

Red: An Efficient Replacement Algorithm Based on
REsident Distance for Exclusive Storage Caches

Yingjie Zhao, Nong Xiao, Fang Liu
Department of Computer Science, National University of Defense Technology

Changsha, China
hyperseymour@163.com, xiao-n@vip.sina.com, liufang@nudt.edu.cn

Abstract—This paper presents our replacement algorithm named
RED for storage caches. RED is exclusive. It can eliminate the
duplications between a storage cache and its client cache. RED is
high performance. A new criterion Resident Distance is proposed
for making an efficient replacement decision instead of Recency
and Frequency. Moreover, RED is non-intrusive to a storage
client. It does not need to change client software and could be
used in a real-life system. Previous work on the management of a
storage cache can attain one or two of above benefits, but not all
of them. We have evaluated the performance of RED by using
simulations with both synthetic and real-life traces. The
simulation results show that RED significantly outperforms LRU,
ARC, MQ, and is better than DEMOTE, PROMOTE for a wide
range of cache sizes.

Keywords: exclusive caching; replacement algorithm; resident
distance

I. INTRODUCTION
In general, storages and their clients (such as web servers,

database systems) are physically detached to reduce the cost of
management and maintenance in today’s distributed computing
environments. To enable the quick re-reference of data blocks,
both of them typically have gigabytes even terabytes of buffer
caches. Data requests from an application must travel through a
client buffer before they reach a storage cache, which incurs
redundancy of blocks and weak temporal locality [2, 3, 12, 14,
15] in a storage buffer cache.

In practice, storages and their clients are usually managed
by independent cache policies, so they often duplicate the same
blocks along their retrieval route. The duplication in a storage
cache, however, is approximately useless and results in a waste
of expensive cache space, since data requests are firstly
satisfied by a client cache. To address this issue, exclusive
caching [14, 15] has been proposed to eliminate redundant
blocks and expected to deliver the performance commensurate
with the aggregating cache sizes of a client-storage cache
hierarchy. For example, Wong and Wilkes [14] suggest a
storage cache to discard the block that has been sent to a client
and to buffer the block that has been ejected by a client in their
DEMOTE technique. Exclusive caching shows significant
performance gain over inclusive caching [16] which has
duplications. Unfortunately, most exclusive caching policies
require extensions to communication protocols and changes to
client software. Furthermore, exclusive caching is a multi-level

collaboration technique in essence, and how to better utilize a
storage cache remains an unresolved problem.

Locality-based policies work because of capturing access
pattern. However, they perform poorly in a storage cache [1, 9],
especially when exclusive caching is applied for a multi-level
collaboration. For exclusive caching like DEMOTE, nearly all
the blocks in a storage cache are originated from the demotion
of an upper client cache, so it is hard to capture access pattern
directly through the blocks that a storage cache holds. Previous
work usually uses FIFO or LRU [5] policies to manage a
storage cache, but they are obviously just better than nothing. A
direct way of obtaining access pattern is to explicitly retrieve
from a client. It seems promising, but leads to high
communication cost and modifications to client software,
which is undesirable for some real-life systems.

In this paper, we present our replacement policy for storage
caches, in which Resident Distance is proposed as a new
criterion to capture access pattern of an application, so we call
this policy RED. Resident Distance is the amount of time that a
block stays in a client cache. It can be used to distinguish
locality strengths among blocks and make a replacement
decision. A block with high Resident Distance should remain
in the storage longer than one with low Resident Distance
when they are reloaded into a storage cache after being ejected
by a client. We follow Wong and Wilkes’s work [14] to attain
exclusion property, and we extend the Client Content Tracking
Table in the paper [3] to avoid modifications to a client.

The rest of this paper is organized as follows. In Section 2,
we introduce our replacement algorithm RED. In Section 3, we
present our experiment setting, followed by simulation results
in Section 4. In Section 5, we briefly discuss the related work.
Finally, in Section 6, we conclude this paper.

