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Abstract—The modern file system is still implemented in the
kernel, and is statically linked with other kernel components.
This architecture has brought performance and efficient integra-
tion with memory management. However kernel development
is slow and modern storage systems must support an array
of features, including distribution across a network, tagging,
searching, deduplication, checksumming, snap-shotting, file pre-
allocation, real time I/O guarantees for media, and more. To
move complex components into user-level however will require
an efficient mechanism for handling page faulting and zero-copy
caching, write ordering, synchronous flushes, interaction with the
kernel page write-back thread, and secure shared memory. We

implement such a system, and experiment with a user-level object
store built on top. Our object store is a complete re-design of
the traditional storage stack and demonstrates the efficiency of
our technique, and the flexibility it grants to user-level storage
systems. Our current prototype file system incurs between a 1%
and 6% overhead on the default native file system EXT3 for
in-cache system workloads. Where the native kernel file system
design has traditionally found its primary motivation. For update
and insert intensive metadata workloads that are out-of-cache,
we perform 39 times better than the native EXT3 file system,
while still performing only 2 times worse on out-of-cache random
lookups.

I. INTRODUCTION

User-level programs that perform I/O are becoming ever

more critical to the user. Performance of user-level database

APIs and web-service infrastructure is the new storage bottle-

neck, and is critical to the average Internet user. However in

the current I/O stack, for purposes of memory management,

write ordering, and caching, databases are subordinate to in-

kernel file systems.

There is a strong modularity and security argument against

allowing user-level programs unchecked kernel privileges.

The argument is that the file system represents a generic

commonly used interface to on-disk data. Recently however,

file systems have been continuously growing in number, and

in complexity, with more file systems offering more features

such as snapshotting, attribute indexing, checksumming, per-

file striping, logical volume management, network distribution,

deduplication, copy-on-write, and more. Future in-kernel stor-

age systems, even more complex than the current generation,

could benefit from the virtualizations and system abstractions

afforded to user-level software.

On the other hand, user-level I/O stacks have been growing

in complexity to suit the complex needs of large OLTP and

Web services. Systems such as Dryad [46], Map Reduce [7],

Hadoop [11], and Memcached [10] all rely on interaction

with the underlying file system on each node. However the

efficiency of Hadoop on a single node to perform a sort

is 5 to 10% of what is possible in an efficient single-node

implementation [8]. Further, power efficiency is directly

related to performance efficiency [35]. As these systems seek

out economies in performance and power usage, a modular

user-level storage API with kernel-level speed and control will

come into demand.

There has been a flurry of excitement in the research

community over user-level storage stacks and APIs such

as Anvil [24], Rose [34], and Stasis [33]. New indexing

needs have prompted new file system architectures that break

away from hierarchical name-spaces such as Perspective [32],

Spyglass [21], and hFAD [23]. File system extensions to

track provenance [28] also make more sense architecturally

as modular user-level extensions [37], but only if the write

semantics are correct and the performance is good.

Unfortunately to get proper write semantics and good per-

formance, many implementers must rely on ad-hoc techniques

to achieve proper write ordering such as accidental write

ordering of the lower file system [24], non-standard fsync

flags such as F_FULLSYNC [2], or complex interposition

mechanisms [27]. Turning off disk caching in the physical

hardware is another common practice to ensure proper write

semantics for database APIs [29], but hurts performance

dramatically. Finally, it is standard practice for database APIs

and servers to re-implement page caching to ensure control

over write-ordering, page pinning, cache eviction policies, and

faulting [39].

We argue that the common interface exposed by the kernel

should not be a host of different mounted file systems in a

hierarchical name space, but instead a shared-memory page-

cache service with configurable eviction, faulting, write-back,

and dirtying policies. To allow kernel-level performance for in-

cache workloads, we have added support to Linux for a third

kind of privilege level between user and kernel space called

library space. The MMU unit is used to protect privileged

libraries in an analogous way to how it is used to protect

the kernel at a different ring level. Although our system can

support many different kinds of I/O interfaces besides a tra-

ditional file system, to compare with current in-kernel storage
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running current work loads, we have implemented a privileged

library that supports standard UNIX file system calls. We

have implemented our own path name resolution and caching

rather than using Linux’s VFS, and have implemented our own

file mapping layer rather than using Linux’s VM. With some

minor caveats, the only kernel interface our privileged library

currently utilizes is our exported page caching interface on

top of a raw block device. We have evaluated both our library,

and our underlying system’s performance, against native kernel

file systems, finding for almost all workloads we perform

competitively, equivalently, or even better than the native file

system.

In Section II we discuss the design and implementation of

our exported page caching technique and our object store. In

Section III we discuss related work. We relate our experimen-

tal findings in Section IV. Finally we conclude in Section V.

II. DESIGN AND IMPLEMENTATION

The object store is designed with efficiency of data transfers

and metadata operations in mind. It utilizes several write-

optimized indexes to perform rapid insertion, deletion, and

update of metadata values in a space-efficient manner. For

data transfers, it adopts a read-optimized file system format.

To make calls into the object store efficiently while providing

security to other users, we utilize a modified trap instruction.

A. Object Store Architecture

As seen in Figure 1, the architecture of the object store

consists of a library loader and trapping mechanism to safely

call into a journaling layer. This layer then calls into the

namespace layer which performs path traversals to find object

IDs. The namespace then calls into the object layer which

exports an interface to POSIX-style sparse files with object

IDs for names. Finally the object layer sits on top of a lower

layer which interacts with the Linux kernel to provide efficient

and recoverable write-back to disk that does not cause resource

deadlock.

The namespace and object layer utilize four indexes: (1) The

dmap index, (2) The omap index, (3) the fmap index, and (4)

the buddy index. The dmap index stores dmaps, equivalent

to dentries. The omap index stores onodes, which are

compact versions of inodes. The fmap index acts like a

range tree for each file, storing which ranges of file offsets

in each file are backed by which physical extents of storage.

The buddy index acts like a buddy allocator tree, storing which

blocks on the disk are free, and splitting or merging blocks as

necessary. Actual blocks are allocated from the block store.

We implement our own indexing technology for each of

the four indexes using a simple 2-COLA [3] data structure.

