
High Performance Solid State Storage Under Linux
Eric Seppanen, Matthew T. O’Keefe, David J. Lilja

Department of Electrical and Computer Engineering
University of Minnesota
Minneapolis, MN 55455

{sepp0019, mokeefe, lilja}@umn.edu

Abstract—Solid state drives (SSDs) allow single-drive perfor-
mance that is far greater than disks can produce. Their low
latency and potential for parallel operations mean that they are
able to read and write data at speeds that strain operating system
I/O interfaces. Additionally, their performance characteristics
expose gaps in existing benchmarking methodologies.

We discuss the impact on Linux system design of a prototype
PCI Express SSD that operates at least an order of magnitude
faster than most drives available today. We develop benchmark-
ing strategies and focus on several areas where current Linux
systems need improvement, and suggest methods of taking full
advantage of such high-performance solid state storage.

We demonstrate that an SSD can perform with high through-
put, high operation rates, and low latency under the most
difficult conditions. This suggests that high-performance SSDs
can dramatically improve parallel I/O performance for future
high performance computing (HPC) systems.

I. INTRODUCTION

Solid state storage devices have become widely available in
recent years, and can replace disk drives in many applications.
While their performance continues to rise quickly, prices of the
NAND flash devices used to build them continue to fall. Flash-
based SSDs have been proposed for use in computing envi-
ronments from high-performance server systems to lightweight
laptops.

High-performance SSDs can perform hundreds of thousands
of I/O operations per second. To achieve this performance,
drives make use of parallelism and complex flash manage-
ment techniques to overcome flash device limitations. These
characteristics cause SSD performance to depart significantly
from that of disk drives under some workloads. This leads
to opportunities and pitfalls both in performance and in
benchmarking.

In this paper we discuss the ways in which high-
performance SSDs are different from consumer SSDs and
from disk drives, and we set out guidelines for measuring
their performance based on worst-case workloads.

We use these measurements to evaluate improvements to
Linux I/O driver architecture for a prototype high-performance
SSD. We demonstrate potential performance improvements
in I/O stack architecture and device interrupt handling, and
discuss the impact on other areas of Linux system design. As a
result of these improvements we are able to reach a significant
milestone for single drive performance: over one million IOPS
and read throughput of 1.4GBps.

II. BACKGROUND

A. Solid State Drives

In many ways, SSD performance is far superior to that of
disk drives. With random read performance nearly identical
to sequential read performance, seek-heavy workloads can
perform orders of magnitude faster with an SSD compared to
a disk drive. SSDs have other benefits besides performance:
they consume less power and are more resistant to physical
abuse than disk drives.

But SSDs bear the burden of NAND flash management.
Large flash block erase sizes cause write amplification and
delays, and drives must have large page-mapping tables to sup-
port small writes efficiently. Limited block erase cycles require
write-leveling algorithms that must trade off performance for
reliability. [1] is a comprehensive review of SSD architecture.

NAND flash devices have large (at least 128KB) block sizes,
and blocks must be erased as a unit before fresh data can
be written. SSDs usually support standard 512-byte sectors
in order to be compatible with disk drives. This gap must
be filled by management functions built into the drive or its
host driver, which need to manage the layout of data on the
drive and ensure that live data is moved to new locations. The
relocation of live data and use of a block erase to reclaim
partially used flash blocks is known as garbage collection.

NAND flash bits also have a limited lifespan, sometimes
as short as 10,000 write/erase cycles. Because a solid-state
drive must present the apparent ability to write any part of
the drive indefinitely, the flash manager must also implement
a wear-leveling scheme that tracks the number of times each
block has been erased, shifting new writes to less-used areas.
This frequently displaces otherwise stable data, which forces
additional writes. This phenomenon, where writes by the host
cause the flash manager to issue additional writes, is known
as write amplification [2].

Because SSDs can dynamically relocate logical blocks any-
where on the media, they must maintain large tables to remap
logical blocks to physical locations. The size of these “remap
units” need not match either the advertised block size (usually
512 bytes for compatibility) or the flash page or block size.
The remap unit size is chosen to balance table size against the
performance degradation involved in read-modify-write cycles
needed to service writes smaller than the remap unit.

Solid state drives make use of overprovisioning, setting

978-1-4244-7153-9/10/$26.00 c© 2010 IEEE



aside some of the flash storage space to provide working room
for flash management functions and reduce write amplification
and write delays. It also allows the drive to absorb bursts of
higher-than-normal write activity. The amount of overprovi-
sioning need not be visible to the host machine, but may be
configurable at installation time.

A very thorough examination of three modern SATA SSDs
can be found in [3].

B. Performance Barriers

The performance of disk drives and solid state drives can
be roughly outlined using four criteria: latency, bandwidth,
parallelism, and predictability.

Latency is the time it takes for a drive to respond to a request
for data, and has always been the weak point of disks due to
rotational delay and head seek time. While disk specifications
report average latency in the three to six millisecond range,
SSDs can deliver data in less than a hundred microseconds,
roughly 50 times faster.

Interface bandwidth depends on the architecture of the drive;
most SSDs use the SATA interface with a 3.0Gbps serial link
having a maximum bandwidth of 300 megabytes per second.
The PCI Express bus is built up from a number of individual
serial links, such that a PCIe 1.0 x8 device has maximum
bandwidth of 2 gigabytes per second.

Individual disk drives have no inherent parallelism; access
latency is always serialized. SSDs, however, may support
multiple banks of independent flash devices, allowing many
parallel accesses to take place.

These first three boundaries are easy to understand and
characterize, but the fourth, predictability, is harder to pin
down. Disk drives have some short-term unpredictability due
to millisecond-scale positioning of physical elements, though
software may have some knowledge or built-in estimates of
disk geometry and seek characteristics. SSDs are unpredictable
in several new ways, because there are background processes
performing flash management processes such as wear-leveling
and garbage collection [1], and these can cause very large
performance drops after many seconds, or even minutes or
hours of deceptively steady performance. Figure 1 shows the
drop-off in write performance of a SATA SSD after a long
burst of random 4KB write traffic.