II. RED

A. Attain Exclusion Property
We are inspired by DEMOTE [14] and Chen’s eviction-

based placement [3] to give an approach making a storage
cache exclusive: (1) put the most recently used block to the
position of being discarded, and drop it on the next replacement,
since it will be buffered in a client, (2) detect the blocks ejected
by a client, and reload them from storage disks. We follow
Chen’ work [3] to use the Client Content Tracking Table (CCT)

*This work is partially supported by NSFC60736013, NSFC 60903040,
NCET-08-0145 and 863- 2006AA01A106 of China.

978-1-4244-7153-9/10/$26.00 ©2010 IEEE

CCT table CCT table
VMA DB

0
1
2

… …
n db1

… …

VMA DB
0
1
2

… …
n db2

… …

Figure 1. After receiving a read request Read (n, db2), we can infer
that the block db1 has been ejected by a client cache.

for detecting: (1) when a block is ejected by a client cache, and
(2) which block is ejected. The Client Content Tracking Table
is also used in the uCache [2]. Fig. 1 shows how to keep track
of the contents of a client cache by using the Client Content
Tracking Table. Each entry in the CCT table records a virtual
memory address (VMA) of a client cache and the disk block
(DB) that resides at the VMA location. Both of these fields can
be easily retrieved from the standard I/O interface. Upon
receiving a read request issued from a client, the storage cache
lookups the CCT table to check which disk block locates at the
given client’s virtual memory address. If the old block is
different from the requested block, we can infer that the old
block must have been ejected by the client cache, so we should
reload it into the storage cache from disks. The reload overhead
can be ignored due to various masking mechanism [3].

Compared with other exclusive caching, such as centralized
-controlled, client-directed and hint-based policies [12, 13, 14,
15], the approach presented in this paper is smart and totally
transparent to client applications. The cost of implementation is
restricted within a storage server, which is important for real-
life systems.

B. Resident Distance
We use Resident Distance (RD) to distinguish the blocks

with low re-reference probability from those with high
probability, instead of commonly used Recency and Frequency
[4] due to weak locality in a storage cache. Resident Distance is
defined as the time difference between when a block is passed
to a client and when it is evicted by the client. Fig. 2 shows the
Resident Distance Table (RD table) that records the RD values.
When a block is about to be passed to a client, we record the
time to the Tp field in the RD table. If we infer the block is
ejected by the client on receiving a request at the time T, we
reload it to the storage cache, and assign {T-Tp} to its RD field.

RD table RD table
DB Tp RD
db0 Tp0
db1 Tp1
db2 Tp2
… …
dbn Tpn
… …

DB Tp RD
db0 Tp0
db1 Tp1
db2 Tp2
… …
dbn Tpn T-Tpn
… …

Figure 2. If we know the block dbn is passed to a client at the time Tpn, and
we infer that the block dbn is ejected by the client at the time T, we assign
{T-Tpn} to its RD field.

Resident Distance denotes a relative long-time history
access pattern, so it is better than Recency as a quantified
criterion to distinguish blocks in a storage cache. Moreover, it
can be easily obtained without changes to client software. It is
also simple to use. When a free cache slot is needed, we just
discard the block with the lowest RD value to make space.

C. Data Structure
Making a replacement decision requires ranking blocks.

Ranking usually has the logarithmic time complexity. However,
the LRU policy uses a LRU stack reducing the time complexity
to a constant value. We build a similar data structure called a
RD stack, shown in the Fig. 3. The RD stack contains M entries,
each of which represents a block either in a client cache or in a
storage cache. M is the total number of all the blocks in both
caches. When a copy of a block is about to be passed to a client,
we promote its entry to the top of the RD stack. When the
client copy is ejected, we mark the entry and leave its position
unchanged. So the position in the RD stack can approximately
denote Resident Distance. To differentiate the blocks in the RD
stack, RED sticks a boolean bit called homeFlag to each entry.
The homeFlag is set to TRUE if a block is from a client cache,
otherwise is set to FALSE. The RD stack is partitioned into
two sub stacks. One is a SG stack, containing the blocks from a
storage cache. The other is a CT stack, containing the blocks
from a client cache. Hence, each block has a pair of entries: one
is in the RD stack, the other either in the SG stack or in the CT
stack. In fact, the SG stack and the CT stack can serve as the
index to operate the RD stack. Since the entries in the SG stack
are ordered by Resident Distance, when replacement occurs,
RED can immediately discard the entry on the top of the SG
stack, and then discard the pair entry in the RD stack by the
mapping. When receiving a read request issued from a client,
RED can also easily find the pairs of entries representing the
victim block in the CT and RD stack.