We modify the 2-COLA to support deletes, finite disk space,

atomic flush to disk for ordered writes, 2-phase commit

with other COLAs, and a special kind of query that avoids

performing lookups on disk for faults into sparse files.

The lower layer consists of a series of mmaps on top of a

large disk (30GiB in our evaluation). We operate only on 64-

bit architectures due to address space requirements. To support

proper ordering of writes, we have modified the Linux kernel

to support a new flag to mmap called MPIN which pins file

pages dirtied by writes, preventing them from being written

back to disk (unlike mlock which only prevents pages from

swapping out and not writing back to disk). To avoid memory

squeezes we employ a signaling mechanism between the page

allocator in the kernel and the process utilizing mpin. Backing

our memory mappings is a single-file file system that we wrote

to optimize reads and writes with mmap, control write-back

of dirty pages, and ensure sync requests wait for a disk cache

flush.

Fig. 1. The object store architecture

B. Library Loader and Trapping Mechanism

The trapping mechanism uses the same technique the kernel

uses, to trap into our shared user-level library. When processes

wish to call into our user library, they call a special system call

reroute which redirects them to a system call handler in our

shared library based on an integer id we store in their process

block. The redirection process modifies the segment descriptor

of the process so that it has access to the shared library address

range. Without trapping into the kernel it would not be able to

access this address range. Individual stacks are maintained for

each client that enters into the shared library as in a typical

kernel. To return from a privileged library call, the library

calls reroute again to reset the segment descriptor. In our

current implementation, the reroute system call makes all

necessary traps but does not modify the segment descriptor.
If the user traps into the kernel, but has loaded arbitrary

code at the reroute point (where the library should have been)

he could execute code at an unauthorized privilege level. To

stop this, the kernel only reroutes to privileged address

ranges. An address range is considered privileged if its in-

kernel mapping struct (vma in Linux) is marked as privileged.

If a user process wants to mark an address range as privileged

it must use the seal system call. After a user process loads a

library into an address space using mmap, it seals the entire

library’s address range before using reroute. During seal,

the kernel disables read, write, and execute permissions on the
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range, and then it checksums the range. To ensure that the

contents of the loaded library have not been tampered with,

the kernel marks the mapping corresponding to the library’s

address range as privileged only if the checksum is found

in a list of valid checksums that the kernel maintains. The

library’s mapping does not permit reads, writes, or executions

except via reroute. The list of valid checksums is hard-

coded within a separate kernel module that is loaded before

any privileged libraries are loaded.

This allows for arbitrary users to directly read from or write

into a user-level storage system cache with minimal message

passing overhead and by utilizing a context-switching mech-

anism which is already highly optimized (sysenter/exit

on Intel). We show in our evaluation that the overhead of our

reroute routine is negligible.

C. Alternative Storage Stack

The typical user of an exported page cache would be a

user-level database or storage server. We experiment with the

flexibility and performance characteristics of our approach by

re-implementing the VFS in C++ where objects are cached

and written back to disk using the four 2-COLA [3] indexes.

We find that our alternative storage stack has interesting

performance properties regarding metadata update and search

performance for extremely large numbers of file objects.

Fig. 2. The COLA performs a single insertion.

COLA: We utilize the cache oblivious look-ahead array data

structure to provide our indexing needs. We have made some

alterations to the data structure to allow journaling and locking.

The cola maintains for n key-value pairs (typically stored
as structs) log(n) sorted arrays of packed key-value pairs.
As seen in Figure 2, when a new element is inserted into the

COLA, if the top level is free, it is inserted there directly;

otherwise we find the first free level by searching from the

top down: this is called the target level. All levels above the

target level are merged into the target level, thus freeing them

all for insertions.

By ensuring the levels increase in size by a factor of two, we

are guaranteed to always have enough space to merge all levels

above a target level into that target level The amortized cost

of insertion into this structure is asymptotically superior to the

B-Tree, and has been shown to insert up to 700 times faster

for random insertions [3]. Lookups in the COLA are slower,

up to ten times slower. Fractional cascading can optimize

lookups [3], but we do not implement this optimization in

this work.
The COLA has several other attractive properties, including

the tendency to place recently inserted and updated items

at the top where the backing page is more likely to be in

RAM and even CPU cache. In addition the COLA adopts a

naturally log-structured layout on disk which is ideal for rapid

insertion to other high-latency high-bandwidth mediums such

as a network.

Fig. 3. The COLA performs a journal commit.

COLA journaled: The COLA does not typically support

deallocating disk space after deleting elements. We modified

the data structure to percolate into a higher level after a merge.

Since all levels above the target level become free after a

merge, if the target level can fit into a higher level, we copy it

upward, reclaiming space after a series of deletes. This process

is called percolation and in Figure 3 we see the target level

in S1 percolate upward in S2 after finding a higher level that
fits.
The output of a merge can be smaller than the input if

there are cancellation keys which are inserted during deletes

to cancel out existing key-value pairs during a merge. To track

the amount of elements in each level, we maintain a cursor

which all readers share, and which writers must take a lock

on to update after performing a merge into a target level.

These cursors are appended to the journal as part of the flush

procedure.
The journaling layer of our system instantiates a thread

which periodically executes the flush procedure. To provide

recovery of the object store in case of a crash, we modified

the COLA to flush to disk in an atomic manner. We serialized

the cursors for each level into a journal as part of a 2-phase

commit protocol as seen in Figure 3. The flush procedure is:

1) Take a write lock on all COLAs, waiting for existing

readers to leave.

2) For each COLA, flush all levels to the level below the

lowest level; sync that target level to disk.
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3) Write the state of all COLAs’ cursors to the journal

followed by a sector containing a checksum of the newly

added cursors; sync the journal.

4) For each COLA, percolate the target level to any level

that fits; sync that level to disk.

5) Write the state of all COLAs’ cursors to the journal

followed by a sector containing a checksum of the newly

added cursors; sync the journal.

