss) is to export the LTFS file system from Linux or Mac
OS through either CIFS [16] (using Samba [17]) or NFS [18].
However, this approach is unlikely to be acceptable in the long
term, especially in the Windows world where Linux and Mac
systems and skills may be rare. We are have started work on a
native Windows LTFS implementation, but in our experience
Windows is the most difficult of file system development
environments.

E. Single-drive mode

The current implementations of LTFS have two operating
modes, which we call “single-drive mode” and “library mode”.
Single-drive mode is the simplest of LTFS modes. It is de-
signed for an environment without tape automation (libraries),
where one (or perhaps two) tape drives are attached to a
workstation or server. In this mode, using LTFS is similar
to using a removable hard drive or flash drive. When a tape
is mounted the contents of the tape are accessible through the
file system, and when the tape is unmounted no memory of
the tape contents is kept on the host machine.

This mode is intended for environments where tape automa-
tion is unnecessary or too costly. It is especially well-suited
to scenarios where tape is used as an exchange medium, such
as small audio/video processing companies.

Figure 2. Relationship between LTFS, the operating system and tape hardware

F. Small Library mode

LTFS has also been designed to support tape libraries. A
tape library is a storage system that contains one or more tape
drives, a number of slots for holding tape cartridges, and a
robot (automation) that moves tapes to and from the drives
under software control. The automation identifies cartridges
by scanning a bar code that is visible on the outside of the
cartridge.

When LTFS is running in Library Mode, it caches tape index
information to hard disk as it accesses tapes 2. This allows the
LTFS system to expose the contents of all the tapes in the
library without having to mount any tapes. When a library is
first mounted, LTFS creates a directory for each known tape
volume under the library mount point, and under each of those
directories the file and directory information for the associated
tape is visible. A user can search or browse the tape contents
without the tape being accessed. When a user or application
opens a file on one of the tapes, LTFS instructs the library
automation to mount the tape in a free drive.

The index generation number mentioned earlier allows
resolution of conflicts should the disk copy of the index get
out of synch with the version on tape.

G. Data files in Index Partition

As mentioned earlier, LTFS supports the ability to store
data files in the index partition. This capability is intended
to support environments where small data files describe much
larger files in the data partition, and those small files may be

2Synchronization of the XML index to disk can happen at various times,
including at unmount time (if the tape contents have changed), and when
requested by the user or application through a file system sync request.

referenced frequently. (An example of such a scenario is the
use of an MXF [19] “moe” file to provide an index into a very
large MPEG video file.) When LTFS mounts a tape it reads the
index partition, and caches any data files it finds there either
in memory or on local disk for fast access.

LTFS provides the ability to specify the criteria for inclusion
of data files in the index partition at tape format time. The
criteria that can be used are the maximum file size and file
name pattern(s). The maximum size can also be set to zero,
which will disable any writing of data files to the index
partition.

Files written to the index partition are expected to be
small and relatively few. In LTO-5 the size of the index
partition is approximately 37.5 gigabytes out of a tape total of
1.5 terabytes (both numbers are uncompressed). If the index
partition appears to be in danger of filling up, the file system
can choose to write even data files that meet the index partition
criteria to the data partition.

While our LTFS implementation supports data in the index
partition, that does not mean that other implementations of
LTFS-compatible formats would have to. When writing a tape,
a simpler implementation could always write all data to the
data partition. When reading, an implementation simply uses
the partition number in the extent list, without specifically
worrying about whether that extent is in the index or data
partition.

H. Multiple index generations

Since tape is an append-only medium, even data that has
been logically deleted or updated is still physically on the tape.
This fact makes it very easy to implement a form of versioning

file system. Blocks written to the tape are never overwritten
by LTFS, with the sole exception of XML index. Older copies
of the index are written to the data partition, interleaved with
data, and a chain of back pointers allows LTFS to walk back
through the array of older indexes.

When a tape is mounted, the file system reads the most re-
cent index information from the index partition. (A redundant
copy is also kept at the end of the data partition, in case of
an error.)

If the user specifies at mount time that they want to revert
to an earlier version of the tape contents, LTFS traverses
back through the chain of index files to find the one that
most closely matches the user’s request, and makes that
version of the tape data available for reading. (A separate tape
reclamation utility can permanently revert a tape to an earlier
version, and allow it to subsequently be rewritten from that
point.)