D. Detailed Implementation
Fig. 4 shows the program flow chart of the RED algorithm.

Procedures used in this figure are explained below. For
simplicity, we assume that all the misses and hits to a storage
cache are incurred by I/O requests issued from a client in the
following discussion.

RD stack CT stack SG stack

Figure 3. Data structure of the RED algorithm.

Read (n, ba2)

Infer dbn is

ejected

time T

5

8

2

3

5

1

8

2

9

3

1

9

Client block

 Storage block

 Mapping

Figure 4. The program flow chart of the RED algorithm.

On-Detect-Eviction procedure: This procedure starts when
a storage cache receives an I/O request issued from a client. We
firstly parse the request to obtain the currently accessed disk
block address (DB) and the corresponding virtual memory
address (VMA) of a client, and then lookup the CCT table to
check whether another block has resided at the given virtual
memory address. If a different block does not exist at that
location, a new record (VMA, DB) representing the new block
is created and inserted into the CCT table, and then we can
check if the requested block is in the storage cache. Otherwise,
we update the CCT table by using the new block address to
replace the old block address, and then we can call the On-
Handle-Eviction procedure.

On-Handle-Eviction procedure: This procedure starts when
a block is detected to be ejected by a client through the On-
Detect-Eviction procedure. We can firstly find the entry
representing the block in the CT stack, and then find the pair
entry in the RD stack by the mapping between the CT stack
and the RD stack. If the block is already buffered in the storage
cache, that is to say- it is duplicated in both caches, we simply
discard the pair entries. If the block is not buffered, we load the
block into the storage cache, change the homeFlag bit of the
pair entries to False, and then move the entry from the CT stack
to the SG stack to indicate that the block has been moved from
the client cache to the storage cache. Finally, the pair entries
are modified to point to the cache location where the block is
loaded.

On-Hit procedure: This procedure starts when a cache hit
occurs in a storage cache. We send a copy of the requested
block to a client directly from the storage cache. The existing
entries representing the block are promoted to the top of the
RD and SG stack. After that, we create new entries to represent
the copy, and place them on the top of the RD and CT stack.

On-Replacement procedure: This procedure starts when a
cache miss occurs in a storage cache that is full. We remove the
entry on the top of the SG stack and the corresponding entry on
the RD stack, and then discard the block it represents.

On-Miss procedure: This procedure starts when a cache
miss occurs in a storage cache that has free cache space. We
load the requested block into a free cache slot, and then send its
copy to the client. After that, we create entries separately
representing the block in the storage cache and its copy in the
client cache. These entries are placed on the top of the
corresponding stacks.

In a single-client single-storage model, according to the
conditions whether the storage cache and the client cache are
full, we can define the following four different cases:

• NF: neither cache is full.

• SFCN: the storage cache is full, but the client is not.

• CFSN: the client cache is full, but the storage is not.

• AF: both caches are full.

Initially, both the storage cache and the client cache are
empty. The cache hierarchy is in the NF case until one of them
is full. In the NF case, no block is ejected, so the contents of
the storage cache and the client cache are the same. Since read
requests that reach the storage are misses from the client, these
requests also incur misses in the storage cache, so the On-Miss
procedure is carried out immediately after the On-Detect-
Eviction procedure completes.