An example is seen in Figure 3. The COLA begins with a

cursor that points to the data stored at state S0 in the COLA. A
flush is requested, so the COLA transitions to state S1 where
all contents are merged into the level underneath the lowest

level. A new cursor is appended to the journal. If anything

happens, the data S0 points to is still on disk and was not
overwritten by the merge in S1. Finally we percolate upward
in S2, with the data from S1 again being unaffected leaving
the S1 cursor usable in case of a crash.
This series of actions allows us to write elements to a COLA

index and know they will hit the disk in the order we wrote

them, assuming callers take the appropriate locks, and assum-

ing dirty pages are not written back until flush (guaranteed by

our page pinning implementation). The additional sync step is

needed as we may write over an existing level pointed to by

the last-known good cursor in the journal while percolating up.

Our multi-state approach to avoid this scenario is similar to

protocols used in log truncation of a transaction manager [15].

Our file system upon which our object store is backed

supports a truly synchronous msync that explicitly flushes

the disk caches by issuing a SATA FLUSH_CACHE command

and waiting for its successful return and full flush of any

pending writes or commands before issuing any more writes

to the disk cache. This allows us to guarantee full atomicity

of writes in our system without having to turn off the disk

caches [29]. We would not have to hold a write-lock on the

COLAs during flush if we utilized copy-on-write, this is a

subject of future investigation. Additionally, our flush protocol

is currently linear with respect to the size of the index, this

can be improved and is a subject of future work. Currently

we at least allow readers to continue performing reads while

a merge into the target level is ongoing. We wait for them to

leave so we can update the COLA’s shared cursor state.

D. Namespace and object layer

The namespace stores each dentry as an element in the

dmap index. Elements in this index consist of the parent-

id, the component, and the child-id. The parent-id is equal

to the child-id of the parent dentry. The primary ordering

of elements is parent-id, followed by the component, and the

value is the child-id. The child-id is equal to the object ID of

the object in the object layer that the dentry points to.

The object layer supports POSIX like semantics for manip-

ulating file objects. A file object is similar to a POSIX file

except the file name (object ID) is chosen by the system, and

is returned to the namespace layer to link a dentry against,

analogous to an inode number. Otherwise the file can be read

from, written to, and sought through. The object store supports

sparse files, and rewards sequential appends with increasingly

larger contiguous allocations. File objects can be pre-allocated

in advance, and can specify a preferred block size during

writes that would require allocating new blocks to back the

file. We have designed our object layer in a peculiar way to

optimize performance on the COLA.

a) Omaps and fmaps: All files in the system are associ-

ated with a single omap object, whose primary key in the omap

index is its object ID. Rather than using a radix tree of block

pointers to support sparse files, we adopt an approach similar

to XFS. We introduce the idea of an fmap which contains

information about a contiguous range of virtual offsets in a

file. Newly allocated files start off with a single fmap that

indicates the entire range is empty and is not backed by any

physical blocks from the block store. An fmap which indicates

a range is not backed and is empty is called a gap. As virtual

offsets are faulted by write requests, the fmap containing the

virtual offset is broken into two or three new fmaps, where

the ranges not containing the faulted offset are associated with

fmaps set as gaps. The range containing the faulted offset is

associated with a backed fmap. Backed fmaps point to extents

in the block store, allocated by the buddy index. Fmaps are

stored in the fmap index, and utilize our bucket query.

Bucket queries can take any virtual offset, and find the

fmap in the fmap index that contains it. This is done without

performing a merge of all levels in the COLA, making faulting

performance fast for fmaps still in cache.

To reward serial writes with increasingly larger extents

allocated from the block store, each gap is given a link

boost. When the virtual offset at the beginning of the gap

is faulted, the link boost is used to determine the size of the

allocated extent. This is called a serial allocation. When a

serial allocation occurs, the subsequent gap is given an even

larger link boost. Gaps created by random faults are always

given a link boost of 1. Over-allocation of extents can be dealt

with by having the buddy allocator reclaim unused portions of

extents past the end of the file when free space is low.

b) Buddy allocator: The buddy allocator is implemented

within an index and does not use a binary tree. During

deallocation we simulate traversing the binary tree, pushing

would-be buddies onto the call stack, and attempting to merge

with them. Blocks allocated by the buddy allocator have offsets

relative to the start of the allocation region. Reading from such

a block is equivalent to doing a memory copy from the read

block to the reader’s buffer, a write is the same.

c) Optimizing for COLA journaling: Our object store is

careful to write out updates to the lower COLAs such that

dependencies are always written before dependent objects. In

case of crash we may utilize an asynchronous back-ground

cleaner thread to perform a sequential range query through

the indexes to garbage collect objects not pointed to. This

would not be possible if our COLAs did not guarantee proper

ordering of insertions (e.g., inserting A into the fmap COLA
and then inserting B into the omap COLA should result in
A hitting disk before B). We therefore rely on our journaling
protocol to ensure this property is held.
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d) Optimizing for COLA write-optimization: Performing

any kind of query in the COLA is slow, and the slowest

queries are those that perform range queries, or non-exact

match queries (e.g., lower bound). This is because the next

key in a cursor increment could be in the coldest cache level.

On the other hand, queries which look for exact matches

can stop searching downward the moment they find a match.

Also insertions, updates, and deletes are inserted from the

top, and so a key which is updated frequently, or was deleted

frequently results in a fast exact-match search. We therefore

have designed the object layer to perform all operations in

terms of insertions, updates, deletes, and exact match queries.

For example, in our name space layer dmaps refer to their

child directory entries via the parent-id in each child’s key, so

we can perform pathname lookup without performing a range

query. File creation consists of performing a path lookup, and

if no entry is found, creating an object id in the omap, followed

by creating a gap fmap. A special extension offered by our

object store is a blind create which performs no path lookup,

and if errors arise, they are dealt with asynchronously later on

during a COLA merge. This allows for near to disk-throughput

file creations that are actually faster than the native EXT3 file

system’s creation throughput.

E. Lower Layer: Exported Page Caching

To minimize the performance penalty of a user-level page

cache, we use the kernel’s page cache for our object store.

Rather than maintain a page table which is checked on every

access, we mmap the entire store, and use the hardware to fault

cache misses. This allows the object store to avoid paying for

a software hash table or software lookup calculation for cache

hits. However, Linux does not permit applications to prevent

write-back of dirty file mappings to disk. Linux relies on this

to prevent memory squeezes, and has been a sticking point

for user-level file systems. We resolve this issue by adding a

new flag to mmap called MPIN, along with a new system call

set_vma, and a custom file system 1ffs. Among other things,

1ffs has been especially modified to provide a full disk cache

flush on msync.

e) 1ffs and swapping: The file system we use underneath

our object store library is a simple file system that when

mounted, appears to have only one file in its root directory.