C. Command Queuing and Parallelism

Modern disk drives usually support some method of queu-
ing multiple commands, such as Tagged Command Queuing
(TCQ) or Native Command Queuing (NCQ); if re-ordering
these commands is allowed, the drive may choose an ordering
that allows higher performance by minimizing head movement
or taking rotational positioning into account [4]. However,
disk drives cannot perform multiple data retrieval operations
in parallel; command queuing only permits the drive to choose
an optimal ordering.

Solid state drives are less restricted. If multiple commands
are in an SSD’s queue, the device may be able to perform
them simultaneously. This would imply the existence of some

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  10  20  30  40  50  60

IO
P

S
 (

th
o

u
s
a

n
d

s
)

time (seconds)

4k random writes

Fig. 1. Write performance drop-off

parallel hardware, such as independent flash dies or planes
within a die, or parallel buses to different banks of devices.

This introduces not just a difference in performance between
SSDs and disk drives, but a functional difference, that of a
parallel storage system rather than a serialized one.

If we presume a device that can complete a small (4KB
or less) read in 100 microseconds, we can easily calculate
a maximum throughput of 10,000 IOPS (I/O operations per
second). While this would be impressive by itself, a device
with 2-way parallelism could achieve 20,000 IOPS; 4-way
40,000 IOPS, etc. Such latency is quite realistic for SSDs built
using current technology; flash memory devices commonly
specify read times lower that 100 microseconds.

Older software interfaces may support only one outstanding
command at a time. Current standardized storage interfaces
such as SATA/AHCI allow only 32 commands. Non-standard
SSDs may support a 128 or larger command queue. There is
no limit to how much parallelism may be supported by future
devices, other than device size and cost.

D. Impact on HPC

High Performance Computing (HPC) systems can benefit
greatly from SSDs capable of high-throughput, low-latency
operations. Raising performance levels in storage subsystems
will be critical to solving important problems in storage
systems for HPC systems, including periodic burst write I/O
for large, time-dependent calculations (to record the state of
the fields at regular points in time) and for regular checkpoint
restart dumps (to restart the calculation after a system failure).
These I/O patterns are key problem areas for current teraflop
and petaflop systems, and will become even more difficult
to solve for exascale systems using traditional, disk-based
architectures [5], [6].

HPC storage requirements favor SSDs over disk drives
in many ways. High throughput allows a reduction in the
number of storage devices and device interface hardware.
Support for parallel operations also may provide a reduction
in device count. SSDs have low, predictable latencies, which
can have significant impact on parallel applications that would
be harmed by a mismatch in latency between I/O operations



sent to different devices. Additionally, SSDs consume far less
power and produce less heat than disk drives, which can allow
more compact storage arrays that use less energy and cooling.

Large HPC system designs based on SSD storage are
starting to appear [7]. However, to fully exploit SSDs in high
performance computing storage systems, especially petascale
and exascale systems with tens of thousands of processors,
improvements in I/O subsystem software will be needed. High
demands will be placed on the kernel I/O stack, file systems,
and data migration software. We focus on the Linux kernel
I/O processing improvements and SSD hardware required to
achieve the performance necessary for large-scale HPC storage
systems.

E. Aggregate and Individual Performance

It is possible to take a number of drives with low throughput
or parallelism and form an I/O system with large amounts of
aggregate throughput and parallelism; this has been done for
decades with disk drives. But aggregate performance is not
always a substitute for individual performance.

When throughput per disk is limited, many thousands of
disks will be required to meet the total throughput required by
large-scale parallel computers: protecting and managing this
many disks is a huge challenge.

Disk array parity protection schemes require large, aligned
block write requests to achieve good performance [8], yet
it may be difficult or impossible to modify application I/O
to meet these large block size and alignment constraints. In
addition, disk array recovery times are increasing due to the
very large capacities of current disk drives.

Individual SSDs offer potential orders of magnitude im-
provement in throughput. Along with greater parallelism, this
means that many fewer SSDs must be used (and managed) to
achieve the same performance as disk drives.

F. The Linux I/O Stack

The Linux kernel I/O software stack is shown in figure
2. Applications generally access storage through standard
system calls requesting access to the filesystem. The kernel
forwards these requests through the virtual filesystem (VFS)
layer, which interfaces filesystem-agnostic calls to filesystem-
specific code. Filesystem code is aware of the exact (logical)
layout of data and metadata on the storage medium; it performs
reads and writes to the block layer on behalf of applications.

The block layer provides an abstract interface which con-
ceals the differences between different mass storage devices.
Block requests typically travel through a SCSI layer, which is
emulated if an ATA device driver is present, and after passing
through a request queue finally arrive at a device driver which
understands how to move data to and from the hardware. More
detail on this design can be found in [9].

The traditional Linux storage architecture is designed to in-
terface to disk drives. One way in which this is manifested is in
request queue scheduler algorithms, also known as elevators.
There are four standard scheduler algorithms available in the
Linux kernel, and three use different techniques to optimize

Application


SCSI


VFS


Filesystems


ATA


Request

Queue


Application


User space


Kernel space


Device

driver


Block layer request


Disks


SSDs


Fig. 2. Linux I/O stack

request ordering so that seeks are minimized. SSDs, not
having seek time penalties, do not benefit from this function.
There does exist a non-reordering scheduler called the “noop”
scheduler, but it must be specifically turned on by a system
administrator; there is no method for a device driver to request
use of the noop scheduler.

When new requests enter the request queue, the request
queue scheduler attempts to merge them with other requests
already in the queue. Merged requests can share the overhead
of drive latency (which for a disk may be high in the case
of a seek), at the cost of the CPU time needed to search the
queue for mergeable requests. This optimization assumes that
seek penalties and/or lack of parallelism in the drive make the
extra CPU time worthwhile.

The request queue design also has a disk-friendly feature
called queue plugging. When the queue becomes empty, it
goes into a “plugged” state where new requests are allowed in
but none are allowed to be serviced by the device until a timer
has expired or a number of additional commands have arrived.
This is a strategy to improve the performance of disk drives
by delaying commands until they are able to be intelligently
scheduled among the requests that are likely to follow.

Some of these policies are becoming more flexible with new
kernel releases. For example, queue plugging may be disabled
in newer kernels. However, these improvements have not yet
filtered down to the kernels shipped by vendors for use in
production “enterprise” systems.