If the client cache is larger than the storage cache, after a
short-period running, there must be a time when the storage
cache is full and the client cache is not. At that time, the cache
hierarchy is in the SFCN case. In this case, no block is ejected
by the client cache. Hence, the blocks in the storage cache are a
subset of the blocks in the client cache. For the same reason as
in the NF case, there are no hits occurring in the storage cache.
Because the storage cache is full, the On-Replacement
procedure must be carried out to make space after the On-
Detect-Eviction procedure completes, and then the On-Miss
procedure can start.

Otherwise, if the client cache is smaller, the client cache
will be full prior to the storage cache. At the time when the
client cache is full and the storage cache is not, the cache
hierarchy is in the CFSN case. In this case, because the client
cache is full, it needs to eject an old block to make space after
retrieving a new block from the storage, so the On-Handle-
Eviction procedure needs to be carried out after the On-Detect-
Eviction procedure completes. After that, both the On-Hit
procedure and the On-Miss procedure may start to handle the
I/O requests depending on whether the requested block is in the
storage cache. However, since the storage cache is not full, the
On-Replacement procedure will not be used in this case.

N
Y

N

N Y

 Y

Check if a cache hit happens

On-Detect-Eviction procedure

On-Handle-Eviction procedure

On-Hit procedure

On-Replacement procedure

On-Miss procedure

Receive an I/O request

Check if the cache is full

Check if a client ejects a block

End

Figure 5. A single-client two-level cache hierarchy.

After a warm-up process, both the storage cache and the
client cache are full. The cache hierarchy is in the AF case,
which is very representative for a running system. In this case,
all the five procedures may start to accomplish I/O requests.

III. EXPERIMENTS SETTING

A. Cache Model
Since exclusive caching policies do not always perform

well in the multi-client systems, especially when the clients
share significant amounts of blocks, it is usually used in the
single-client systems or a proportion of multi-client systems in
which each client accesses disjoint workloads. In this paper, we
test our algorithm in a single-client two-level cache hierarchy,
and we believe the simulation results can be extended to multi-
level systems.

Fig. 5 shows the cache hierarchy and its configurations: the
average network latency between the client and the storage is
0.2ms, the average disk latency is 10ms, and here we ignore the
network latency between the storage and the disks.

B. Traces
We use both synthetic and real-life workloads to evaluate

the performance of our cache replacement algorithm.

Zipf: we use a trace with a Zipf-like distribution, where the
frequency of a READ for block i is proportional to 1/iα, for α
close to 1. This approximates many common access patterns,
such as file access in web servers: a few are accessed
frequently, others not. We follow previous work [13, 14, 15] to
choose this workload for evaluating multi-level caching
algorithms.

TPC-H: this trace is collected by running the TPC-H
database benchmark, which is a decision support system
defined by Transaction Processing Council (TPC). It contains
long sequential and little random access, which is also used in
previous work [13, 14].

T1-T2: these traces are collected over several months from
a real-life high performance storage system, which is called the
China National Grid system (CNGrid). Several large-scale
applications are currently deployed in the CNGrid, such as
National Meteorological Grid, Spatial Information Grid and
Remote Sensing Data Processing system. These traces have
been used in the paper [20].

C. Competitive Policies
We have implemented LRU, ARC [11], MQ, Demote and

Promote in our cache simulator. LRU and ARC are widely-

used and powerful single level algorithms; MQ is a smart
second level algorithm; Demote and Promote are two typical
multi-level collaboration policies.

We use LRU to manage the client cache. In the Demote and
Promote policies, LRU is also used to manage the storage
cache. We ignore the write commands in all the traces for
simplicity since a write cache is typical managed using a
different police from a read cache.

All the above algorithms except Promote have the same hit
ratio in the client cache, so the hit ratio in the storage cache can
represents their performances. We use the average response
time as the metric when compared with Promote, since its hit
ratio in the client cache is different.