The file has a hard-coded inode and when the file system is

mounted, the file is always considered to be owned by the

root user. 1ffs provides a direct interface to the disk for

applications that use mmap. When 1ffs is asked to perform

page-writeback, it first determines if page write-back is due

to memory pressure or a periodic flush for durability. If the

write-back is due to memory pressure, 1ffs writebacks the

dirty pages to a special swap partition it maintains. Integrating

this swapping mechanism with the system swap would require

careful understanding of the interaction between these two

kinds of swapped pages, and how it would effect thrashing

on the system, and is a subject of future work. If the page-

writeback is a periodic flush for durability, 1ffs does not write

back the pinned pages.

In this manner 1ffs makes a best effort to not write-back

pinned pages, while still offering a last recourse to the kernel

during a memory squeeze. Further, if the user-level storage

component ensures it never pins more pages than what could

be swapped out, 1ffs can guarantee the process will not be

killed due to pinned pages.

f) MPIN: The MPIN flag that we add to mmap marks

pages belonging to that mapping as pinned. When a pinned

page is written to, it is marked dirty, and is written back by the

VFS as part of a periodic flush for durability, or in response

to memory pressure. 1ffs’ page write-back checks if pages

are pinned before writing them back, and does not write back

pinned pages. If the sync bit is set in the write-back control

parameter, then 1ffs syncs the pages. This bit is only set when

the pages are synced as part of an explicit user-invoked msync

request on the page mapping.

g) 1ffs and set_vma: The Linux out-of-memory killer

is responsible for killing processes to reclaim pages in case of

a memory squeeze that will cause resource deadlock. Although

1ffs is able to prevent processes from being killed by the out-

of-memory killer, thrashing from writing back swapped pages

can harm performance. User processes can not determine if

they will fault a page on a read or a write, or they will be

forced to maintain their own page table and perform lookups

on every access. The purpose of exporting the kernel page

cache was to avoid this. Therefore 1ffs offers processes a new

system call set_vma which allows a process to set a high

water mark. When the total number of dirty pinned pages

belonging to a particular process exceeds the threshold set in

set_vma, the kernel sends a SIGUSR1 signal to the process,

to which it can respond by immediately flushing its dirty pages

to disk, or face being swapped out.

To write into the exported page cache, we simply use

memcpy into the mapped address corresponding to the physi-

cal block on disk allocated by the buddy allocator. To prevent

a read fault on the first copied bytes (as the kernel tries to fill

the page to prevent data inconsistencies visible to the user),

for future work we could modify the kernel to detect a read

or write fault, and to not read in the page on a write fault.

We implement set_vma by modifying the mm_struct

handle, which aggregates all the virtual memory mappings

belonging to a process. During a page fault, the kernel de-

scends a red-black tree of virtual memory areas (vmas) until

it finds the one containing the fault. This vma is passed into

the fault handler which determines if the page is anonymous

(e.g., from malloc) or backed by a file. At this point we use

a back pointer in the vma to access the mm_struct which

contains the global count of dirty pages and increment it. If

the count is over the set threshold, we send the SIGALRM

signal.

By utilizing the features provided by 1ffs and our trapping

mechanism, a user-level process can efficiently use the kernel’s

page cache to fault in pages on reads and writes to disk

while working with the kernel to keep memory pressure on

the system low. The kernel is not deprived of total control of

the system, and can swap pinned pages if necessary, or just kill
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the process and release the pinned pages (without writing them

back) if swap space is exceeded. User processes can trap into

privileged shared memory libraries that use these facilities to

efficiently modify the caches of these shared-memory database

and storage servers without the use of costly message passing

mechanisms. We have used these features to implement a

simple but scalable object store which competes favorably to

native file system performance.

III. RELATED WORK

Previous work related to our object store built on top of our

exported page caching technique can be categorized as works

dealing with current mmap semantics and design decisions in

commodity kernels, external paging, user-level file systems

(namely FUSE), other object-store and indexing file systems,

and alternative indexing technologies.

h) Existing In-Kernel Mechanisms: The virtual memory

management component of the kernel has grown consider-

ably since Linux 2.4. Memory management of anonymous

memory has been merged with management of dirty file

pages. The swapper has been implemented to act like a

special file system to write-back dirty MAP_ANONYMOUS

pages to the swap. Newer features such as MAP_POPULATE

and MAP_NONBLOCK were introduced and not reserving swap

space for read-only pages has been introduced since 2.5. The

mlock system call and its cousin flag in the mmap system

call are typically referred to as page pinning system calls;

they are not that however. The mlock system call simply

ensures that a page will never be written to swap, and will

never be released/evicted. It does not guarantee that it will

not be written back. This is in fact difficult to design around

due to the fact that Linux still treats dirty file pages and

dirty anonymous pages quite differently in its virtual memory

management code.

Other kernels such as Solaris and MacOS X also provide

the standard POSIX mmap and mlock system calls, but

they have the same semantics on these systems [42]. For

instance, Solaris also handles file pages and anonymous pages

differently, since Solaris 8 dirty file pages are placed on a

separate list to reduce pressure on anonymous memory [4].

Solaris and Mac OS X also provide the same POSIX standard

mlock semantics. Solaris and Linux offer Direct IO to give

user-level database processes the opportunity to perform their

own caching. However these cache implementations remain

separate, distinct, and are difficult to make as efficient as the

in-kernel page cache, requiring careful implementations [33,

44] and tuning cache size to avoid thrashing [6]. In addition

they do not benefit from the review and testing that a kernel

component receives.

i) Micro-Kernel Approaches: The body of work on

micro-kernels includes a large and extensive list of operating

systems. The major contributions include L4 [22], L4-Verified

recently [20], Spring [26], Exokernel [16], Pebble OS [9],

VINO [36], Synthesis [25], Accent [31], and Mach [1]. Each

of these projects are all new operating environments, some

include modular APIs to re-use kernel components at the user-

level, such as VINO. L4 and Mach are the canonical micro-

kernels, offering a practical implementation of the concept.

