An Adaptive Partitioning Scheme for
DRAM-based Cache in Solid State Drives

Hyotaek Shim!, Bon-Keun Seof, Jin-Soo Kim?, and Seungryoul Maeng!

fComputer Science Department, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea
{htshim, bkseo, maeng} @calab.kaist.ac.kr

School of Information and Communication Engineering, Sungkyunkwan University (SKKU), Republic of Korea
jinsookim @skku.edu

Abstract—Recently, NAND flash-based Solid State Drives
(SSDs) have been rapidly adopted in laptops, desktops, and
server storage systems because their performance is superior
to that of traditional magnetic disks. However, NAND flash
memory has some limitations such as out-of-place updates, bulk
erase operations, and a limited number of write operations. To
alleviate these unfavorable characteristics, various techniques for
improving internal software and hardware components have been
devised. In particular, the internal device cache of SSDs has a
significant impact on the performance. The device cache is used
for two main purposes: to absorb frequent read/write requests
and to store logical-to-physical address mapping information.

In the device cache, we observed that the optimal ratio of the
data buffering and the address mapping space changes according
to workload characteristics. To achieve optimal performance
in SSDs, the device cache should be appropriately partitioned
between the two main purposes. In this paper, we propose
an adaptive partitioning scheme, which is based on a ghost
caching mechanism, to adaptively tune the ratio of the buffering
and the mapping space in the device cache according to the
workload characteristics. The simulation results demonstrate that
the performance of the proposed scheme approximates the best
performance.

I. INTRODUCTION

NAND flash-based storage devices, such as Solid State
Drives (SSDs) [1], [2] or PCI-express flash cards [3], [4],
have been widely used in laptops, desktops, and server storage
systems because of their non-volatility, fast random access,
shock resistance, small size, and low power consumption [5].
Moreover, SSDs are increasingly replacing Hard Disk Drives
(HDDs), and the rate of this substitution is likely to increase
as the price of NAND flash memory drops.

In spite of these advantages, NAND flash memory has
an inherent limitation that its data must be erased in bulk
before being overwritten, which is called erase-before-write.
To hide this unfavorable difference with traditional storage
devices, Flash Translation Layer (FTL) schemes have been
devised. FTL provides a block device interface to the host
by managing logical-to-physical address mapping information.
The performance of SSDs heavily depends on FTL algorithms,
but FTL involves a trade-off between the memory consumption
for storing mapping information and the performance. If the

mapping granularity of FTL is more fine-grained, the FTL can
achieve better performance, but it needs larger memory space.

SSDs usually adopt an internal device cache, such as DRAM
or SDRAM, which is used for two purposes [6]-[8]. First,
it provides data buffering to absorb frequent read and write
requests. Second, it caches address mapping information for
FTL. In existing studies, it is assumed that the ratio of
the buffering and the mapping space (BM ratio) is fixed in
the device cache, which we call a static partitioning policy.
However, the optimal BM ratio is strongly affected by the
characteristics of workloads such as the working set size,
the ratio of read/write requests, and the degree of temporal
locality. Therefore, the best performance can be achieved if
we partition the device cache according to the workload char-
acteristics. For example, a write-dominant workload with small
working set size and high temporal locality may require larger
buffering space (instead of larger mapping space), because
most requests can be filtered by the data buffer. Accordingly,
the fixed amount of the device cache must be appropriately
partitioned between buffering versus mapping to improve the
performance of SSDs.

In this paper, we propose an adaptive partitioning scheme
that adaptively tunes the BM ratio in the device cache. For
this scheme, we built a cost-benefit model based on a ghost
caching [9], [10] mechanism. Through comparing the cost-
benefit of increasing the buffering or the mapping space
at every predefined interval, the device cache is adaptively
partitioned. To prove the effectiveness of the proposed scheme,
we implemented the proposed scheme with the two widely-
used FTL algorithms: Demand-based Flash Translation Layer
(DFTL) [11] and Fully Associative Sector Translation (FAST)
[12]. The simulation results demonstrate that the performance
of the proposed scheme approximates the most cost-beneficial
balance between buffering and mapping. The proposed scheme
enhanced the throughput by up to 41.9% more with 16MB
DRAM when using the DFTL scheme, compared with that of
the static partitioning policy.

II. BACKGROUND AND RELATED WORKS

978-1-4244-7153-9/10/$26.00 ©2010 IEEE

TABLE I
SPECIFICATION OF NAND FLASH MEMORY
(Samsung Electronics KIWAGOSUIM [13], K9GAGOSUXM [14])
Unit Size (KB) Access Time (us)
Page Block Write Erase
SLC 2 128 252.8 1500
MLC 4 512 905.6 1500
File System

Read 4} Write

NAND Flash-Based Storage Device

Flash Type

Read

72.8
165.6

8-32MB DRAM-based Cache

! Data Buffer ‘: f FTL Mapping Cache

Read Miss

Flash Translation Layer (FTL)

Read QL Write (Erase)

------------------ %
\
|
|
’

Dirty Buffer Flush
Dirty Mapping Flush

NAND Flash Memory

Fig. 1. Architecture of a typical solid state drive

A. Characteristics of NAND Flash Memory

NAND flash memory is comprised of an array of blocks,
each of which contains a fixed number of pages. NAND
flash memory offers three basic operations: read, write (or
program), and erase. A page is the unit of read and write
operations, and a block is the unit of erase operations. An
erase operation sets all data bits of a block to 1s. A read
operation retrieves data from a page, while a write operation
stores data on a page by changing some data bits to Os.

There are two types of NAND flash memory. Single Level
Cell (SLC) NAND [13] stores one bit per cell, whereas Multi
Level Cell (MLC) NAND [14] provides two or more bits per
cell for larger capacity. Table I shows the page/block sizes
and the operation latencies of two representative NAND flash
memory chips.

B. Architecture of Solid State Drives

Fig. 1 illustrates the overall architecture of a typical NAND
flash-based SSD. As previously mentioned, the DRAM-based
device cache is partitioned into two major parts: the data
buffering space and the FTL mapping space. When the file
system generates read requests to the SSD, the buffer manager
checks whether the requested data exists in the data buffer. If
the data exists, the read request is handled in the data buffer,
but otherwise is redirected to FTL.

When the file system writes data into the SSD, if the
requested data is cached in the data buffer, the data can be
simply overwritten. Otherwise, the buffer manager allocates
an empty space in the buffer. If there is no more empty space,
the buffer manager selects victim data in the buffer and flushes

the data to FTL. It is known to be more effective to use the data
buffer only for write caching, not for read caching, because
write latency is longer than read latency and writes involve
erase operations in SSDs [8].

C. Flash Translation Layer

The main role of FTL is to cover the idiosyncrasies of
NAND flash memory so that SSD can emulate a tradi-
tional storage device that provides the block device inter-
face. Through this compatibility layer, SSDs can be easily
adopted in existing storage systems. To handle the erase-
before-write feature of NAND flash memory, most FTLs
assign write requests to previously-erased pages by keeping
track of the logical-to-physical mapping information in an
out-of-place manner. Thereafter, the pages that contain old
data are invalidated. If there are no available previously-erased
pages, FTL selects one or more victim blocks and triggers
garbage collection in order to recycle them as free blocks.
Before reclaiming the victim blocks, FTL should copy all
valid pages in the victim blocks to free blocks reserved for
garbage collection. We call this process valid page migration
or valid page copies. After the valid page migration, the victim
blocks are erased and eventually converted to free blocks. In
the following subsections, we explain two representative FTL
mapping schemes: page-level mapping and hybrid mapping.