V. RESULTS

A. NAB Prototype Demonstration

We initially implemented LTFS on IBM’s LTO-4 drives
using modified firmware designed to support dual partition
operation. (As mentioned earlier, this dual-partition capability
will be available natively as part of LTO Generation 5.) The
prototype system used FUSE to provide file system access to a
mounted tape; it supported both single drive and library modes
of operation. We demonstrated the LTFS prototype at the Na-
tional Association of Broadcasters (NAB) conference in April
of 2009. The demonstration showed the basic functionality of
the prototype, including reading and writing files, browsing
the directory structure on the tape, exporting the file system
to Windows machines via Samba, and performing partial file
recall on an MXF video file.

We have subsequently reimplemented the LTFS file systems
in a much more robust fashion using LTO-5 hardware. (We
have chosen to retain the FUSE-based architecture.) We will
make this code publicly available during the 2010 NAB show
in April of this year.

B. Performance

Tape drives perform best for streaming workloads: an LTO-
5 drive can require 90-100 seconds to seek in the worst
case, but it can perform sequential reads and writes at 140
MB/s. Because of the serpentine nature of the LTO format,
throughput is constant over the entire medium except for the
few seconds required to turn around at the end of each wrap.
Once at least one wrap is filled, average seek time is nearly
constant as more data are added to the tape; because each wrap
holds only 18.75 GB, this limit is reached quickly.

The performance characteristics of a tape are predictable,
but they do not necessarily reflect those of a file system
running on the tape. LTFS always appends to the tape when
writing, so in the absence of file system overhead, it should
achieve the full write throughput of the tape drive for any
series of file writes using a large enough block size. Similarly,
LTFS should achieve the full read throughput of the drive

provided that the requested blocks are sequential on the tape.
Non-sequential reads will be completely dominated by seek
time.

Our test system contains two quad-core Intel Xeon proces-
sors (Core 2 architecture, running at 2.66 GHz) and 24 GiB
of RAM; it is connected to a full-height LTO-5 drive via a 4
gigabit-per-second Fibre Channel network.

File system write performance was measured by filling 10
wraps (175 GiB) of an LTO-5 tape with zeros. This amount of
data provides even coverage over the length of the medium, so
the results obtained are representative of the entire medium.
The tape was formatted with a 1 MiB block size. To determine
large file performance, 1 GiB files were used, for a total of
175 files. These files were written and read using 1 MiB write
requests. To determine performance on smaller files, 1 MiB
files were used for the second set of tests, for a total of 179200
files spread across 175 directories. These files were written and
read using 128 KiB write requests.

For each file size, sequential write performance was tested
by measuring the total time required to write all files to the
tape. Sequential read performance was tested by measuring the
total time required to read all files from the tape. Seek time
(which dominates random read performance) was measured
by choosing 100 files at random, then reading the first byte
of each file in the chosen order. The reported seek times
are averages of all 100 seek requests. The file system was
remounted between write and read tests to eliminate any
possible caching effects.

Table I summarizes the results of these benchmarks. We
have measured raw throughput on the test system at 133.0
MiB/s. LTFS consistently achieves the full throughput of the
tape drive except when writing small files. The lower small file
write throughput likely occurs because LTFS flushes data to
the tape drive when closing a file, but we have not confirmed
this explanation.

Average seek time is roughly 37 seconds and is independent
of file size. Since LTFS can only append blocks to the tape, it
turns random writes into sequential ones. Therefore, only read
workloads are directly subject to long seek times. Random
I/O may be acceptable on small files, especially if the entire
file can fit in the file system cache (either in LTFS or in the
kernel). But for general random workloads, LTFS is limited
by the inherent access time of the underlying medium.

VI. DISCUSSION AND FUTURE WORK

This work defines a new class of portable storage media
which is based on open standards, has the economy, robust-
ness, high density and low power of tape with many of the
functionality and usability of hard drive. A new open format
for self-describing tape is proposed, utilizing dual-partition
tape which is part of the LTO-5 industry standard. A large data
partition is used to store the files’ content and a much smaller
index partition is used to keep the file index and metadata. The
index can be updated and metadata files can be added to the
index partition independent of the main content that is stored
on the data partition. The use of a dual partition tape increases

File size Write (MiB/s) Read (MiB/s) Seek time (s)
1 GiB 132.9 132.2 37.2
1 MiB 92.8 133.0 37.6

Table I
WRITE, READ AND SEEK PERFORMANCE OF LTFS.

efficiency and improves resilience against unexpected power
outages and other system crashes. A new LTFS Linear Tape
File System was implemented on both Linux and OS X using
FUSE.

Our LTFS implementation on both Linux and OS X uses
FUSE for code development in user space. It supports both
a single-cartridge mode and a library mode - in which many
tapes show up as folders under a single mount point. Hence
tape ingest into libraries is made easy by reading just the
content of the index partition into LTFS and populating and
content management system with the metadata found on the
index partition. The tape is made portable and compatible
across platforms.