Exokernel utilizes an even smaller micro-kernel that only

handles permission and resource availability. Our page cache

exporting technique is designed with monolithic kernels in

mind. It is an explicit endorsement of the memory mapping to

backing store model. Page cache exporting is part of a mature

and fully developed modern monolithic kernel and is not an

alternative operating system or hyper-visor like substrate.

Page cache exporting utilizes some features from other

micro-kernels. The idea of trapping into a privileged library

with less privilege than the main kernel by utilizing the hard-

ware segment descriptors of the CPU is an alteration of one

of the existing ideas in Pebble OS: portals. Pebble OS portals

allow applications to transfer control to other applications

using special automatically generated trap routines. Like Syn-

thesis, Pebble OS generates these trap routines automatically

based on a specification language that has semantic restrictions

that protect the system (e.g., from infinite loops). Page cache

exporting utilizes a trap instruction only as a practical way

to context switch efficiently to a shared user-level storage

stack to access that server’s page cache for a lookup or

write. The privileged library must be authorized by the main

kernel with the seal system call discussed earlier. Granting

privilege to new libraries can only be done by re-compiling

the seal module to include the new library. No other security

mechanisms or context switching primitives are needed or

employed by page cache exporting.

j) External paging: External paging is an ongoing field

of research trying to find a better abstraction between pro-

cesses and memory management. In a similar vein to micro-

kernel approaches, the majority of this work focuses on

introducing new operating systems with alternative memory

manager designs.

The issue of giving applications efficient page-caching

is long-standing. Stonebraker in 1981 discusses the inap-

propriateness of LRU (default in Linux) page replacement

for database workloads [40]. Several architectures to re-

pair this have been proposed, including external paging in

Mach [14] [12], an extension to a communication-oriented

kernel by Young [45] and a further extension to Mach external

paging by McNamee [5]. Other works include a scheme to

partition physical memory, and grant user applications direct

control in a novel kernel (V++) by Harty [16]. Haeberlen and

Elphinstone discuss a combination of MAP and GRANT that

provides a super-set of the functionality offered by Linux’s

splice system call [22].

Mach external paging is an alternative to mmap that allows

micro-kernel servers the ability to map pages into other

processes [12]. Clients make requests to servers via RPC

and receive an authorization token in reply. This token can

be exchanged with the memory manager server to have a

page mapped into the client’s address space. Eviction policies

are not configurable in this environment. McNamee proposes

to solve this by using RPC to signal page faults and allow

6



processes the ability to specify eviction policies. Unlike Mc-

Namee’s approach, we do not require RPC and instead use a

shared memory approach which they deemed too complex to

implement. Haeberlen and Elphinstone propose an extension

similar to splice with the exception that processes can

gift pages to other processes, not just the kernel, and that

processes will receive a message from the kernel on a page

fault. Evaluation of this work was scant. Unlike Harty, we do

not physically partition the memory, but let the kernel retain

full control over all aspects of memory, and instead use a

soft signal-handler to signal page-writeback to maintain good

disk throughput, and use a swapper to ensure liveness and

performance guarantees to applications when necessary (by

swapping out pages that need to be evicted but are dirty).

Unlike McNamee, we do not allow alternative eviction policies

to be selected, and this is a subject of future work.

Our approach is fundamentally different from preexisting

works in this area in that we have modified and extended

the existing virtual memory implementation of UNIX (Linux)

to achieve kernel-like I/O performance, rather than replace it

or start again from scratch with generalized approaches. Our

focus is on using this technology for user-level storage and

file systems in existing commodity operating systems. We are

able to abide by a simple architecture that is a better fit for

existing UNIX-like operating systems. Unlike much work in

this area, we focus on file system and I/O benchmarks, not

memory transfer performance or faulting overheads [5, 14,

16, 22].

k) User-level file system support: The file system ab-

straction is simply one kind of storage stack; however, it is an

important one. It is one of the most widely used abstractions to

interact with on-disk data. Although there are many user-level

file system frameworks, including NFS interceptors, shared-

libraries, and even one of our own [38] based on ptrace, the

framework which behaves most like a native kernel file system

is FUSE. The FUSE file system is broken into two parts: (1) an

in-kernel file system that behaves like an NFS client, and (2) a

user-level library that simplifies the process of creating FUSE

daemons that act like NFS servers, responding to this client.

They communicate across a shared memory interface. FUSE

and NFS interceptors and custom NFS file systems only export

the POSIX service requests of processes. FUSE does not have

a mechanism for allowing client file systems to participate in

write-back of dirty pages, and has no mechanisms to allow

file systems to interface with the page cache like kernel-level

file systems can [27]. Further FUSE incurs context switching

and message passing overheads for most in-cache workloads,

this is confirmed by our evaluation. FUSE supports a caching

mode that mostly eliminates these overheads, but then the

FUSE daemon will not receive every read request, making

custom or alternative cache implementations like our object

store impossible.

l) System metadata indexing mechanisms and object

stores: Our object store system is an example of a storage

stack which is considerably different than what a typical VFS

provides. We utilize several cache-oblivious indexes to achieve

caching of metadata in RAM and do not have inode or

dentry caches.

Existing indexing systems on Linux (e.g., inotify) and other

OSs provide user applications with an event queue to signal

when a directory or file has changed. User-space indexing

systems use these mechanisms but pay heavy message-passing

costs.

In hFAD, the authors propose a B-tree index to store offsets

to extents and argue that the file system should be reduced

to an object store [23]. Their prototype uses FUSE, and it

is unclear in their short paper how they will achieve proper

recoverability in crash.

Perspective [32], a distributed object-store–based file system

with metadata indexing and query capabilities uses FUSE [27]

and MySQL; MySQL’s InoDB [17] back-end employs write

off-loading to handle write bursts and uses a B-Tree to index

data. Perspective argues for more flexible namespaces and

metadata capabilities. Its performance is limited by its user-

space implementation and the authors focus instead on a user-

study.