1) Page-Level Mapping Schemes: In page-level mapping
schemes, a Logical Page Number (LPN) is translated to a
physical page number in NAND flash memory. Due to the
flexibility in assigning empty pages, the best performance is
accomplished even for random write patterns [15]. However,
it requires a large memory footprint to maintain the fine-
grained mapping information. Moreover, the size of mapping
information increases in proportion to the capacity of SSDs.
For example, when using 4 bytes for each page mapping entry
with MLC NAND flash memory shown in Table I, we need
64MB of memory for 64GB of flash capacity. The large mem-
ory consumption is a major obstacle for large-capacity SSDs.
To alleviate such a problem, the Demand-based FTL scheme
(DFTL) [11] has been developed to create balance between the
performance and the memory consumption. Basically, DFTL
applies a caching mechanism to existing page-level mapping
schemes.

DFTL maintains all logical-to-physical mapping informa-
tion in the translation pages of NAND flash memory. A
translation page consists of an array of mapping entries in
sequential order in terms of LPN. All the mapping entries
in each translation page have the same Virtual Translation
Page Number (VPN) obtained through dividing their LPN by
the maximum number of mapping entries within one page.
Translation pages are written into translation blocks, which
are separated from data blocks. Basically, to update logical-
to-physical mapping, DFTL writes a new translation page that
includes the new mapping entries after reading the existing
translation page. Then, DFTL modifies the Global Translation
Directory (GTD) that tracks all of the valid translation pages.

GTD is always maintained in the device cache since its size
is very small.

DFTL keeps only frequently-accessed logical-to-physical
mapping entries in the device cache, which is called the
Cached Mapping Table (CMT). On a read or write request,
if the related mapping entry exists in CMT, the request can
be simply handled by updating CMT. For a read miss in
CMT, DFTL inserts a new entry for the read request to CMT
through reading the translation page to which the LPN of the
request belongs. On a write miss, DFTL can create a new
dirty entry for the write request without flash operations. If
there is no empty space in CMT, the victim entries selected
in LRU order are flushed to translation pages in NAND flash
memory. To reduce flash writes for evicting dirty victim entries
in CMT, DFTL flushes all of the dirty entries that belong to
the same translation page at once, which is called a batch
update. Compared with hybrid mapping schemes, which are
explained later, the DFTL scheme achieves better performance
with similar device memory consumption.

2) Hybrid Mapping Schemes: To balance the advantages of
page-level and block-level mapping schemes, hybrid mapping
schemes have been devised. Basically, such schemes are based
on the block-level mapping scheme where all the pages in a
block must be fully and sequentially written to preserve their
relative offsets in the block. The hybrid mapping schemes offer
block-level mapping for all data blocks, but they also support
page-level mapping for a small fixed number of blocks called
log blocks to handle write updates. Incoming write data is
written in the log blocks incrementally from the first page.
When all free blocks are consumed, FTL copies all valid pages
within victim log blocks and their related data blocks into
reserved free blocks. Then, the free blocks are remapped to
new data blocks, while the victim log blocks and the old data
blocks are erased and turned into free blocks.

Many hybrid mapping schemes have been developed [12],
[16]-[18]. One of them, Fully Associative Sector Translation
(FAST) [12], has been widely used in research and industrial
areas. FAST uses two types of log blocks, RW and SW
log blocks. The RW log blocks are used to handle random
writes, while the SW log block is dedicated to accommodate
sequential writes. FAST allocates only one SW log block for
sequential writes, and all the other log blocks are used as RW
log blocks. In FAST, all random updates for data blocks can
be located in any RW log blocks.

When there are no more free RW log blocks, one of them
is reclaimed in a round-robin fashion. To reclaim an RW log
block, FAST should merge all associated data blocks that have
valid pages in the RW log block. To merge an associated
data block, FAST copies all valid pages that belong to the
associated data block into a free block by searching all log
blocks including the RW log block for a victim. After that, the
free block becomes a new data block, and the associated data
block is erased. This process is repeated until each associated
data block is merged into new data blocks, which is called
full merges, and the victim RW log block is finally erased. If
there are enough RW log blocks and if the workload exhibits

high temporal locality for write requests, log pages in RW log
blocks are likely to be invalidated soon by following writes.
Accordingly, the more the number of invalidated pages in RW
log blocks increases, the more the valid page migration is
mitigated.

D. Power Failure Recovery

Buffered data and mapping information that are maintained
in the volatile device cache can be lost by unexpected power
failures. Simple approaches to prevent the loss of the important
data in the device cache are to employ either (1) non-volatile
memory devices [19] such as phase change RAM (PRAM)
[20] and ferroelectric RAM (FRAM) [21], (2) traditional
battery-backed DRAMSs, or (3) a super cap that provides
enough power to flush all of the dirty data in the device cache
to NAND flash memory.

The Lightweight Time-shift Flash Translation Layer
(LTFTL) is an example of software-based approach that aims
at maintaining FTL consistency in case of abnormal shutdown
[22]. In this scheme, FTL maintains previous data pages
in the log area without reclaiming them until a checkpoint.
After detecting the abnormal shutdown at initialization, LTFTL
turns back to the previous state of time periods, which has
consistency, by changing the mapping of data pages in the log
area to their previous data pages. This technique is well suited
for the out-of-place update property of NAND flash memory.

E. Related Works

The idea of this paper was inspired by some previous
studies: Adaptive Replacement Cache (ARC) [9] and Pat-
terson’s work [10]. ARC is a cache management algorithm
to increase the hit ratio in the storage cache. According
to workload characteristics, this scheme adaptively balances
between recency and frequency by using a learning rule to
track a workload. ARC works uniformly well with varied
workloads and cache size without workload-specific tuning
or prior knowledge. Patterson et. al. proposed proactive file
cache mechanisms to reduce seek and rotational latencies and
to utilize I/O parallelism in an array of hard disk drives.
This study focused on dynamically balancing caching against
prefetching by exploiting hints about future I/O demands
from user applications. In this paper, we adopted the concept
of adaptively tuning into the buffer cache of SSDs through
considering the characteristics of NAND flash memory and
FTL algorithms.

III. ADAPTIVE PARTITIONING SCHEME
A. Motivation

If we allocate more buffering space to the device cache,
better performance can be achieved due to the reduced miss
ratio of read and write requests. The performance of SSD can
also benefit from the increased mapping space, since it will
lower the number of flash operations needed to access the
mapping information. Therefore, with a fixed amount of the
device cache in SSD, a trade-off should be made between
how much space is allocated to buffering versus mapping. The

-o-Read Hit -2-Write Hit -*Operation Time‘ ‘ -o-Read Hit -A-Write Hit -*-Operation Time‘

e [o)
€ 100 10 £ - 100 e 10 £
£ c g '
S 80 N 08 5§ £ 80 08 §
@ sk S
© S O 8
£ 60 06 3 o 60 06 &
a S S
2 40 04 o £ 40 04 o
= o) Q
5 . £
s 2 A/A/A/A/H 02 5 £ 20 02 5
e 0 00 S 0 00 S
= 12 4 8 16 32 1.2 4 8 16 32

Data Buffer Size (MB)
(a) PC (Buffering Effect)

Mapping Size (MB)
(b) PC (Mapping Effect)
Fig. 2.