G. Linux Parallel I/O

The Linux kernel as a standalone system has limited support
for parallel I/O. Generally, to achieve I/O parallelism an
application must already be parallelized to run on multiple
local CPUs, or use Asynchronous I/O system functions to
submit several requests at once.

An application designed for a single-disk system typically
makes serialized requests for data. This results in several calls



to the read system call. Unfortunately, this I/O style (fre-
quently referred to as “blocking” reads) allows no parallelism.
The operating system cannot know of a request before it
happens, and applications using blocking reads perform a sec-
ond read only after the preceding read’s (possibly significant)
latency.

An operating system might be able to work around this
problem with pre-fetching, but this misses the point: some-
times applications might know in advance that they want to
perform several reads from known locations, but serialize the
operations anyway.

Applications that are able to be designed with I/O paral-
lelism for single threads or processes may use Asynchronous
I/O (AIO). An application designed using AIO may batch
together several read or write requests and submit them at
once. AIO cannot benefit applications that were not designed
for it and cannot be modified.

Linux systems support AIO in two ways. Posix AIO is
emulated in userspace using threads to parallelize operations.
The task-scheduling overhead of the additional threads makes
this a less attractive option. Linux native AIO, known by the
interfacing library “libaio,” has much lower overhead in theory
because it truly allows multiple outstanding I/O requests for a
single thread or process [10].

Parallelism is easier to achieve for I/O writes, because it is
already accepted that the operating system will buffer writes,
reporting success immediately to the application. Any further
writes can be submitted almost instantly afterwards, because
the latency of a system call and a buffer copy is very low. The
impending writes, now buffered, can be handled in parallel.
Therefore, the serialization of writes by an application has
very little effect, and at the device driver and device level the
writes can be handled in parallel.

Real-world single-computer applications exhibiting paral-
lelism are easy to come by. Web servers, Relational Database
Management Servers (RDBMS), and file servers all frequently
support many clients in parallel; all of these applications
can take advantage of a storage system that offers parallel
command processing.

HPC systems support more sophisticated methods of per-
forming parallel I/O [11], but those interfaces are not sup-
ported at the Linux system level. Our contribution to these
environments is enabling high-performance Linux systems that
can function as powerful storage nodes, allowing parallel I/O
software to aggregate these nodes into a parallel I/O system
capable of meeting stringent HPC requirements.

H. Kernel Buffering/Caching

The Linux kernel has a standard buffer cache layer that
is shared by all filesystems, and is optionally available when
interfacing to raw devices.

There is only limited application-level control over the
Linux buffer cache. Most commonly, Linux systems access
data only through standard filesystem modules that make full
use of the buffer cache.

Applications can request non-buffered I/O using the
O_DIRECT option when opening files, but this option is not
always supported by filesystems. Some filesystems fail to
support O_DIRECT and some support it in a way that is prone
to unpredictable performance.

There is another way for applications to communicate to the
kernel about the desired caching/buffering behavior of their
file I/O. The posix fadvise system call allows applications
to deliver hints that they will be, for example, performing
sequential I/O (which might suggest to the kernel or filesystem
code that read-ahead would be beneficial) or random I/O.
There is even a hint suggesting that the application will never
re-use any data. Though this would provide an alternative to
O_DIRECT, the hint is ignored by the kernel.

The closest one can come to non-cached file I/O under
Linux is to request, via posix fadvise, that the kernel immedi-
ately discard buffers associated with a particular file. Though
it’s possible to use this function to emulate non-cached I/O
(by requesting buffer discard several times per second), this is
an inelegant solution.

I. Raw I/O

Linux allows applications to directly access mass storage
devices without using a filesystem to manage data; we refer
to this as “raw” I/O. This is useful for measurement of the
performance of mass storage devices and drivers, as well as
offering a very low-latency API for applications that have their
own data chunk management scheme; database management
software or networked cluster-computing I/O nodes are exam-
ples of applications that can make use of this feature. Typically,
raw device access is used with the O_DIRECT option, which
bypasses the kernel’s buffer cache. This allows applications
that provide their own cache to achieve optimal performance.
Raw device mode is the only time that uncached I/O is reliably
available under Linux.

J. Terminology

When discussing storage devices that can handle commands
in parallel, it is easy to cause confusion when using the term
“sequential,” which may mean either commands which read
or write to adjacent storage regions or commands which are
issued one after another with no overlap.

We use “sequential” to mean the former, and “serialized” to
refer to operations that cannot or do not take place in parallel.
This does not imply any conflicts or dependencies between the
commands, such as a read following a write of overlapping
regions. Such conflicting commands are not considered here
at all, as they are a rare special case.

Also, we use the term “disk” to refer to a conventional disk
drive with rotating media. “Drive” is used to describe a single
storage device, either a disk or an SSD.

III. PROPOSED SOLUTIONS

A. SSD-Aware Benchmarking

1) Pessimistic Benchmarking: SSDs can be benchmarked
in ways that show very different numbers. As seen in figure



1, a 90% loss in write performance may await any application
that performs enough writes that the drive’s internal garbage-
collection limits are reached.

The magnitude of this performance drop could cause severe
problems. If a production database server or file server were
deployed based on SSD benchmarks that failed to anticipate
these limitations, it could fail at its task if I/O capacity
suddenly fell by 90% at the moment of peak I/O load.

Because of this problem, we choose our benchmark tests
pessimistically. We anticipate that real-world workloads may
be very random in nature, rather than sequential. We choose
small I/O block sizes rather than large ones. And we bench-
mark drives at full capacity. Our goal is to measure the
performance of drives such that there is no hidden danger of
a workload that will make the drive lose much of its expected
performance.

The one way in which we are not pessimistic is with
parallelism. We are trying to demonstrate the performance
of the I/O subsystem, assuming an application that can take
advantage of it. If an application cannot, the I/O subsystem has
not behaved in a surprising or unpredictable manner, which is
the source of the pessimistic approach.

2) Full Capacity: SSD drives have new performance char-
acteristics that allow old benchmarking tools to be used in
ways that deliver unrealistic results. For example, vendor
benchmarks often include results from empty drives, that have
had no data written to them. This is an unrealistic scenario
that produces artificially high throughput and IOPS numbers
for both read (because the drive need not even access the flash
devices) and write (because no flash page erases are needed,
and also because random data can be laid out in a convenient
linear format).