Spyglass [21] optimizes metadata queries on large file

systems by improving performance when queries are limited

to a file system namespace subtree. Spyglass partitions the

file system namespace into subtrees that maintain separate

indexes. Each partition index is kept small enough to fit into

RAM. Spyglass maintains an index of partition indexes which

is structured as a traditional file system tree, using a block-

allocation strategy similar to a B-Tree. Spyglass’s insertion,

delete, and update speed depends on its partition index, which

utilizes a B-tree like structure that will scale poorly for inserts

and updates compared to a COLA, especially when RAM is

full.

m) Alternative fast indexing technologies: The

COLA [3] is one example of a write-optimized indexing

technology; other write-optimized indexing technologies also

exist. The log-structured merge tree (LSM) [30] maintains

an in-RAM cache, a large B-Tree called c1 on disk which

is R times larger than the in-RAM cache, and an even

larger B-Tree also on disk called c2 which is R times larger
than c1, ideally. When RAM is full of insertions, they are

merged in sorted order into c1. When c1 is full, it is merged

in sorted order into c2. Amortized insertion time here is

O
((

√

(N) log(N)
)

/B
)

[34]. As there are only two trees,

query time is optimal O
(

log
B+1(N)

)

but in practice is slower

than a B-Tree as two trees are searched. LSM is a classic

write-optimized data structure, but the COLA maintains an

asymptotically better amortized insertion time. Rose [34]

is an LSM-based database which exploits compression to

improve throughput.

Partitioned exponential file trees [18] are similar to LSM

trees and like Spyglass, include an optimization for bursts

of insertions with a limited range of keys by relying on a

partitioning scheme. Such an optimization can be easily added

to the COLA.
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IV. EVALUATION

We tested the performance of our object store based on an

exported kernel page cache by running standard intensive file

system workloads with the FileBench utility [41]. We analyzed

several cache intensive workloads, as well as larger system

benchmarks including a video server, a file server, and a web

server. We also analyzed the cost of our trapping mechanism

compared to standard system calls and FUSE, and evaluated

our metadata indexing against standard Linux file systems.

n) Experimental setup: All benchmarks were run on six

identically configured machines each with a 2.8GHz Xeon

CPU and 1GB of RAM for benchmarking. Each machine

was equipped with six Maxtor DiamondMax 10 7,200 RPM

250GB SATA disks and ran CentOS 5.3x86-64 with the latest

updates as of December 28, 2009. To ensure a cold cache and

an equivalent block layout on disk, we ran each iteration of

the relevant benchmark on a newly formatted file system with

as few services running as possible. We ran all tests at least

three times or until the standard deviation was within 5% of

the mean, except where explicitly noted. To compensate for

disk geometry and partitioning irregularities, and to take into

account the ZCAV effect, all benchmarks were run on newly

formatted identically sized 30GiB partitions [43].

We ran several configurations during our benchmarks, in-

cluding:

• ext3 is a default EXT3 file system.

• fuse has caching disabled and is a pass-through file

system mounted on top of REISER 3.

• xfs is a default XFS file system.

• reiserfs is a default REISER 3 file system.

• btrfs is a default B-TREE FS file system.

• hook is a pass-through file system using only reroute

to intercept file system calls, and call down into REISER

3, and then reroute back on completion.

• exp-pc is our whole storage stack, utilizing reroute

to trap into our object store, which runs on top of 1FFS,

which runs directly on top of the disk device.

The object store was compiled with all optimizations turned

on, and so were all benchmarks for all configurations. Only

the hook and exp-pc benchmarks used our modified kernel;

all other standard file systems used the version of Linux

we forked from during development: 2.6.31.6. The in-kernel

watermark for the set_vma system call was set to 500MiB.

Similarly, the dirty page ratio for the Linux kernel on all in-

cache configurations was set to 50% to equal the cache size

used by our system, and the default 10% for out-of-cache

workloads to keep the disk plugged with I/O. Journal flush

and dirty page write-back of all file systems was set to 30s.

We observed during experimentation that with regularity, we

were asked to flush due to memory pressure, and responded

promptly by performing a journal commit of our indexes and

a full data flush.

o) In-cache, out-cache: All benchmarks that we ran

fall into one of two categories: (1) in-cache, or (2) out-of-

cache. Due to the extreme variation in benchmark results

Fig. 4. Hotset benchmark.

across hardware and file systems [35], we focused on in-

cache benchmarks where almost all operations can be serviced

without accessing the disk, and out-of-cache benchmarks,

where almost no operations can be serviced without accessing

the disk. Both workloads are important (e.g., Facebook’s

Haystack [19] relies heavily on memcached [10], a distributed

cache). We confirmed the presence or absence of block I/O

when appropriate using vmstat. We also ensured the working

set size was large enough that random accesses almost always

had to access the disk.

p) Interposition: The cost of only intercepting user-level

file system calls and passing them down to the lower file

system can be very high. It is important to minimize this

cost as it establishes an upper-bound on in-cache throughput

where context switching is a critical path. Our reroute

system call re-directs every relevant user-level system call to

the privileged shared library. To precisely measure the cost of

an equivalent context switch to the user-level FUSE daemon,

we enabled its -odirect_io feature which simply forwards

every user-level system call to the user-level file system, rather

than utilizing its in-kernel caches. This is identical to what

reroute does. Without receiving every file system call, a

user-level storage server can not implement its own cache (as

we have to), or modify the cache’s semantics, as it would

implicitly be using the kernel’s cache.

The rest of Section IV discusses experimental results con-

cerning in-cache performance (Section IV-A), and out-of-

cache (Section IV-B) performance.

A. Shared Memory In-Cache Performance

The Hotset workload consists of randomly reading 128B

from a randomly selected file from a set of 65,536 4KiB files.

An operation is opening a file, reading 128B, and closing

it. The total workload of 256MiB easily fit in cache for all

file systems. We confirmed this by monitoring zero block I/O

(except for periodic write-back) and decreasing the workload

size until throughput did not increase. Figure 4 shows that
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Fig. 5. In-cache webserver workload.

hook (11,723 ops/sec) was equivalent in performance to

reiserfs (11,721 ops/sec), which implies that reroute

has a negligible overhead in this workload. On the other

hand, fuse (7,960 ops/sec) was only running at 65% of the

throughput of reiserfs which it is based on. Every single

operation including open, read, and close must call down

into the FUSE kernel file system, queue a message, wait for

the daemon to be scheduled, call down into the lower file

system (REISER 3), and then reverse the process to return

to the caller. We saw that other kernel level file systems

performed comparably to exp-pc for both single and multi-

threaded performance.