DRAM Size
8-32MB DRAM-based Cache

DRAM Size
J

/ \
[
: Eshost Buﬁerin% [Data Buffering] : |
\)!
~ q’\r —_——

A: Cost-Benefit of I
Ghost Buffering <>
Comparison

Fig. 3.

7
\
[FTL Mapping] Ghost Mappina :
)]
T —=

N =

B: Cost-Benefit of
Ghost Mapping

Overall structure of the adaptive partitioning scheme

problem is that the optimal BM ratio is usually affected by
workload characteristics.

To show this more clearly, we measured the total operation
time by varying the buffering or the mapping space from
IMB to 32MB, while fixing the other space to 1MB. Specific
information about the simulation configurations and the used
traces is explained in Section IV. Fig. 2(a) and (b) show the
total operation time with the PC trace under the DFTL scheme.
In this workload, increasing the buffer space is more effective
in enhancing the performance than increasing the mapping
space. Since this workload has small working set size and
a high write hit ratio, the larger data buffer can absorb more
writes, thus also removing FTL operations. In the TPC-C trace
shown in Fig. 2(c) and (d), increasing the mapping space is
more effective in reducing the operation time, because this
workload has large working set size. Under this workload,
the buffering space must be quite larger to capture frequent
requests enough. These results show that we need to adjust
the size of the buffering and the mapping space adaptively
according to the characteristics of target workloads to obtain
the best overall performance.

In order to maximize the performance of the device cache,
we should store the most cost-beneficial data that provides the
largest performance benefit per memory consumption. Since
this problem is mapped to a fractional knapsack problem,
including the problem to determine the appropriate BM ratio,
we can exploit a greedy approximation to insert more cost-
beneficial data into the device cache. The key method of our
approach is to dynamically adjust the ratio through comparing
the cost-benefits of buffering and mapping at regular intervals
according to the workload characteristics.

-o-Read Hit -2~ Write Hit -%Operation Time‘ ‘ -o-Read Hit -2-Write Hit -*-Operation Time

< o
€ 100 x 10 £ ~ 100 10 E
5 =3 =
5 g0 08 SE 80 08 §
o -‘_—EE =
£ 60 06 § o 60 06 &
a 83 S
2 40 04 5 € 40 04 o
= @ @
% N =
s 02 g% 20 02 3
€ o 00 8 0 00 S
= 12 4 8 16 32 1 2 4 8 16 32

Data Buffer Size (MB)

(c) TPC-C (Buffering Effect)

Mapping Size (MB)
(d) TPC-C (Mapping Effect)

Effects of increasing the buffering or the mapping space

B. Main Idea

Fig. 3 shows the main idea of the proposed adaptive
partitioning scheme. In our scheme, we maintain the ghost
buffer and the ghost mapping caches, which are a kind of
exclusive victim cache, that store only metadata without actual
data. When a victim data is flushed from the data buffer or
the mapping cache, the metadata of the victim is inserted
into the ghost buffer or the ghost mapping cache. Through
these ghost caches, we estimate the cost-benefit of their actual
caches. Specifically, it is assumed that if the actual caches
have more space, they will obtain profits as much as their
ghost caches provide. In this way, we expect that it is more
beneficial to increase the size of the actual cache whose ghost
cache provides a larger cost-benefit value than the other ghost
cache.

We estimate the profit of ghost caches as an opportunity cost
that means all the costs (NAND flash operation time) caused
by not enlarging the actual cache size. The opportunity cost
is generated by read or write misses in the actual caches that
correspond to all read or write hits in the ghost caches; when a
read or write hit for a request occurs in the ghost caches, a read
or write miss for the same request also occurs in the actual
caches. Whenever read or write hits occur in the ghost caches,
we compute the opportunity cost caused by the corresponding
read or write misses in the actual caches to appraise the profits
of ghost caches. At every pre-defined interval, we calculate the
cost-benefit of the ghost caches, and we tune the BM ratio by
comparing the cost-benefit values of their ghost caches.

In the proposed scheme, the maximum size of an actual
cache and its ghost cache is set to the total size of the DRAM-
based device cache, since the size of the buffering or the
mapping space cannot be larger than the device cache size.
Note that the size of a ghost cache reflects its actual data size
although the ghost cache stores only metadata. We also assume
that the expected memory consumption needed for caching the
actual data of ghost caches is the cost of the cost-benefit value.

C. Adaptive Partitioning Algorithm

We set up a model to calculate the cost-benefit values of
ghost caches (Cgp and Cgas). The parameters used in the
model are summarized in Table II. Based on the cost-benefit
model, we calculate the profit of ghost mapping (Pgas) and

TABLE I
MODEL PARAMETERS TO ANALYZE THE COST-BENEFIT OF GHOST CACHES

Notation Description
Nreq Request number
Ninto Interval for applying the adaptive partitioning

scheme

Hit counts of page reads and writes in the ghost
buffer cache

Hit counts of page reads and writes in the ghost
mapping cache

Profit factors of a read and a write hit in the
ghost buffer cache

Profit factors of a read and a write hit in the
ghost mapping cache

Current size of the ghost buffer cache

Current size of the ghost mapping cache

N'r_GBa Nw_GB

Ny_gm> Nw_am

PF’I‘_GB7 PFw_GB

PF. gm, PFy_am

SaB
Saum

that of ghost buffering (Pgp) as follows:

Poyv = Pr gy + Pu_aum
P, gm = Ny_gm * PF._gum
Py v = Nw_am * PEy am

Pep =P, g+ Py cB
P’I"_GB = N’I‘_GB * PFr_GB
Py, g = Ny g * PFy gB

First, we explain how to get Pgjs, which is obtained by
summing up the profits caused by read and write hits in the
ghost mapping cache (P, g and P, gar). The profit is cal-
culated by opportunity costs generated from the corresponding
read and write misses in the actual mapping cache. At every
read hit in the ghost mapping cache (/V, gas), we increase
P, gn by the opportunity cost (PF,. gas) of a read miss in
the actual mapping cache. For example, on a read miss in the
actual mapping cache, FTL should read the related mapping
information from NAND flash memory, and thus we consider
this overhead as an opportunity cost for a read miss in the
actual mapping cache and also as a profit for a read hit in the
ghost mapping cache. P, s can be similarly estimated from
the opportunity cost (PF,, ¢ar) caused by write misses in the
actual mapping cache. The write misses are restricted to those
that correspond to write hits (N, gas) in its ghost mapping
cache.

Second, Pg g consists of the profits caused by read and write
hits in the ghost buffer (P, ¢p and P, ¢p). To calculate the
profits, we should appraise opportunity costs caused by read
and write misses in the actual buffer. For every read or write
hit in the ghost buffer, we increase Pgp by the estimated read
or write opportunity cost (PF,. g or PFy, aB).