A first system prototype was implemented and successfully
demonstrated at NAB 2009. We have since built a version
suitable for general use, and will make it available as open
source in early 2010. We have completed a first version of
the LTFS Format Specification, and will make that openly
available at the same time.

More work is required to support multiple concurrent re-
quests, scale up, and closer integration with other file systems.

This work is part of the DuraBytes project, whose goal is to
make tape better and ”smarter”. In other parts of the project we
have developed a prototype hybrid tape cartridge embedding 4
GB of flash memory. The flash is accessible while the cartridge
is either loaded into the drive or is connected through USB
to any computer; it allows browsing the directory tree and
file attributes for the tape’s content. We also address domain-
specific tape requirements such as tools for MXF wrapping
and metadata extraction and support efficient handling of file-
based media workflows.

REFERENCES

[1] “The Digital Dilemma, Strategical issues in archiving and accessing
digital motion picture material,” 2007, the Science and Technology
council of the academy of motion picture arts and sciences.

[2] J. McKnight, M. Turner, B. Babineau, and J. Gahm, “2007 File Archiv-
ing Survey: End-User Requirements & Priorities,” Dec 2007, enterprise
Strategy Group.

[3] D. Reine and M. Kahn, “Disk and Tape Square Off Again – Tape
Remains King of the Hill with LTO-4,” Feb 2008, clipper Notes.

[4] H. Newman, “The Tape Advantage: Benefits of Tape over Disk in
Storage Applications,” Apr 2008, white paper, Instrumental.

[5] H. Robinson, “A mass storage subsystem using ANSI X3B6 ID-1
recorders,” K. D. Friedman and B. T. O’Lear, Eds. Monterey, CA:
IEEE 10th Symposium on Mass Storage Systems, May 1990, pp. 43–
45, iEEE catalog number 90CH2844-9, 7–10.

[6] C. Staelin and J. Kohl, “The Coconut file system: Utilizing Tape-
based Robotic Storage,” in USENIX File Systems Workshop Proceedings.
USENIX, May 1992, pp. 141–142.

[7] J. T. Kohl, “Highlight: Using a Log-structured File System for Tertiary
Storage Management,” Master’s thesis, UC Berkeley, Berkeley, CA
94720, 1993.

[8] D. Feng, L. Zeng, F. Wang, and P. Xia, “TLFS: High Performance Tape
Library File System for Data Backup and Archive,” in Proceedings
of 7th International Meeting on High Performance Computing for
Computational Science. Rio de Janeiro, Brazil: Springer, June 2006.

[9] X. Zhang, D. Du, J. Hughes, and R. Kavuri, “HPTFS: A High Perfor-
mance Tape File System,” in Proceedings of 14th NASA Goddard/23rd
IEEE conference on Mass Storage System and Technologies, College
Park, MD, May 2006.

[10] Aberdeen Group, “LTO Tape Has It All,” Dec 2001. [Online]. Available:
http://www.lto-technology.com/pd f/Aberdeeni LTO has it all.pdf

[11] Microsoft, “Microsoft Extensible Firmware Initiative FAT32
File System Specification,” Dec 2000. [Online]. Available:
http://www.microsoft.com/whdc/sy stem/platform/firmware/fatgen.ms
px

[12] I. IEEE, IEEE Standard for Information Technology: Portable Operating
Sytem Interface (POSIX). Part 1: System Interface. 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA: IEEE Standards Association,
2001.

[13] M. Szeredi, “File system in user space (FUSE),” 2009. [Online].
Available: http://fuse.sourgeforge.net

[14] IBM, “LinTape, Linux Tape Driver,” Sep
2009. [Online]. Available: http://www-01.ibm.com/support/do
cview.wss?rs=577&uid=ssg1S400078 7

[15] G. Field and P. M. Ridge, The Book of SCSI, 2nd ed. 555 De Haro
St., Suite 250. San Francisco, CA 94107: No Starch Press, Jun 2000.

[16] C. R. Hertel, Implementing CIFS: The Common Internet File System.
Upper Saddle River, NJ, USA: Prentice Hall, Aug 2003.

[17] T. S. Team, “The samba project,” Dec 2009. [Online]. Available:
http://samba.org/samba

[18] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz,
“NFS Version 3 - Design and Implementation,” in In Proceedings of the
Summer USENIX Conference, 1994, pp. 137–152.

[19] B. Devlin, J. Wilkinson, M. Beard, and P. Tudor, The MXF Book:
An Introduction to the Material eXchange Format. 11830 Westline
Industrial Drive, St. Louis, MO 63146, USA: Focal Press, Apr 2006.