IV. SIMULATION RESULTS
We change the size of the client cache from 20K to 180K

while keeping the total size of the cache hierarchy equal to
200K blocks. The hit ratio in the storage cache on different
polices is plot in Fig. 6. When the storage cache is enlarged, the
hit ratio increases simultaneously. Depending on the hit ratio
curve, we can divide these policies into three groups. The first
group includes LRU and ARC, which are inclusive caching.
When the storage cache is increased from 0K to 100K blocks,
there are almost no hits in the storage cache. The second group
contains only one policy MQ, which is designed for the
second-level buffer cache. Essentially, it is an inclusive policy,
however, it holds more blocks with high access frequency,
which is different from the client cache, so it performs better
than the policies in the first group. Demote and RED belongs to
the third group. They are exclusive, and achieve good
performance in the simulations. As we expected, RED
performs better than Demote, about 10-15% when the storage
cache is comparable with the client cache in size.

In Fig. 7, we present the average response time to compare
RED with PROMOTE, since their hit ratio in the client cache is
different. The average response time increases along with the
enlargement of the storage cache, because the number of hits in
the client cache decreases simultaneously. We observe that
RED performs slightly better than Promote.

V. RELATED WORK
Single level cache algorithms have been studied extensively,

such as LRU, LFU, LRFU [17], LRU-K [7], 2Q [8], LIRS [10],
and ARC. However, such policies perform poorly when the
cache level is beyond one. Zhou et al. proposes a Multi-Queue
[9] algorithm for the second level buffer cache. Based on the
observation that frequently used blocks is more important than
recently used blocks for a storage server [18, 19], they use N
queues to distinguish differently referenced blocks, where Qi
maintains blocks which are referenced at least 2i times and no
more than 2i+1-1 times. The drawback is that the multi-queue
duplicates the same blocks both at the storage side and at the
client side. Recent researchers devote themselves to diminish
such duplications among cache hierarchies. Bairavasundaram
and Sivathanu infer contents of the client cache by monitoring
update information of the file system metadata in their X-RAY
[6] algorithm, which is constructed to manage RAID controller

Disks

t2=10ms t1=0.2ms trace input

Client cache Storage cache

S2 S1

0

10

20

30

40

50

60

20K 40K 60K 80K 100K 120K 140K 160K 180K

hi
t

 r
at

io
s（

%
）

Size of the storage cache（blocks）

zipf
LRU

ARC

MQ

DEMOTE

RED

0

5

10

15

20

25

30

35

40

20K 40K 60K 80K 100K 120K 140K 160K 180K

hi
t

 r
at

io
s（

%
）

Size of the storage cache（blocks）

TPC-H
LRU

ARC

MQ

DEMOTE

RED

0

5

10

15

20

25

20K 40K 60K 80K 100K 120K 140K 160K 180K

hi
t

 r
at

io
s（

%
）

Size of the storage cache（blocks）

T1LRU

ARC

MQ

DEMOTE

RED

0

5

10

15

20

25

30

20K 40K 60K 80K 100K 120K 140K 160K 180K

hi
t

 r
at

io
s（

%
）

Size of the storage cache（blocks）

T2LRU

ARC

MQ

DEMOTE

RED

Figure 6. The hit ratio in the storage cache. The total size of the cache hierarchy is 200K block.

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

20K 40K 60K 80K 100K 120K 140K 160K 180K

av
er

ag
e

re
sp

on
se

tim
e（

m
s）

Size of the storage cache（blocks）

zipf

RED PROMOTE

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

20K 40K 60K 80K 100K 120K 140K 160K 180K

av
er

ag
e

re
sp

on
se

tim
e（

m
s）

Size of the storage cache（blocks）

TPC-H

RED PROMOTE

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

20K 40K 60K 80K 100K 120K 140K 160K 180K

av
er

ag
e

re
sp

on
se

tim
e（

m
s）

Size of the storage cache（blocks）

T1

RED PROMOTE

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

20K 40K 60K 80K 100K 120K 140K 160K 180K

av
er

ag
e

re
sp

on
se

tim
e（

m
s）

Size of the storage cache（blocks）

T2

RED PROMOTE

Figure 7. The average response time seen by the client. The total size of the cache hierarchy is 200K block.