It might be reasonable to benchmark in a partially-empty
state; for example, with 90% of the drive filled. But a
benchmark scenario which leaves one giant block unused may
have different performance on different drives compared to
a scenario where the empty space is in fragments scattered
throughout the drive. This inability to set up equally fair or
unfair conditions for all drives, combined with the pessimistic
outlook, leads us back to the 100% full case.

Another problem with less empty space on the drive makes
it easier to achieve steady state with respect to write bench-
marks (see next subsection). Because we do not wish to be
misled by our own benchmarks, we choose to benchmark in
a configuration that makes it easy to reach the steady state.

A system deployed in new condition may have a drive
that is only 20% filled with data. This condition may allow
better performance than our configuration would produce. Our
pessimistic view anticipates the situation months or years
later, when the system behavior changes because the drive
has reached an unanticipated tipping point where performance
has degraded. In our experience, the worst-case performance
is not improved by reserving moderate amounts of free space
(less than 50% of the drive capacity).

For these reasons we operate with the drive 100% full;
before running performance tests we write large blocks of

zeros to the drive sequentially. In our testing this has been
sufficient to reproduce the performance of a drive filled with
a filesystem and normal files.

New operating systems and drives support TRIM [12], a
drive command which notifies the drive that a block of data is
no longer needed by the operating system or application. This
can make write operations on an SSD faster because it may
free up sections of flash media, allowing them to be re-used
with lessened data relocation costs.

Use of TRIM can sometimes increase drive performance,
as it effectively (though temporarily) increases the amount of
overprovisioning, allowing more efficient flash management.
It can also reduce performance if TRIM commands are slow
operations that block other activity [13]. TRIM can cause some
unpredictability in benchmarking, because it is not possible to
predict when or how efficiently the drive can reclaim space
after data is released via TRIM.

Because we want to minimize unpredictability and bench-
mark the drive in its full state, we benchmark without any use
of the TRIM command or any equivalent functionality.

3) Steady State: Disk drives offer predictable average per-
formance: write throughput does not change after several
seconds or minutes of steady running. SSDs are more complex;
due to overprovisioning the performance-limiting effects of
flash management on writes do not always manifest immedi-
ately. We measure random write performance by performing
“warm-up” writes to the drive but not performing measure-
ments until the performance has stabilized.

While the period of time needed to reach steady state is
drive-dependent, we have found that on a full drive a test run
of 20 seconds of warm-up writes following by 20 seconds of
benchmark writes allows true steady-state performance to be
measured.

Because the difference in throughput between peak perfor-
mance and steady-state performance is so great (figure 1), an
average that includes the peak performance would not meet
our goals for a stable pessimistic benchmark.

4) Small-Block Random Access Benchmarks: There are
several reasons to benchmark random reads and writes. The
most important is that random workloads represent real-world
worst-case system behavior. Systems designed with required
minimum performance must be insulated from the risk of a
sudden drop in performance. Such a drop can easily occur if
I/O patterns become less sequential. As filesystems become
fragmented, even fixed workload performance may degrade as
once-sequential access patterns become more random.

Sequential workloads are not challenging for either disks or
SSDs. Inexpensive drives can hit interface bandwidth limits
for sequential data transfers; for workloads of this sort storage
media can be chosen based on other factors like cost, power
or reliability.

We also want to be able to test drive performance even
when the kernel’s buffer cache layer is buffering and caching
I/O data. Anything other than random access patterns will
start to measure the performance of the cache rather than the
performance of the drive and the I/O subsystem.



We focus on small block sizes because they are more typical
and challenging for disks and SSDs. Linux systems most
frequently move data in chunks that match the kernel page
size, typically 4KB, so data transfers of small numbers of
pages (4-16KB) are most likely to be critical for overall I/O
performance.

Disk-based I/O (both serial and parallel) for HPC and other
large-scale applications generally requires aligned, large block
transfers to achieve good performance [5]. Generally, only
specialized applications are written so that all I/O strictly
observes alignment constraints. Forcing programmers to do
only aligned, large block requests would create an onerous
programming burden; this constraint is very difficult to achieve
for random access, small file workloads, even if these work-
loads are highly parallel.

In addition, I/O access patterns depend on the way the
program is parallelized — but the application data is not
always organized to optimally exploit parallel disk-based stor-
age systems. Parallel file systems become fragmented over
time, especially as they fill up, so that even if the application
I/O pattern is a sequential stream, the resulting block I/O
stream itself may be quite random. Although using middleware
to rearrange I/O accesses to improve alignment and size
is possible, in practice, this approach has achieved limited
success.

We believe that our benchmarks should reflect the practical
reality that parallel I/O frequently appears to the block-level
storage system as small, random operations. It is currently
very difficult for most storage systems to achieve consistently
high performance under such workloads; systems that can per-
form well on these benchmarks can handle high-performance
applications with difficult parallel I/O patterns.

B. Kernel and Driver-Level Enhancements

1) I/O Stack: SCSI and ATA disks have made up the ma-
jority of Linux mass storage systems for the entire existence of
the Linux kernel. The properties of disks have been designed
in to parts of the I/O subsystem.

Systems designed for use with disk drives can safely make
two assumptions: one is that CPU time is cheap and drives are
slow, and the second is that seek time is a significant factor in
drive performance. However, these assumptions break down
when a high-performance solid-state drive is used in place of
a disk.

There are two specific areas where disk-centric design
decisions cause problems. First, there are in some areas un-
necessary layers of abstraction; for example, SCSI emulation
for ATA drives. This allows sharing of kernel code and a
uniform presentation of drive functions to higher operating
system functions but adds CPU load and delay to command
processing.

Second, request queue management functions have their
own overhead in added CPU load and added delay. Queue
schedulers, also known as elevators, are standard for all mass
storage devices, and the only way to avoid their use is to elim-
inate the request queue entirely by intercepting requests before

they enter the queue using the kernel’s make_request
function. While there are useful functions in the scheduler,
such as providing fair access to I/O to multiple users or
applications, it is not possible for device driver software to
selectively use only these functions.