Our multi-threaded run consisted of the same workload as

above, with 48 threads in parallel. On our hardware setup,

multi-threaded performance was worse for all file systems

(a 27% drop in performance) as our machine has a single

core, and the overhead of locking and scheduling was eating

away at useful good-put through our single core. Due to its

shared-memory exported page cache, exp-pc was able to

maintain equivalent performance to the native file system. We

believe the primary bottleneck in the Hotset workload was the

VFS, since all operations accessed files and inodes which

should have been cached. This explains the almost uniform

performance across all native kernel file systems and exp-pc.

The largest discrepancy in performance among the kernel file

systems was about 10% between reiserfs and btrfs.

q) Read-heavy system workload: The Webserver work-

load represents a read-heavy workload where again the work-

ing set was confirmed to fit into cache. In the webserver

workload, threads open, do a whole read, and close ten files,

and then append a 16KiB block to a log file. Each open, whole

read, close and append are an operation. The in-cache work-

load had 1,000 files of 4KiB. The multi-threaded workload had

48 threads. Figure 5 shows that exp-pc was running at 9,940

ops/sec, where reiserfs and ext3 respectively maintained

10,980 and 11,061 ops/sec, exp-pc incurred a 10% overhead.

We measured exp-pc with no memory transfers in the page

cache, and throughput increased to 10,788 ops/sec. Currently,

when flushing, we stop all readers and writers, and appends are

Fig. 6. In-cache fileserver workload.

dirtying enough pages to cause the synchronous write to disk

on flush to damage our throughput. Readers are stopped for

a shorter period than writers during flush due to our flushing

protocol, so in the multi-threaded workload this affects our

performance less.

Fuse at 6,541 ops/sec for single-threaded, and 6,276 ops/sec

for multi-threaded was again bottlenecked on context switches,

which were slowing down every op in this in-cache workload.

As in Hotset, the other file systems were primarily doing little,

with the Linux VFS handling most of this workload.

r) Mixed read and write system workload: Unlike the

webserver workload, the in-cache fileserver workload stressed

an equal number of reads and writes, as well as creating

and deleting files within subdirectories. The fileset consisted

of 1000 files, each 64KiB large. Figure 6 shows that fuse

incurs a 34% overhead on ext3 since it suffers from the same

context-switching bottleneck as in other in-cache workloads.

exp-pc suffered a 6% overhead on ext3 due to writers

(including unlink and create) stopping due to flushing. The 1%

overhead of hook on reiserfs demonstrates that reroute

has negligible overhead in both read-heavy, and mixed read-

write in-cache workloads that include unlinks and creates.

B. Out-of-Cache Performance

For out-of-cache performance, we stressed the on-disk for-

mat of the file system, as well as the efficiency of the Linux

mmap implementation’s read-ahead, faulting, and writing com-

pared to direct in-kernel block device requests.

The videoserver workload consisted of a single uploading

thread, pushing a queue of up to 194 new media files to the

server, while one or more clients downloaded a different media

file at the same time from a set of 32 pre-existing media files.

Each media file was 50MiB. 1-thr is a configuration with one

client, 4-thr is with four clients, and 48-thr is with forty-

eight clients. Figure 7 shows that all systems have equivalent

performance (380 ops/second). fuse was not slower here

because context-switching was no longer the bottle neck: disk

I/O performance was. exp-pc uses extents for serially written

files, so blocks of video files are mostly contiguous, a common

design decision used by the other file systems. For small

numbers of reader threads, the performance of exp-pc was
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Fig. 7. Out-of-Cache videoserver system workload.

Fig. 8. Out-of-cache webserver workload.

good since mmap read-ahead was still able to pre-fetch blocks;

but as the number increased to 48, mmap read-ahead stopped

working effectively and our throughput decreased by 51%.

s) Read-heavy out-of-cache workload: The out-of-cache

webserver workload was identical to the in-cache workload,

but stressed I/O-bound random reads. Due to high variance in

disk performance, fuse had a standard deviation of 13% of

the mean. We used 100,000 files of 32KiB each, and appends

of 16KiB. We found that during our runs both ext3 (244

ops/second) and exp-pc (228 ops/second) spent 9.8ms in each

read operation as seen in Figure 8. This latency was very close

to the disk-arm latency to perform a seek on our hardware. We

monitored block I/O and found a steady stream of block reads,

not at disk throughput. This implies that both systems were

performing a block read on each read system call. Reiserfs

(447 ops/second) is designed for random reads to a large

number of small files due to its global S+-tree it can quickly

perform lookups on objects, and can keep all the parent nodes

in this tree cached in RAM. Xfs (366 ops/second) has a similar

advantage. Both of these file systems were able to fit a larger

amount of the workload in cache. Our hook instrumentation

Fig. 9. Out-of-Cache fileserver workload.

Fig. 10. Out-of-Cache object creation and lookup.

induced a 14% overhead as the additional call to reroute

took long enough that there was time for the kernel to evict

more pages to make room for new reads, decreasing the chance

that it can avoid a disk I/O on a read even further. Fuse

at a 46% overhead over reiserfs magnified this problem

with even longer context switching times, further harming

throughput.

t) Mixed read and write out-of-cache workload: In this

benchmark ext3 had a standard deviation within 8% of

its mean. We found that read performance of exp-pc was

competitive, but write performance was lacking due to the

kernel’s current inability to distinguish between full page over-

writes, and partial page writes (which require preceding read

faults). Therefore in all write workloads, exp-pc performed

reads of pages before dirtying them with writes. This was

confirmed by temporarily modifying the kernel to not fault

in pages on writes. Before this change, we would see disk-

throughput block reads (50,000 to 60,000 blocks per second)

preceding large flushes of our page cache. Afterward, we saw

no block reads (except on read cache misses). This caused

an increased lag for flushes that were performing writes. In

Figure 9 we see that reading pages before writing them, and

longer flush times induced a 37% overhead over ext3, and a

34% overhead over xfs.
u) Metadata insertion performance: The performance

argument for user-level storage is workload specialization.