Algorithm 1 shows the pseudo-code of the adaptive parti-
tioning scheme. We obtain the cost-benefit value of increasing
the buffering space (Cgp) by means of dividing the profit of
the ghost buffer (Psp) by the current size of the ghost buffer
(S¢B). The cost-benefit value of increasing the mapping space
(Cgar) is also calculated similarly. At every interval (N;,ty),
we compare the cost-benefit values of ghost buffering and
ghost mapping. If the cost-benefit value of ghost buffering

Algorithm 1 Adaptive Partitioning Algorithm
1: procedure ADAPTIVE_PARTITIONING()
2: if (N;.cq mod Njpsy == 0) then

3: Cep = Pop/Sas

4: Cam = Pam/Sam

S: if (Cap < Cgn) then

6: INCREASE_MAPPING_SPACE(C¢prr/CaB)
7: else if (Cqop > Caar) then

8: INCREASE_BUFFER_SPACE(C¢p/Canr)
9: end if

10: Ny B, Nw_gB> Nr_gym> Nuw_agm =0

11: end if

12: end procedure

13:

14: procedure INCREASE_MAPPING_SPACE(inc_count)
15: Stune = Stune_unit X inc_count

16: Smaz_map = Smaz_map + Stune

17: Smam_buf = Smaa:_buf - Stune

18:

19: while (Smaw_buf < Scur_buf) do

20: flush_victim_buffer()

21: end while

22: end procedure

23:

24: procedure INCREASE_BUFFER_SPACE(inc_count)
25: Stune = Stune_unit X inc_count

26: Sma.’c_buf = Smax_buf + Stune

27: Smaz_map = Smax_map - Stune

28:

29: while (Smam_map < Scu’r‘_map) do

30: decrease_mapping_space()

31: end while

32: end procedure

is larger than that of ghost mapping, we increase the buffering
space by the tuning size (Stune_unit) Mmultiplied by the cost-
benefit factor (Cap/Can), and we decrease the mapping
space by the same amount. After adjusting the BM ratio, we
clear the read and the write hit counts in the ghost caches for
the next period.

We apply this adaptive partitioning scheme to two widely-
used FTLs: DFTL and FAST schemes. In the following
subsections, we explain how to concrete the adaptive parti-
tioning algorithm for each FTL algorithm. Specific notations
for NAND flash memory, DFTL, and FAST are defined in
Table III. For data buffer management, we use a page-level
LRU buffer replacement algorithm.

D. Case Study for Demand-based FTL (DFTL)

DFTL is a caching-based FTL scheme similar to the su-
perblock FTL [17] and u-FTL [18] schemes, where only
frequently accessed mapping information is stored into the
mapping cache. As the capacity of SSDs considerably in-
creases, the amount of FTL mapping information will also
increase, and thus such caching-based FTL schemes will

TABLE IV
INSTANCES OF MODEL PARAMETERS TO APPLY THE ADAPTIVE PARTITIONING SCHEME INTO DFTL AND FAST

Notation DFTL FAST

Nr_am Nr_gomT None

Nw_cMm Nw_comT Nuw_Glog

PF, am T None

PFw_G]W (Tr + Ty + Thwo) I Fy Tfull_me'rge / F(Ls_set
PF, B Tr +1r * Ry mis_cMT T

PFw_GB Tw + wao + (Tr + Ty + Ttwo) / Fb * Rw_mis_CIVIT Ty + ﬂog_GC /Nppb

Stune_unit SCIWT_entry

Slog_ent'ry

TABLE III
SPECIFIC NOTATIONS TO CALCULATE THE PROFIT OF THE GHOST CACHES
Notation Description
NAND Flash Memory
Nppb Number of pages per block
Ty, Tw, Te Read, write, and erase operation time
DFTL
N, gcmT Hit count of entry reads in the ghost CMT
Ny _cgoMmT Hit count of entry writes in the ghost CMT
Ttrans_GC Average cost for reclaiming a translation block
Tdata_GC Average cost for reclaiming a data block
Tiwo Overhead for writing a translation page:
Tt'rans_GC/Nppb
Tawo Overhead for writing a data page:

Taata_cc/Nppb
Read miss ratio in the actual CMT
Write miss ratio in the actual CMT

Ry mis_.cMT
Ry_mis_cMT

Fy Average number of CMT entries flushed by a batch
update
ScMT_entry Memory size needed for one entry in CMT
FAST
Nw_glog Hit count of page writes in the ghost log blocks
Fos_set Average number of written pages that belong to the

same associated data block for each victim RW log
block

Full merge cost for an associated data block in RW
log blocks: Nppb-(Tr + Tw) + Te

Average cost for reclaiming one RW log block
Memory size of mapping information for one log
block

Tfull_m.erge

,Tlog_GC
Slog_entry

dominate because of the limited capacity of the device cache.
Those FTLs are good targets for the proposed scheme since
their performance heavily depends on the size of the mapping
cache. We apply the proposed adaptive partitioning scheme to
DFTL by concreting the profit factors (PF, gy, PFy gm.
PF, ¢p, and PF,, ¢p) and the tuning size (Stune unit)
shown in Table IV. Based on the cost-benefit model mentioned
in the previous subsection, we calculate the profit factors of
ghost mapping and ghost buffering.

We explain how to get the read profit factor of the ghost
CMT (PF; gum)- On a read miss in the actual CMT, DFTL
should read one translation page from NAND flash memory,
and thus we consider one-page read latency (7)) as the
opportunity cost (PF,._gar) for a read miss in the actual CMT
and also as the profit for a read hit in the ghost CMT.

For PF,, ¢m, we should estimate the opportunity cost
caused by a write miss in the actual CMT. On a write miss in
the actual CMT, a dirty entry can be simply created without
any flash operation, but to flush the dirty entry subsequently,
the corresponding translation page should be read (7;.) and

updated (7,), including write overheads (7},,,) for reclaiming
translation blocks. Additionally, considering the batch update
technique that flushes all dirty entries that belong to the same
translation page at once, we divide the flushing cost by a
batch factor (F}). The batch factor means the average number
of CMT entries flushed by writing one translation page into
NAND flash memory. Consequently, the profit factor of a write
hit in the ghost CMT is calculated as (T, + Ty + Ttwo)/ F.

The profit factors of the ghost buffer (PF,. gp and
PF,, ¢p) consist of profits caused by a read hit and a write
hit in the ghost buffer. To calculate these profit factors, we
should estimate the opportunity cost of a read and a write
miss in the actual buffer. The opportunity cost of a read miss
in the actual buffer consists of 7, for the missed data page in
NAND flash memory and T} * R, nis cmr for reading the
missed translation page in the case of a read miss in CMT.
The opportunity cost of a write miss in the actual CMT is
comprised of T,, for writing the missed data page, average
GC overheads for a write (Tywo), and (T + Ty + Trwo)/Fo
* Ry _mis_cymr for inserting a new dirty entry into CMT if a
write to CMT is missed.

In DFTL, the tuning size of the proposed scheme is the
memory size needed for one CMT entry (Scymr_entry). TO
reduce the mapping space, DFTL can easily reclaim the
memory space allocated for CMT by removing clean entries
or by flushing dirty entries in CMT. The proposed scheme can
also increase the mapping space after decreasing the buffering
space by flushing victim pages in the data buffer.

E. Case Study for Fully Associative Sector Translation (FAST)

As one of other log block-based FTLs, the FAST scheme
maintains page-level mapping information for all extra blocks
in the mapping cache. For write-dominant workloads that
have large working set size and high temporal locality, the
performance is significantly improved as the number of log
blocks increases. This is because many valid pages in log
blocks can be invalidated by the following updates, which
are write hits, reducing the overhead of valid page migration.
For other workloads that have small working set size or read-
dominant requests, however, a large number of log blocks are
likely to remain unused, unnecessarily wasting a large portion
of the device cache for maintaining mapping information for
those log blocks. If SSD utilizes the unused mapping space
for data buffering by reclaiming the mapping space for surplus
log blocks, it can increase the read and write hit ratios in the
data buffer. Hence, the FAST scheme can be another target for

TABLE V
SUMMARY OF THE BLOCK-LEVEL TRACES THAT MODEL VARIOUS WORKLOADS

Name Description Avg. Request Size Request Ratio Working Set Size
[Read/Write] (KB) [Read/Write] (%) [Read/Write] (GB)
SYSmark Running SYSmark 2007 Preview including e-learning, office 13.6 /20 33767 0.11/70.24
works, video creation, and 3D modeling
PC Document-based realistic workloads using various office applica- 20/ 13.4 23.7/76.3 5.82/8.45
tions
Financial ~ I/O trace from an OnLine Transaction Processing (OLTP) appli- 2.3 /3.6 4747 52.6 045705
cation running at a financial institution
TPC-C Running a TPC-C benchmark test with Benchmark Factory 22/21 81.4/18.6 8.04 / 4.45

the proposed scheme. Similar to the approach in the previous
subsection, we explain a specific cost-benefit model of the
adaptive partitioning scheme for FAST as shown in Table IV.