Our driver code for the PCIe SSD uses no request queue
at all. Instead, it uses an existing kernel function called
make_request, which intercepts storage requests about to
enter the queue. These storage requests are simply handled
immediately, rather than filtering down through the queue and
incurring additional overhead. make_request is most often
used by kernel modules that combine devices to form RAID
arrays [14]. Its use by a device driver may be a misapplication,
but if this mode of operation did not exist we would desire
something roughly equivalent.

Additionally, our driver ignores the standard kernel
SCSI/ATA layer. With the potential for one new command
to process every microsecond, time spent converting from
one format to another is time we cannot afford. In this case
our driver, rather than interfacing to the standard SCSI or
ATA layers of the kernel, it interfaces directly to the higher-
level block storage layer, which stores only the most basic
information about a command (i.e. where in the logical storage
array data is to be read/written, where in memory that data is
to be delivered/read from, and the amount of data to move).

2) Interrupt Management: Interrupt management of a stor-
age device capable of moving gigabytes of data every second
is, unsurprisingly, tricky. Each outstanding command might
have an application thread waiting on its completion, so
prompt completion of commands is important. It becomes dou-
bly important because there are a fixed number of command
queue slots available in the device, and every microsecond
a completed command goes unretired is time that another
command could have been submitted for processing. But
this must be balanced against the host overhead involved in
handling device interrupts and retiring commands, which for
instruction and data cache reasons is more efficient if done in
batches.

A typical Linux mass storage device and driver has a single
system interrupt per device or host-bus adapter; the Linux
kernel takes care of routing that device to a single CPU. By
default, the CPU that receives a particular device interrupt
is not fixed; it may be moved to another CPU by an IRQ-
balancing daemon. System administrators can also set a per-
IRQ CPU affinity mask that restricts which CPU is selected.

Achieving the lowest latency and best overall performance
for small I/O workloads requires that the device interrupt be
delivered to the same CPU as the application thread that sent
the I/O request. However, as application load increases and
needs to spread to other CPUs, this becomes impossible. The
next best thing is for application threads to stay on CPUs
that are close neighbors to the CPU receiving the interrupt.
(Neighbors, in this context, means CPUs that share some cache
hierarchy with one another.)

Sending the interrupt to the CPU that started the I/O request
(or a close neighbor) improves latency because there are



     0

   200

   400

   600

   800

  1000

  1200

distant−cpu neighbor−cpu

IO
P

S
 (

th
o

u
s
a

n
d

s
)

Fig. 3. Interrupt routing effects on read performance

memory data structures related to that I/O that are handled
by code that starts the request as well as by code that retires
the request. If both blocks of code execute on the same CPU or
a cache-sharing neighbor the cache hits allow faster response.

There is also a worst-case scenario, where I/O requests are
originating at a CPU or set of CPUs that share no caches
with the CPU that is receiving device interrupts. Unfortunately,
the existing IRQ balancing daemon seems to seek out this
configuration, possibly because it is attempting to balance the
overall processing load across CPUs. Sending a heavy IRQ
load to an already busy CPU might seem counter-intuitive to
a systems software designer, but in this case doing so improves
I/O performance.

Figure 3 shows the result of running a 128-thread 512-byte
read workload on one physical CPU (a neighboring set of four
CPU cores) while the resulting device interrupts are sent to one
of those cores and a non-neighbor CPU core.

As I/O load increases, eventually all system CPUs will be
needed to perform I/O requests. This raises two problems.
First, how can cache-friendly request retirement be performed
by the interrupt handler if half (or more) of the requests
originated on distant CPUs? Second, how can the system avoid
a single CPU becoming overwhelmed by interrupt-related
processing?

The best solution would be to dynamically route the inter-
rupt such that retirement always occurs on the right CPU.
This is not easy to implement, however. There is no way
to re-route the interrupt signal on a fine-grained basis, and
the Linux kernel has no standard mechanism for a driver to
forward interrupt handling work to another CPU. Additionally,
an interrupt may signal the completion of a number of I/O
requests, so there is not a one-to-one relationship between an
interrupt and a “correct” CPU.

We implemented two separate designs in an attempt to solve
this problem. Both make use of a Linux kernel function that
allows an inter-processor interrupt (IPI) to force another CPU
to call a function we specify.

Our first design splits interrupt workload in two pieces, by
sending an IPI to a distant CPU to force half of the retirements
to occur there. We divide the command queue tag space in two,
such that tag numbers 0-63 are retired on an even-numbered

hd=localhost,jvms=4
sd=sd1,lun=/dev/sdb,threads=128,openflags=O_DIRECT
wd=wd1,sd=sd1,xfersize=4K,rdpct=0,seekpct=random
rd=run1,wd=wd1,iorate=max,elapsed=20,forxfersize=(4k)

Fig. 4. VDBench configuration script

CPU, and tag numbers 64-127 are retired by an odd-numbered
CPU. We then modified the code in the tag allocator such
that tag numbers are allocated to CPUs in the same way, so
that in most cases the originating and retirement CPU will be
neighbors. (On a Linux machine, logical CPU numbers are
assigned such that adjacent CPU numbers are not neighbors.)

This design has several shortcomings: it assumes a system
where there are two physical CPU packages, and all the
cores contained within share some cache. Additionally, it
assumes an even balance of I/O requests from both cores. If
a disproportionate amount of requests originate from one of
the two physical CPU packages, tags from the “unfriendly”
side will be allocated (rather than delay the request), and the
retirement will experience the cache miss delay.

Our second design is more ambitious. It tracks the originat-
ing CPU of every request, and the interrupt handler sends an
IPI to every CPU core; each core is responsible for performing
retirement of requests that originated there.

IV. METHODOLOGY

A. Benchmarking Tools

Most I/O benchmarking tools under Linux measure serial-
ized file-based I/O. The set of tools that can perform both raw
device and filesystem I/O and support parallel I/O are limited.

VDBench [15] supports both raw and filesystem I/O using
blocking reads on many threads. It has a flexible configuration
scheme and reports many useful statistics, including IOPS,
throughput, and average latency.

Fio [16] supports both raw and filesystem I/O using block-
ing reads, Posix AIO, or Linux Native AIO (libaio), using one
or more processes. It reports similar statistics to VDBench.