While exp-pc performs extremely competitively in other

workloads compared to native kernel file systems, it is special-
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ized for rapid metadata updates. We discuss the blind create

optimization. A blind create is a create that does not return

an error if the file already exists, or if a part of the path

does not exist. This allows us to avoid performing an initial

lookup during create and defer error handling until merge, at

which point the error condition can be appended to a log. The

application level semantics are changed as the error is not

reported during file creation but rather asynchronously later,

during merge. For some applications (e.g., those that rely on

O_EXCL) this is not a viable option.

In this workload we created 1,000,000 to 16,000,000 files

with randomly generated names in the same directory, and

then performed 100,000 random lookups within this directory.

Due to the excessive amount of time to perform runs, we only

ran each benchmark once. Since we intend to measure only

the performance of indexing, we disabled journaling in all file

systems. In ext3 and xfs this means using a RAM device

for the journal, and reiserfs and exp-pc were configured

to have their journals disabled. Further xfs was configured

to aggressively batch super-block updates. Figure 10 shows

the performance of xfs and reiserfs started to decrease

rapidly as the file set size grew beyond 1 million files. This

workload forced each file system to index its dentry to

inode mappings or suffer intractable lookups. For these file

systems which are using read-optimized indexing, this incurred

random writes. Our write-optimized indexing is sorting and

merging, and is better exploiting disk throughput. Figure 10

shows that at 1 million files we were 20 times the speed of

ext3, 58 times the speed of reiserfs, and 69 times the speed

of xfs. These results are similar to those found in the COLA

paper when comparing random B-tree insertions to 2-COLA

insertions [3], and to our own results in previous experiments

with write-optimized structures. At 4 million, we were 62

times faster than ext3, 150 times faster than reiserfs, and

188 times faster than xfs. For 8 million, reiserfs was 163

times slower than exp-pc, and xfs was 262 times slower

than exp-pc. Runs of 16 million took more than 20 hours

to complete. The exp-pc configuration inserted 16 million

random keys in 422 seconds. It performed 100,000 lookups

afterward in 676 seconds. The massive performance delta

is the difference between serial reads and writes and more

efficient use of cache for inserts and updates, and random

reads and writes with very inefficient cache use. XFS utilizes

a B+-tree for its inodes, as well as its free extents and

dentries. REISER 3 uses one B+-tree for everything, with

the primary ordering being the directory id, and subsequent

orderings being the object id, and the offset in the object. This

is to induce grouping by directory on the disk. This allows

REISER 3 to perform its inode allocation, dentry insertion,

and block allocation in the same leaf node. XFS must update

multiple leaf nodes for each of its trees, inducing additional

random writes per create. EXT3 allocates inodes serially, but

due to the dir_name option uses a B-tree to store mappings

of hashes of path components to inode numbers, and this B+-

tree will induce similar random writes induced by the stress

of the other file systems.

Fig. 11. Partially out-of-cache object creation, delete, and lookup.

To compare lookup performance, we ran another workload

where 20,000,000 path names were inserted in stripes, which

is much closer to sorted order. In Figure 11 We see an

immediate increase in performance in all the B+-tree file

systems compared to ext3. Due to the pseudo-sorted order of

insertions the B+-tree of the indexing file systems is making

much better use of its cache, staging updates in the same

leaf nodes before writing them out. Reiserfs and xfs are

now inserting within 1,456 and 1,777 seconds each, compared

to exp-pc performing its insertions in 571 seconds. Now

exp-pc is only 3.1 times faster than xfs and 2.5 times faster

than reiserfs. We are still seeing a 33.5 difference for

ext3 though. Its inserting hashes of path components, so the

insertion workload still appears random to ext3 and it has

comparable performance to the previous workload. Lookups

are different though. We saw xfs as the clear winner with

175 second lookup time for 100,000 random lookups, and

reiserfs and ext3 with 1043 and 1187 second lookup times

each. The exp-pc pays for its fast inserts with slower lookups,

weighing in with an elapsed time of 1187 seconds. Lookup

performance is bounded by random block read performance,

and the B+-tree based file systems have large fan-out and can

keep all or almost all of the parent nodes in their trees in

RAM, performing only a single block-read per lookup. Our

2-COLA based implementation uses log2N binary trees, and
due to the smaller fan-out and multiple trees, can not contain

as many parent nodes in RAM. This causes exp-pc to exit

the cache sooner, and to perform more block reads when out

of the cache.

V. CONCLUSIONS

The argument for user-level storage is a non-POSIX inter-

face, ease of development, separability from the kernel, and

optimizing performance for important workloads. We have

shown that one can implement an efficient file system that is

as fast as or comparable to in-kernel file systems for standard

workloads both in and out of cache, and yet is optimized

for high-throughput metadata insertions and updates. We have

shown how to do this without compromising the security of

the kernel, or of the data cached in shared memory. The

implication of this research is that future file systems designers
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should seriously consider development at the user-level, that

user-level storage services can have kernel-like efficiency, and

that future operating system design should consider focusing

on more general access to the page cache and block device,

rather than a host of different POSIX file systems.

v) Future Work: We plan to further develop our write-

optimized indexing approach for metadata storage. Indexing

in file systems is not new, however designing around a cache-

oblivious architecture poses new challenges, but could reduce

the complexity of scalable storage systems immensely. We

plan to further explore the modularity and flexibility of our

system by implementing a re-configurable user-level VFS

composed of interchangeable modules where caches with dif-

ferent performance characteristics for different workloads can

be mixed and matched. We plan to develop a simple distributed

file system based on our cache-oblivious technology and

exploit exported page caching to maximize our efficiency and

compare it with existing distributed file systems like Google

FS [13]. We expect our performance will be equivalent for a

RAM and disk machine where the index fits in RAM, but we

are interested in comparing performance with machines with

additional types of media or with workloads where the index

is larger than what fits in RAM. We also plan to benchmark

existing user level file systems using exported kernel page

caching and measure their performance improvements.

We would like to acknowledge the useful assistance and

help of Zhichao Li.
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