In FAST, the profit factors of ghost mapping (PF, g and
PF,, gu) are obtained by considering the opportunity cost
caused by insufficient log blocks. Since flash read operations
have the same cost regardless of the number of log blocks,
there is no opportunity cost for read operations. In other
words, there is no read miss in the mapping cache since block-
level mapping information is always kept in the device cache.
Accordingly, there are no corresponding instances for N, cas
and PF, r_GM-

For flash write operations, FAST can reduce full merges to
reclaim RW log blocks if it has more log blocks. For example,
when all valid pages that belong to the same associated data
block in an RW log block are invalidated by the following
updates, FAST can avoid a full merge for the associated
data block when reclaiming the RW log block. From this
point of view, the proposed scheme maintains the metadata
information about recently-migrated valid pages from victim
RW log blocks in the ghost log blocks. The opportunity cost
for a write miss that corresponds to a write hit in the ghost
log blocks is calculated as Tyii_merge/Fas_set- Fas_set Means
the average number of written pages that belong to the same
associated data block for each victim RW log block.

The profit factors of the ghost buffering (PF, gg,
PF,, ¢p) are calculated by the profits of read and write hits
in the ghost buffer. The opportunity cost (PF,. p) for a read
miss in the actual buffer is simply 7;. for reading the data page
from NAND flash memory. The opportunity cost (PFy, ¢B)
for a write miss in the actual buffer is comprised of T, for
writing the missed page and T},g_cc/Nppy for one-page write
overheads in NAND flash memory.

In FAST, the tuning size of the proposed scheme is the
memory size of mapping information needed for one log block
(Siog_entry). To reduce the mapping space, FAST empties
the memory space allocated for log blocks by decreasing the
number of free log blocks or by reclaiming victim log blocks.

IV. PERFORMANCE EVALUATION
A. Methodology

To evaluate the performance of the proposed scheme, we
implemented a trace-driven simulator. The capacity of NAND
flash memory was configured as 64GB SLC NAND flash
memory [14], whose specification is described in Table I. SLC

NAND flash memory is widely used in desktop and server
storage systems. We assumed 8MB and 16MB of DRAM as
an internal device cache, and the data buffer is used only for
write caching, not for read caching. We configured the tuning
interval as 1000 and 10000 requests for the proposed scheme
with DFTL and FAST, respectively, considering that the tuning
size in FAST is larger than that in DFTL.

The metadata in the ghost buffer is replaced with a page-
level LRU policy, which is the same as the replacement
algorithm of the actual buffer. To implement ghost mapping,
we used a bloom filter to count the read and write hits in
the ghost mapping. To insert an LPN into the ghost mapping
cache, we set the bit of the corresponding hash bucket, and we
reset the bit in random order to flush the victim of the ghost
mapping cache. If hash collisions occur in the hash bitmap
when LPNs are inserted, the bit count of hash bitmap does
not increase, but can be rather getting smaller by flushing. To
avoid this, the proposed scheme conditionally flushes the hash
bitmap when the ghost mapping space needs to be reduced.
If (the current bit count of the hash bitmap) * « is smaller
than the bit count that should be preserved without collisions,
the proposed scheme decreases the only size value of the
ghost mapping cache without flushing the hash bitmap. In our
simulation, the « is configured as 3, and the hash bitmap for
ghost mapping is maintained in the device cache (DRAM)
since it occupies only 128KB. In addition, for the proposed
scheme, the metadata of the ghost buffer is also stored in the
data cache.

Table V summarizes the characteristics of the four traces
used in this paper. They were collected by block-level tracing
tools, DiskMon [23] and blktrace [24]. The four traces are
used to evaluate the performance of the proposed techniques in
various environments of desktop and server storage systems.
To evaluate the performance in a typical personal computer
environment, we use the trace of a well-known PC benchmark
called SYSmark. In addition, the PC trace obtained from a
real user is used to model the realistic workload of a desktop
PC. The Financial and TPC-C traces represent the workloads
primarily used in server systems.

B. Operation Time with DFTL

In this section, we evaluate the performance enhancement of
the adaptive partitioning scheme for the DFTL scheme. Under
the different workloads shown in Table V, we measured the
total operation time in NAND flash memory with the different

2 100 £ 100 E 100 £ 100
= 80 80 foenoooooesoooommae®® | = 80 E 80
ke S 2 S
® 60 - T 60 - T 60 - ® 60 -
@ g 2 o}
OQ' 40 o 40 O 40 8’ 40
] o 3 °
5 20 ~-Static + Adaptive | | & 20 ~Static + Adaptive || & 20 | ~Static « Adaptive || & 20 ~Static + Adaptive |
] © [©
£ 0 T T £ 0 T B e L g 0 LB e e e O — 0 T
<ZS 13 28 44 59 75 9 g 13 28 44 59 75 91 g 13 28 44 59 75 91 g 13 28 44 59 75 91
Mapping Ratio of 8MB DRAM (%) Mapping Ratio of S8MB DRAM (%) Mapping Ratio of 8MB DRAM (%) Mapping Ratio of 8MB DRAM (%)
2 100 2 100 g 100 2100
= = = oo™ =
= 80 '~ 80 1, oo | e 8 {roeoseesooovecsuanee?T = 80
S S 0000800000000l S S
T 60 T 60 - T 60 S 60 -
2 2 g g
o 40 | § 40 O 40 O 40 -
3 3 2 3 3
8 20 ~Static + Adaptive || & 2% | | —Static « Adaptive | 8 20 | ~Static _+ Adaptive || & ?° ~Static * Adaptive |
E 0+ & 0 e £ 0 b £ 0 e
2 6 28 50 72 94 g 6 28 50 72 94 Z° 6 28 50 72 94 2 6 28 50 72 94
Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%)
(a) SYSmark (b) Financial (c) PC (d) TPC-C
Fig. 4. Operation time comparison under various workloads with DFTL
-O- Read Hit of Data Buffer (%) ~/x Write Hit of Data Buffer (%) — Read Hit of CMT (%) %<~ Write Hit of CMT (%)
100 100 100 100
80 80 80 _. 80
S 60 S 60 o 60 o 60
3 3 8 g
X 40 X 40 € 40 £ 40
£ b= T T
20 20 20 20
0 0 0 o000 0
6 19 31 44 56 69 81 94 6 19 31 44 56 69 81 94 6 19 31 44 56 69 81 94 6 19 31 44 56 69 81 94
Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%)
- # of Page Copies in Data Blocks — # of Page Copies in Trans. Blocks === # of Flash Reads ---# of Flash Writes
100 100 100 100
€ 80 |- £ 80 € 80 £ 80
Q 5] o 3
© 60 © 60 S 60 © 60
ke el
8 8 8 e
T 40 T 40 T 40 £ 40
E E E £
2 20 2 20 2 20 S 20
0 0 0 0
6 19 31 44 56 69 81 94 6 19 31 44 56 69 81 94 6 19 31 44 56 69 81 94 6 19 31 44 56 69 81 94
Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%)
(a) SYSmark (b) Financial (c) PC (d) TPC-C