We use VDBench for our reported results, as it delivers
more consistent results. A typical configuration file for VD-
Bench is shown in figure 4, using 128 threads to perform 4KB
random reads on a raw device.

VDBench is used both as traffic generator and measure-
ment device. It records instantaneous and average IOPS and
throughput, average and maximum command latency, and
CPU load.

B. Trace-Driven Benchmarks.

Trace-driven benchmarking is making a recording of I/O ac-
tivity on one system configuration, then replaying that activity
on another system configuration. The promise of trace-driven
benchmarks is that it allows for the evaluation of application
I/O performance on a system without having access to the
original application (or its data). An example of trace-driven
performance evaluation with SSDs is given in [17].

However, I/O traces fail to preserve the serialization or de-
pendencies between operations; it is not possible to reconstruct



whether two operations could have proceeded in parallel on
the target system if they did not do so on the traced system.
When evaluating the performance of a drive that has different
performance characteristics from the drives that precede it,
especially with respect to support for parallel operations, trace-
driven benchmarks are of questionable value.

C. PCIe SSD

We perform testing using a 96GiB (103GB) prototype
Micron PCI Express SSD. This test drive uses a standard
PCIe 1.0 x8 interface to connect to the host system. The
drive supports a queue containing 128 commands; at any time
the drive may be performing work on all 128 commands
simultaneously, assuming that the commands are independent.

All flash management functions take place inside the drive;
device drivers communicate with the drive using a standard
AHCI command interface. Some extensions to AHCI are used
by the driver to support larger command queues.

All tests are performed with a single PCIe SSD installed.
(Multiple drives may be used where system bus bandwidth is
available, but that configuration is not benchmarked here.)

D. Test System

All testing was performed on an Intel S5520HC system
board with two Intel E5530 Xeon CPUs running at 2.40GHz.
Each CPU contains four processor cores, and with hyper-
threading enabled, this results in a total of 16 logical CPUs in
the system.

All tests were performed using CentOS 5.4; both the stan-
dard CentOS (updated) kernel version 2.6.18-164.6.1-el5 and
unmodified mainline kernel 2.6.32 were tested. Both kernels
provided similar results, so only the standard kernel results are
included here.

When the standard Linux AHCI driver was used, the system
BIOS was configured to enable AHCI. When a dedicated block
driver was used, AHCI was disabled.

E. SATA SSD

For comparison, we also test a 256GB Micron C300 SATA
drive, though only 103GB were used during performance
testing. The rest of the drive was filled with zeroed data to
avoid the “empty drive” phenomenon where SSD performance
can be inflated. The C300, as a SATA drive, supports a 32-
command queue.

F. Benchmarking Configuration

Benchmarking was performed with VDBench, and unless
otherwise stated VDBench was configured for 128 threads
for the PCIe SSD, and 32 threads for the SATA SSD (and
whenever AHCI drivers are in use).

When the standard Linux AHCI driver was used, the device
queue was configured to use the “noop” scheduler. When the
custom block driver was used, it bypassed the standard request
queue so scheduler options have no effect.

Where filesystems were used, the drive was partitioned on
128KB block boundaries. All filesystems were created and
mounted with default options.

     0

   200

   400

   600

   800

  1000

  1200

  1400

a
h

c
i

3
2

−
rq

b
lo

c
k

3
2

−
rq

b
lo

c
k

3
2

−
m

r

b
lo

c
k

1
2

8
−

rq

b
lo

c
k

1
2

8
−

m
r

M
B

p
s

0.5K reads
4K reads

Fig. 5. Driver performance gains

V. RESULTS AND DISCUSSION

A. I/O Stack

In order to test the performance of the I/O stack modifi-
cations, we performed small (512 byte) random reads to the
PCIe SSD. Raw mode was used with the Linux buffer cache
disabled (using O_DIRECT). With this configuration we avoid
hitting bus bandwidth limits, allowing the full effect of the
changes to be visible.

Figure 5 demonstrates the performance gains: the stock
Linux AHCI driver, which supports a 32-command queue but
uses the kernel SCSI/ATA layers, is the slowest access method.
A dramatic improvement is seen by moving to a dedicated
block driver that does not use the SCSI/ATA layers.

The risk of drivers short-circuiting the SCSI/ATA layers of
the Linux I/O subsystem is that drivers may provide different
functionality or pose a maintenance problem, as duplicate code
already exists elsewhere in the kernel. However, it may be
possible to retain consistent abstract interfaces while providing
a fast code path for performance-sensitive read and write
operations.

There is insignificant benefit in moving to a
make_request design, which eliminates request queue
overhead, while retaining a 32-command queue. Similarly,
there is no benefit to quadrupling the queue size to 128
commands, while leaving the request queue overhead
in place. However, these two changes combined (using
make_request with a 128-command queue) allow another
large increase in performance to 557 MBps for 512-byte
reads and 1349 MBps for 4KB reads.

Drivers that short-circuit the request queue in this way
are not encouraged by Linux kernel engineers. Even so, this
work demonstrates that the current request queue design is
insufficient for high-performance drives. It may be possible to
improve the request queue to the point where it can handle
such high throughput. Until then, high performance can still
be achieved with the inelegant make_request design.

There is minimal downside to using make_request with
the PCIe SSD as long as transfer sizes are 4KB or larger.



     0

   200

   400

   600

   800

  1000

  1200

none 2−way 8−way

IO
P

S
 (

th
o

u
s
a

n
d

s
)

Fig. 6. IOPS improvement with interrupt handler division

Smaller writes would require read-modify-write transactions,
adding overhead and possibly reducing drive life. These small
transfers might be combined if the standard request queue is
used. This problem will appear whenever writes are smaller
than the device’s native block size (the “remap unit” in section
II-A).

B. Interrupt Management

We measured the performance of the interrupt management
enhancements by running a 128-thread 512-byte random read
test. No threads were bound to specific CPUs, which results
in an even distribution of threads over the 8 CPU cores (and
16 logical CPUs). This test demonstrates the overhead added
to command handling by the Linux kernel under the test
configurations.

Figure 6 shows the results of the division of work by the
interrupt handler. A handler with no work division performs
relatively poorly, while the 2-way split handler achieves 48%
higher IOPS. The 8-way split handler, which retires commands
on the same CPU core as they were started, is 17% slower than
the 2-way split handler.

The 8-way split fails to perform better for two reasons: first,
a Linux IPI (Inter-processor interrupt) is very expensive, so
the 8-way split has inherently higher overhead. Second, an L3
cache hit (which replaces a miss in the 2-way split driver) is
not dramatically slower than an L2 hit, which is likely to be
the best result in the 8-way split design. The overhead of such
a scheme is just too high, and this design is unable to top the
performance of the 2-way driver.

The improvements shown in this experiment might suggest
that further improvement might be achieved with hardware
that supports multiple independent interrupt requests, such that
interrupt load could be spread out over several system CPUs
when the device is busy. We might also consider a hardware
design that is able to track originating-CPU information for
each request, and send an interrupt to the correct CPU (or a
neighbor) when the command is completed.

Interrupt load can also be lowered by using hardware in-
terrupt mitigation techniques [18]. We performed experiments
with different interrupt mitigation settings on the PCIe SSD.
Normally, interrupt mitigation is used to reduce the interrupt

 0

 200

 400

 600

 800

 1000

 1200

 512  1024  2048  4096  8192  16384

IO
P

S
 (

th
o

u
s
a

n
d

s
)

transfer size

C300 ahci
PCIe SSD

Fig. 7. Read IOPS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 512  1024  2048  4096  8192  16384

M
B

/s

transfer size

C300 ahci

PCIe SSD

Fig. 8. Read throughput

load so that I/O can be completed in efficient batches. How-
ever, we found that the cost of delaying command completion
(both the latency cost to the completed command as well as the
opportunity cost for a command that could have occupied its
slot) was greater than any benefit, and that minimal interrupt
mitigation (4 commands per interrupt) worked best.

C. Final Performance

After all of our improvements, we were able to demonstrate
performance of over 1.1 million IOPS on a single drive
performing random 512 byte reads, and we were able to hit the
device’s PCIe bandwidth limit of 1.4 GBps with 4KB reads.1

Figure 7 shows IOPS when benchmarking random reads using
128 threads. Figure 8 shows the total read throughput. Figure
9 shows the average latency.

Write performance is also quite impressive: Figure 10 shows
the steady-state IOPS when performing random writes. Figure
11 shows the total write throughput. Figure 12 shows the write
latency. These measurements show little variability; different
test runs show changes of less than 1%.

Figure 13 shows the throughput of several filesystems
with the PCIe SSD using different numbers of client threads

1The theoretical limit of the bus is 2.0 GBps, but packet overhead, small
(cacheline-sized) payloads, and prototyping compromises consume 30% of
this.



 0

 500

 1000

 1500

 2000

 2500

 512  1024  2048  4096  8192  16384

m
ic

ro
s
e

c
o

n
d

s

transfer size

C300 ahci

PCIe SSD

Fig. 9. Read latency

 0

 20

 40

 60

 80

 100

 120

 512  1024  2048  4096  8192  16384

IO
P

S
 (

th
o

u
s
a

n
d

s
)

transfer size

C300 ahci
PCIe SSD

Fig. 10. Write IOPS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 512  1024  2048  4096  8192  16384

M
B

/s

transfer size

C300 ahci

PCIe SSD

Fig. 11. Write throughput

performing 4KB random reads. The different filesystems show
little variation in performance when reading files; all filesys-
tems hit the drive bus bandwidth limit with 64 or more threads.

Figure 14 shows the filesystem random write throughput.
Write performance shows the benefit of the write buffering
function of the Linux buffer cache: single-thread write work-
loads are able to perform as well or better as multi-threaded
workloads. When writing, the journaling filesystems ext3, ext4
and xfs have lower effective throughput than ext2, which

 0

 5

 10

 15

 20

 512  1024  2048  4096  8192  16384

m
il
li
s
e

c
o

n
d

s

transfer size

C300 ahci

PCIe SSD

Fig. 12. Write latency

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1  2  4  8  16  32  64  128

T
h

ro
u

g
h

p
u

t 
(M

B
p

s
)

Threads

vdfs-read-ext2
vdfs-read-ext3
vdfs-read-ext4

vdfs-read-xfs

Fig. 13. Filesystem read throughput

 0

 100

 200

 300

 400

 500

 600

 1  2  4  8  16  32  64  128

T
h

ro
u

g
h

p
u

t 
(M

B
p

s
)

Threads

ext2
ext3
ext4

xfs

Fig. 14. Filesystem write throughput

performs no journaling.
Filesystems such as YAFFS or JFFS2 are designed to

interface directly to NAND flash hardware, and implement
their own flash translation layer, including journaling, garbage
collection, and wear-leveling. SSDs that use disk-like inter-
faces implement their own FTL, and are unsuitable for use
with these filesystems.

Though these performance numbers are impressive, It would
be a straightforward exercise to imagine a device with greater



bus bandwidth and even larger command queue, which could
result in million-IOPS performance on 4KB reads for a single
drive.

D. Buffer Cache Overhead

For most uses, the Linux buffer cache is not optional. We
consider whether the overhead of the buffer cache is still
worthwhile with a low-latency SSD.

We measured the latency of 4KB random reads while using
a low-overhead filesystem (ext2) and with buffered raw mode
and unbuffered raw mode (using O_DIRECT). There was no
measurable difference in latency; in each case the average
latency was 153 microseconds, while buffer cache hit latency
is only 7 microseconds.

Assuming that the system RAM used for buffer cache could
not be better used for other purposes, it is clear that the buffer
cache is still useful when using fast SSDs.

E. Additional Discussion

1) Idle I/O Time: For disk-based systems, speculative data
access can be detrimental to performance, because a seek to
the wrong end of a disk might penalize a non-speculative
access that arrives immediately afterwards.

Because SSDs have no seek penalty it seems worthwhile to
revisit this idea. There are several potential uses for idle time
on an SSD that might help system performance.

The operating system might be able to use the excess
parallel read capabilities during times of less than full uti-
lization, by doing more aggressive prefetching than would be
done on a fully-loaded system. A balance would need to be
found such that such prefetching wouldn’t use up otherwise-
needed CPU time or bus bandwidth, but such a feature could
significantly improve the performance of applications that
perform serialized sequential reads, which could be valuable
if changing the application is impractical.