Fig. 5. Effects of the BM ratio with DFTL

device cache sizes, SMB and 16MB. The proposed scheme is x-axis position means the average ratio of the mapping space
compared with the static partitioning policy where the BM for all tuning periods. From this result, we observe that the
ratio is fixed during the simulation. For the static partitioning performance significantly changes according to the BM ratio
policy, we measured the performance several times under in the device cache. Moreover, the optimal ratio for the best
different ratios from 0% to 100% of the device cache. For performance is determined by the workload characteristics. To
the proposed scheme, we configured the initial ratio of the analyze the effect caused by the BM ratio more specifically,
mapping space as 50% of the device cache, and the ratio we measured detailed parameters with 16 MB of DRAM under
is adjusted autonomously between 0% and 100% during the the static partitioning policy as shown in Fig. 5. The read and
simulation. Finally, the number of extra blocks, which are used write hit ratios in the data buffer and CMT reflect the trade-
for storing FTL mapping information and writing data, was set offs between mapping and buffering. In addition, we inspect
as 3% of the total flash capacity. the concrete effects of adjusting the mapping space against

Fig. 4 compares the operation time of each trace, which is the buffering space through the number of valid page copies
normalized to the longest one. In the graphs, the result of the in data and translation blocks, and the number of flash read and
adaptive partitioning scheme is displayed as a point, whose write operations. These counts are normalized to their largest

£ 100 2 100 2 100 2 100

= = = [= —-Stati . i

S 80 _ 80 'E 80 | '; 80 Static Adaptive

=S S] S

© 5 = =

5 60 g 60 g 60 - a‘!; 60

Q Q. Q. j<%

O 40 O 40 O 40 { O 40

9 o kel kel

@ Q Q Q

& 20 N 20 . . N 20 N 20

g —-Static e Adaptive ‘ g —-Static * Adaptive g —-Static * Adaptive ‘ g

5 0+ 5§ O T T I RE e 5 0 —_— -5 0 A B e

z 20 38 57 76 95 Z 20 38 57 76 9% =z 20 38 57 76 95 Z 20 38 57 76 95
Mapping Ratio of 8MB DRAM (%) Mapping Ratio of 8MB DRAM (%) Mapping Ratio of 8MB DRAM (%) Mapping Ratio of 8MB DRAM (%)

2 100 2 100 2 100 2 100

i \ s \ s F ~Static + Adaptive

5 80 5 8 5 80 c 80 P ‘

© ~bo0000000000eeeo0OORRETET - - - - - ® - Poopoocooooooeec0o00e T . ® 5

g 60 S 60 € 60 | § o0

Q. Q o Q.

O 40 O 40 O 40 - O 40

g B 3 3

8 20 8 20 N 20 N 20

g ‘ —-Static e Adaptive g ‘ —-Static ¢ Adaptive ‘ g —-Static * Adaptive ‘ g

5 0+ 5 0 t E 0 1 £ 0 b

z 10 26 43 59 75 91 Z 10 26 43 59 75 91 =z 10 26 43 59 75 91 2 10 26 43 59 75 91
Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%)

(a) SYSmark (b) Financial (c) PC (d) TPC-C

Fig. 6. Operation time comparison under various workloads with FAST

counts, respectively.

In the results of SYSmark and Financial shown in Fig. 4(a)
and (b), the best performance is achieved when the ratio of
mapping space is about 30% or 50%. As the ratio of mapping
space increases from zero to around more than 30%, Fig. 5(a)
and (b) show that the read and write hit ratios in CMT
rapidly reach almost 100%, because these workloads exhibit
small working set size and high temporal locality. Note that
the mapping space can accommodate more information and
provide better profits with the same memory size, compared
with the data buffer. From the point of view of the buffering
space, the read and write hit ratios in the data buffer are
slightly decreased as the ratio of buffering space decreases
from 100% to around 70%. Accordingly, the read and write
hit ratios in CMT can greatly increase by consuming only a
small amount of DRAM without sacrificing the hit ratios in
the data buffer.

This increment of read and write hit ratios in CMT re-
duces the number of flash read operations, thus reducing
the operation time. As the mapping space increases more
than the working set size, however, the reduced buffer space
increasingly decreases the read and write hit ratios of the
data buffer. In addition, there is no profit from the additional
mapping space since this space remains unused. In particular,
when the ratio of buffering space is less than 30%, the hit
ratios in the data buffer sharply drop. As a result, read and
write operations are more generated in NAND flash memory.

In the PC trace shown in Fig. 4(c) and Fig. 5(c), as the
mapping space increases, the read and write hit ratios of
CMT are gently raised, thus reducing the number of flash
read operations and valid page copies in translation blocks.
At the same time, however, the number of valid page copies
in data blocks increases due to the reduced write hit ratio in the
data buffer. Consequently, the best performance is achieved at
around 25%, which is the ratio that provides the largest cost-
benefit between buffering and mapping.

The TPC-C trace in Fig. 4(d) requires large mapping space

for the best performance, compared with the other workloads
that need a small amount of the device cache for the mapping
space. The TPC-C trace exhibits large working set size, low
temporal locality, and read-dominant workloads. Accordingly,
increasing the buffer space has a little effect on the overall
performance. However, increasing the mapping space has a
significant effect on increasing the read hit ratio in CMT
and mitigating valid page migration in translation blocks. In
particular, the flash reads are significantly reduced as the
mapping space reaches almost 100%.

For all the traces, we find that the performance of the adap-
tive partitioning scheme approximates the best performance
very closely, since the average BM ratio of the proposed
scheme dynamically tracks the optimal BM ratio well under
the various workload characteristics. Therefore, we demon-
strate that the proposed scheme achieves the best performance
with DFTL in different environments.

C. Operation Time with FAST

We also measured the operation time and additional per-
formance factors for FAST. Fig. 6 presents the operation
time according to the ratio of the mapping space with the
different DRAM sizes, SMB and 16MB. As mentioned in
the previous subsection, in these graphs in Fig. 6, the result
of the adaptive partitioning scheme is displayed as a point,
whose x-axis position means the average ratio of the mapping
space. In FAST, the mapping space is used to store mapping
information for data blocks and log blocks. As the size of
the mapping space enlarges, the number of log blocks can
increase, but is limited by the number of extra blocks. In the
following simulations with FAST, the number of extra blocks
is configured up to about 10% of the total flash capacity,
considering the specification of the existing SSDs [2].