Additionally, the system could take advantage of times when
the drive is not performing many writes, and use that time to
write dirty buffers (operating system caches of modified file
data). This would be much better than only writing out dirty
buffers due to memory pressure, because those events may
coincide with times when the drive’s write capacity is already
fully utilized, resulting in a system slowdown.

2) Kernel Enhancements: There are several areas that could
be improved to make it easier to get good performance out of
SSDs similar to the PCIe SSD examined in this paper.

Most significantly, additional IRQ handling features would
be useful. For example, expensive cache misses that slow down
requests could be avoided if there were a mechanism to quickly
start an interrupt handler near the CPU core that started an I/O
request. The IRQ balancing daemon could also be improved:
we have demonstrated circumstances under which interrupts
sometimes need to be routed to CPU cores doing the most
I/O.

The current request queue scheme is available in an all-
or-nothing form, as the functions that implement its various
pieces (request merging, queue plugging) are not available for

driver use without modifying the core Linux kernel source
code. It would be helpful if an a la carte access model
were adopted instead, where both device drivers and system
administrators were able to pick and choose which functions
should be utilized. For example, it should be possible to use
a request queue with per-user balancing, but no request re-
ordering. Additionally, it would be useful to be able to turn
on request merging only when the device is already busy (and
requests cannot be serviced immediately).

Additionally, there is code in newer kernels that makes the
request queue more SSD-aware. If Linux vendors that use
older kernel branches adopted some of these newer features,
good SSD performance would be easier to achieve.

If possible, the current SCSI and ATA layers should be
streamlined. Systems with the current design will not be able
to extract full performance from fast SSDs unless they utilize
device drivers that intentionally bypass these layers.

Finally, device drivers should be able to do more with SMP
and NUMA machines. As I/O devices appear that require
multiple CPUs to service them, it must be possible to write
multi-processing drivers. Such drivers need the ability to
schedule tasks on other CPUs and knowledge of the cache
hierarchy between CPUs.

VI. CONCLUSIONS

In this paper, we have discussed the nature of high-
performance SSDs both from a benchmarking and Linux I/O
performance perspective. Our analysis has found that there is
a need for a more pessimistic benchmark approach, and we
have adopted simple guidelines that allow us to benchmark
drives under realistic but difficult workloads.

We have used this approach to guide us in achieving per-
formance improvements in the Linux kernel I/O block driver
interface, and we have demonstrated performance exceeding
one million IOPS, a significantly higher result than can be
achieved today with any single drive. We used these results to
demonstrate areas of future development for the Linux kernel
I/O design and its driver interfaces.

These results indicate that SSDs are a good fit for high-
performance systems, and demonstrate the suitability of SSD
technology for demanding single machine I/O workloads as
well as parallel I/O needs on future HPC systems.

ACKNOWLEDGMENT

This work was supported in part by National Science
Foundation grants CCF-0621462 and IIP-0934396.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for ssd performance,” in ATC’08:
USENIX 2008 Annual Technical Conference on Annual Technical Con-
ference. Berkeley, CA, USA: USENIX Association, 2008, pp. 57–70.

[2] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
amplification analysis in flash-based solid state drives,” in SYSTOR
’09: Proceedings of SYSTOR 2009: The Israeli Experimental Systems
Conference. New York, NY, USA: ACM, 2009, pp. 1–9.



[3] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic char-
acteristics and system implications of flash memory based solid state
drives,” in SIGMETRICS ’09: Proceedings of the eleventh international
joint conference on Measurement and modeling of computer systems.
New York, NY, USA: ACM, 2009, pp. 181–192.

[4] B. Dees, “Native command queuing - advanced performance in desktop
storage,” Potentials, IEEE, vol. 24, no. 4, pp. 4–7, Oct.-Nov. 2005.

[5] G. Greider. (2006, May) Hpc i/o and file systems issues and perspectives.
http://www.dtc.umn.edu/disc/isw/presentations/isw4 6.pdf.

[6] H. Newman. (2009, May) What is hpcs and how does it impact i/o.
http://wiki.lustre.org/images/5/5a/Newman May Lustre Workshop.pdf.

[7] (2009, November) Nsf awards $20 million to sdsc to develop gordon.
http://www.sdsc.edu/News Items/PR110409 gordon.html.

[8] A. Sahai, “Performance aspects of raid architectures,” in Performance,
Computing, and Communications Conference, 1997. IPCCC 1997.,
IEEE International, Feb 1997, pp. 321–327.

[9] D. Bovet and M. Cesati, Understanding The Linux Kernel. Oreilly &
Associates Inc, 2005.

[10] H. N. Ken Chen, Rohit Seth, “Improving enterprise database perfor-
mance on intel itanium,” in Proceedings of the Linux Symposium, 2003.

[11] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur, “Pvfs: A
parallel file system for linux clusters,” in In Proceedings of the 4th
Annual Linux Showcase and Conference. USENIX Association, 2000,
pp. 317–327.

[12] F. Shu. (2007) Notification of deleted data proposal for ata8-acs2.
http://t13.org/Documents/UploadedDocuments/docs2007/e07154r0-
Notification for Deleted Data Proposal for ATA-ACS2.doc.

[13] J. Corbet. (2009) The trouble with discard.
http://lwn.net/Articles/347511/.

[14] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers, 3rd
Edition. O’Reilly Media, Inc., 2005.

[15] H. Vandenbergh. Vdbench: a disk and tape i/o workload generator and
performance reporter. http://sourceforge.net/projects/vdbench/.

[16] J. Axboe. Fio - flexible io tester. http://freshmeat.net/projects/fio/.
[17] S. Park and K. Shen, “A performance evaluation of scientific i/o work-

loads on flash-based ssds,” in Workshop on Interfaces and Architectures
for Scientific Data Storage (LASDS ’09), 2009.

[18] I. Kim, J. Moon, and H. Y. Yeom, “Timer-based interrupt mitigation
for high performance packet processing,” in Proceedings of 5th Interna-
tional Conference on High-Performance Computing in the Asia-Pacific
Region, September, Gold Coast, Australia, 2001.