Similar to the previous subsection, for the static partitioning
policy, we measured the performance several times under
different mapping ratios from 0% to 100% of the device cache.
For the adaptive partitioning scheme, we configured the initial

O-Read Hit of Data Buffer (%)

ZxWrite Hit of Data Buffer (%)

> Write Hit of Log Blocks (%)

100 100 100 100
< 80 < 80 - < 80 < 80
=X X X X
o 60 o 60 o 60 2 60
5 © T S
T 40 T 40 T 40 & 40
T T T T

20 20 20 20

0 . 0 : 0 >

10 21 32 43 53 64 75 86 97 10 21 32 43 53 64 75 86 97 10 21 32 43 53 64 75 86 97 10 21 32 43 53 64 75 86 97
Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%)
-%-Operation Time for All Merges -+ # of Flash Reads -- # of Flash Writes

€ 100 € 100 € 100 £ 100
o o o (s}
© 80 © 80 © 8o O 80
o o o o
g 60 g 60 g 60 g 60
[[= = [=
T 40 B 40 3 40 B 40
o N 8 s
g 20 E 20 g 20 g 20
S S S S
P4 Z 0 z Z 0

10 21 32 43 53 64 75 86 97
Mapping Ratio of 16MB DRAM (%)

(b) Financial

10 21 32 43 53 64 75 86 97
Mapping Ratio of 16MB DRAM (%)

(a) SYSmark

10 21 32 43 53 64 75 86 97
Mapping Ratio of 16MB DRAM (%)

(c) PC

10 21 32 43 53 64 75 86 97
Mapping Ratio of 16MB DRAM (%)

(d) TPC-C

Fig. 7. Effects of the BM ratio with FAST
25 12
—x-Adaptive —x-Adaptive
, 10 . .
o 20 | -- Static (Mapping: 25%) - - - Static (Mapping: 97%)
g - Static (Mapping: 97%) g 8 || = Static (Mapping: 6%)
H A
< =
[=2) (=]
3 3
£ I
2
0 0
45K 900K 1755K 2610K 3465K 4320K 5175K 0.5M 10.5M 20.5M 30.5M 40.5M 50.5M 60.5M
Number of Requests Number of Requests
(a) PC with DFTL (b) TPC-C with DFTL
20 16
18 —x-Adaptive 14 —»-Adaptive
__ 16 - Static (Mapping: 51%) = 12 - - Static (Mapping: 97%)
0 =
g g Static (Mapping:x10%) g 10 - Static (Mapping: 10%)
2 H
£ £
(=2} (=2}
g g
E F
45K 900K 1755K 2610K 3465K 4320K 5175K 0.5M 10.5M 20.5M 30.5M 40.5M 50.5M 60.5M

Number of Requests

(c) PC with FAST
Fig. 8.

ratio of mapping as 50% of the DRAM size. For more specific
analysis, we measured additional performance parameters with
16MB of DRAM under the static partitioning policy as shown
in Fig. 7. First, the read and write hit ratios of the data buffer,
and the write hit ratio of the log blocks are useful for observing
trade-offs between buffering versus mapping. The number of
write hits in the log blocks is counted when the valid pages
in the log blocks are invalidated by following write requests.
The effects of adjusting the BM ratio are revealed by additional
parameters such as the number of flash reads and flash writes,

Number of Requests

(d) TPC-C with FAST

Throughput variation comparison with DFTL and FAST

and the merge operation time, which are normalized to their
largest values.

In the SYSmark and Financial traces as shown in Fig. 6(a),
(b) and Fig. 7(a), (b), the best performance is obtained at the
small mapping ratio due to their small working set size. As the
mapping space increases from zero to around 25%, the write
hit ratio in the log blocks is dramatically raised. As a result,
valid page migration for merge operations is considerably
prevented. In the meantime, the read and write hit ratios are
nearly unchanged in spite of the diminished buffering space.

€ 100 €100 100 €100

o ° o ot]

O 80 o 80 O 80 feoonooccooeccooo0@@™ .. O 80 ._-T%%%v0

3 2 3 2

g 60 2 60 T 60 8 60

L i i i}

5 40 D 40 T 40 - o 40

L N oo N, 8

g | ~Static_+ Adaptive | | 'S ~Static _« Adaptive || € 20 | [—static « Adaptive || & | ~Static * Adaptive |

S S <} S

z 6 28 50 72 94 Z 6 28 50 72 94 Z 6 28 50 72 94 % 6 28 50 72 94
Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%)

(a) SYSmark (b) Financial (c) PC (d) TPC-C
Fig. 9. Erase count comparison under various workloads with DFTL

€ 100 € 100 € 100 € 100

3 2 2 3 . .

S 80 - 38 g0 | 3 80 8 g0 | —-Static * Adaptive

R 3 B |- Treca0ccaeeee?TTL oo ?

S 60 - T 60 - - Teacococsooooeaocerre?TT S 60 - 8 60 |

]] w w

e 4 o | o 4 e

ﬁ 40 ﬁ 40 g 40 g 40

© T o0 ©] ©

£ 20 ~-Static _+ Adaptive || £ 0 ~-Static « Adaptive || £ 20 ~Static _+ Adaptive || E 20 L Teeoece

2 0+t 2 0 e 20 A 2 0 A
10 26 43 59 75 91 10 26 43 59 75 91 10 26 43 59 75 91 10 26 43 59 75 91
Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%) Mapping Ratio of 16MB DRAM (%)

(a) SYSmark (b) Financial (c) PC (d) TPC-C

Fig. 10. Erase count comparison under various workloads with FAST

As the mapping space becomes greater than the working set
size, however, additional log blocks bring no profit any more,
and the reduced buffer hit ratios generate more flash operations
including garbage collection overheads.

In our approach, when there are insufficient log blocks
to accommodate the working set of writes, many valid page
copies occur and are inserted into the ghost log blocks. The
newly-inserted log pages make the cost-benefit of the ghost
log blocks larger than that of the ghost buffer, thus extending
the actual mapping space. When the log blocks are enough,
valid page copies almost disappear, and the cost-benefit of the
ghost log blocks is getting smaller. In this way, the proposed
scheme tracks the most cost-beneficial point between buffering
and mapping.

In the PC trace shown in Fig. 6(c) and Fig. 7(c) with
the static partitioning policy, the operation time for merge
operations is reduced as the number of log blocks increases
because of the higher possibility of invalidating valid pages
in log blocks. However, the profit of increasing log blocks is
connected to decreasing the read and write hit ratio in the data
buffer. The proposed scheme adjusts the BM ratio to the most
cost-beneficial point that creates balance between the profit of
reducing valid page copies and that of increasing buffer hits.
In the TPC-C trace in Fig. 6(d) and Fig. 7(d), the buffer hit
ratios are quite low and almost unchanged even with the very
small buffering space, while the larger mapping space makes
an opportunity for updating the pages in log blocks. According
to the characteristics of this workload, the proposed scheme
autonomously moves the BM ratio to the higher mapping ratio,
and achieves the best performance. In addition, those results
demonstrate that the adaptive partitioning scheme also works
well with hybrid FTLs.

D. Throughput

Fig. 8 shows the throughput variance according to the peri-
ods of requests with 16MB of DRAM when using DFTL and
FAST. For this simulation, we used the PC and TPC-C traces
whose duration is long enough. We compared the throughput
of the proposed scheme with those of the best and the worst
cases of the static partitioning scheme. The throughput of
the proposed scheme approximates the throughput of the best
result of the static partitioning scheme for each period of
requests. From this result, we believe that the proposed scheme
can follow the optimal BM ratio in varied workloads without
workload-specific static configurations or prior examination of
the workload characteristics. This means that SSDs equipped
with the proposed scheme can be widely adopted in different
environments ranging from desktop to server storage systems
running various user applications.

E. Erase Count

In NAND flash memory, the number of erase operations per
block is limited, typically, from 5,000 to 100,000 [13], [14].
If a block is erased more than the limited number, the block
is likely to be worn out and cannot be written any more due
to frequent data errors. Considering this constraint, we need
not only to distribute erase operations into all blocks, but also
to reduce the number of erase operations. Fig. 9 and Fig. 10
present the number of erase operations with 16MB of DRAM
under the DFTL and FAST schemes, respectively. The results
of the adaptive partitioning scheme come near the lowest erase
counts under the static partitioning policy.

In the DFTL and FAST schemes, the erase count is closely
related to the number of write operations. In DFTL, the
proposed scheme efficiently increases the write hit ratio in
CMT, without sharply decreasing the write hit ratio of the data

buffer. Consequently, the proposed scheme reduces valid page
copies for reclaiming data and translation blocks. In FAST,
the proposed scheme helps FTL keep a proper number of log
blocks for the working set size. As a result, FAST exploits the
temporal locality of writes enough only with an acceptable
decline of the write hit ratio in the data buffer. From those
results, we indicate that the adaptive partitioning scheme can
help extending the lifetime of SSDs.

V. CONCLUSION

In the storage market, migration from hard disk drives
to NAND flash-based storage devices is being accelerated.
This migration is supported by many studies about internal
software and hardware components: buffer management poli-
cies, Flash Translation Layer (FTL) algorithms, and multi-
channel architectures to overcome the limitations of NAND
flash memory. One of them, the device cache, in SSDs is
an important component that has a significant impact on the
performance. The device cache is used for both buffering
data and caching the FTL mapping information. We observed
that the most cost-beneficial ratio of the buffering and the
mapping space changes according to workload characteristics.
In existing studies, however, it is assumed that the ratio of them
is fixed, and thus they cannot have a flexible use of the device
cache. In this paper, we proposed an adaptive partitioning
scheme to store more cost-beneficial data into the device cache
for better performance of SSDs.

We built an evaluation model for calculating the cost-benefit
value of increasing the buffering or mapping space. Based
on this model, the adaptive partitioning scheme adaptively
tunes the ratio of the buffering and the mapping space at
every pre-defined interval. To evaluate the performance of the
proposed idea, we applied the cost-benefit model to the two
widely-used FTLs: the DFTL and FAST schemes. Using the
proposed scheme, we successfully obtained the performance
near the best performance under the static partitioning policy
with varied workloads. Moreover, we expect that our approach
can be also applied to various caching-based FTL schemes and
buffer management algorithms.

ACKNOWLEDGMENT

This work was supported by the IT R&D Program of
MKE/KEIT. [2010-KI002090, Development of Technology
Base for Trustworthy Computing]

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy. Design tradeoffs for SSD performance. In Proceedings of
USENIX Annual Technical Conference (USENIX *08), pp. 57-70, Boston,
MA, USA, Jun. 2008.

[2] F. Chen, D. A. Koufaty, and X. Zhang. Understanding intrinsic character-
istics and system implications of flash memory based solid state drives.
ACM SIGMETRICS/Performance, pp. 181-192, Seattle, WA, USA, Jun.
20009.

[3] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon: Using flash
memory to build fast, power-efficient clusters for data-intensive appli-
cations. In Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS °09), pp. 217-228, Washington, DC, USA, Mar. 2009.

[4]
[5

[ty

[6

—

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Ron Weiss. Exadata smart flash cache and the sun oracle database
machine - An oracle white paper. Oracle, 2009.

V. Prabhakaran, T. L. Rodeheffer, and L. Zhou. Transactional Flash.
In Proceedings of the S8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI "08), pp. 147-160, San Diego, CA,
USA, Dec. 2008.

X. Ding, S. Jiang, and F. Chen. A device cache management scheme
exploiting both temporal and spatial localities. ACM Transactions on
Storage, vol. 3, no. 2, article 5, Jun. 2007.

H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, and J. Lee. FAB: Flash-aware
buffer management policy for portable media players. IEEE Transactions
on Consumer Electronics, vol. 52, no. 2, pp. 485-493, May 2006.

H. Kim and S. Ahn. A buffer management scheme for improving random
writes in flash storage. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST ’08), pp. 239-252, San Jose,
CA, USA, Feb. 2008.

N. Megiddo and D. S. Modha. ARC: A self-tuning low overhead
replacement cache. In Proceedings of the 2nd USENIX Conference on
File and Storage Technologies (FAST), pp. 115-130, San Francisco, CA,
USA, Mar. 2003.

R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka.
Informed prefetching and caching. In Proceedings of the 15th ACM
Symp. on Operating System Principles (SOSP), pp. 79-95, Copper
Mountain Resort, CO, USA, Dec. 1995.

A. Gupta, Y. Kim, B. Urgaonkar. DFTL: A flash translation layer em-
ploying demand-based selective caching of page-level address mappings.
In Proceeding of the 14th international conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
pp. 229-240, Washington, DC, USA, Mar. 2009.

S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song.
A log buffer-based flash translation layer using fully-associative sector
translation. ACM Transactions on Embedded Computing Systems, vol.
6, no. 3, article 18, Jul. 2007.

1G x 8 Bit / 2G x 8 Bit / 4G x 8 Bit NAND flash memory
(KOWAGO8U1M) data sheets. Samsung Electronics, Nov. 2005.

2G x 8 Bit NAND flash memory (K9GAGO8UXM) data sheets. Samsung
Electronics, Dec. 2006.

M.-L. Chiang, P. C. H. Lee, and R.-C. Chang. Using data clustering to
improve cleaning performance for flash memory. Software: Practice and
Experience, vol. 29, issue 3, pp. 267-290, Mar. 1999.

J Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. A space-efficient
flash translation layer for CompactFlash systems. I[EEE Transactions on
Consumer Electronics, vol. 48, no. 2, pp. 366-375, May 2002.

J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A superblock-based flash
translation layer for NAND flash memory. In Proceedings of the 6th
ACM International Conference on Embedded Software (EMSOFT ’06),
pp. 161-170, Seoul, Republic of Korea, Oct. 2006.

Y.-G. Lee, D. Jung, D. Kang, and J.-S. Kim. p-FTL: A memory-efficient
flash translation layer supporting multiple mapping granularities. In
Proceedings of the 8th ACM International Conference on Embedded
Software (EMSOFT ’08), pp. 21-30, Atlanta, GA, USA, Oct. 2008.

S. Kang, S. Park, H. Jung, H. Shim, and J. Cha. Performance trade-offs
in using NVRAM write buffer for flash memory-based storage devices.
IEEE Transactions on Computers, vol. 58, no. 6, pp. 744-758, Jun. 2009.
B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change
memory as a scalable DRAM alternative. In Proceedings of the 36th
International Symposium on Computer Architecture (ISCA), pp. 1-12,
Austin, TX, USA, Jun. 2009.

J. H. Yoon, E. H. Nam, Y. J. Seong, H. Kim, B. S. Kim, S. L. Min,
and Y. Cho. Chameleon: A high performance flash/FRAM hybrid solid
state disk architecture. pp. 17-20, IEEE Computer Architecture Letters,
vol. 7, no. 1, Jan.-Jun. 2008.

K. Sun, S. Baek, J. Choi, D. Lee, S. H. Noh, and S. L. Min.
LTFTL: Lightweight time-shift flash translation layer for flash memory
based embedded storage. In Proceedings of the 8th ACM International
Conference on Embedded Software (EMSOFT ’08), pp. 51-58, Atlanta,
Georgia, USA, Oct. 2008.

Mark Russinovich. DiskMon for Windows v2.01,
http://technet.microsoft.com/en-us/sysinternals

/bb896646.aspx, Nov. 2006.

blktrace User Guide, http://blogninja.com

/doc/blktrace/blktrace.pdf, Feb. 2007.