caches. However, this work suffers from low guess accuracy.
The Karma [13] policy presented by Yadgar and Factor uses
specific application hints to make allocation and replacement
decisions among all the cache levels. Although the database
applications can benefit a lot from using this method, since the
Karma is hint-based, it is hard to be applied to other kinds of
applications. Jiang and Zhang propose a client-directed cache
replacement algorithm called ULC [12], in which the client has
the knowledge of all the caches, and controls the movement of
blocks between low and high level caches by issuing Retrieve
and Demote commands. The client cache has to keep track of
the contents of all the caches, so the algorithm is very invasive
and costly in the implementations. To enable the collaboration
of independent policies among cache hierarchies, Wong and
Wilkes suggest a general technique called DEMOTE [14],
which can be applied to existing replacement policies to
maintain exclusivity property. The main idea is before a client
ejects a block, it first returns the block to the storage cache.
This approach induces extra network traffic, so the
performance gain may decline when the network bandwidth is
limited. Chen et al. propose an eviction based cache placement
policy [3] to eliminate such network traffic, in which a Client
Content Tracking Table is used to monitor whether a client has
discarded a block. Once such a block is found, the storage will
reload it directly from storage disks. He et al. propose the
uCache [2] by combining exclusive caching with cooperative
caching, so it can achieve good performance even used in high-
correlated multi-clients systems. Gill uses an adaptive
probabilistic filtering mechanism to conduct the placement of
blocks among cache hierarchies in the PROMOTE [15] policy,
which provides exclusivity with low network traffic. In
PROMOTE, the more a block is referenced, the faster it is
promoted to a client cache, so more hits are accumulated in a
client cache. However, implementing PROMOTE requires
modifications to both storage and client caches, which is
undesirable in some real-life systems.

VI. CONCLUSION
We have proposed Resident Distance, a new distinguished

criterion for making a replacement decision; we have presented
RED, an efficient replacement algorithm to enforce the cache
hierarchy exclusive without modifications to client software;
we have demonstrated its performance using trace-driven
simulations. In our tests, RED significantly outperforms LRU,
MQ, ARC, and is better than DEMOTE, PROMOTE in most
cases.

REFERENCES
[1] D. Muntz and P. Honeyman, “Multi-level caching in distributed file

systems - or - your cache ain’t nuthin’ but trash”, in Proc. of the
USENIX Winter Conf., pages 305–313, 1992.

[2] Xubin He, Li Ou, Martha Kosa, Stephen Scott, and Christian Engelmann,
“A Unified Cache for High Performance Cluster Storage Systems”,
International Journal of High Performance Computing and Networking,
Vol. 5, No. 1, 2007, pp. 97-109.

[3] Z. Chen, Y. Zhou, and K. Li, “Eviction-based cache placement for
storage caches”, in Proceedings of the 2003 USENIX Annual Technical
Conference, pages 269–282, 2003.

[4] J. T. Robinson and M. V. Devarakonda, “Data cache management using
frequency-based replacement”, in Proc. ACM SIGMET-RICS Conf.,
pages 134–142, 1990.

[5] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies”, IBM Sys. J., 9(2):78–117, 1970.

[6] Lakshmi N. Bairavasundaram, Muthian Sivathanu, Andrea C.Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau, “X-RAY: A Non-Invasive
Exclusive Caching Mechanism for RAIDs”, in Proceedings of the 31st
Annual International Symposium on Computer Architecture (ISCA ’04),
Munich, Germany, June 2004.

[7] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page
replacement algorithm for database disk buffering”, in Proc. ACM
SIGMOD Conf., pages 297–306, 1993.

[8] T. Johnson and D. Shasha, “2Q: A low overhead high performance
buffer management replacement algorithm”, in Proc. VLDB Conf.,
pages 297–306, 1994.

[9] Y. Zhou and J. F. Philbin, “The multi-queue replacement algorithm for
second level buffer caches”, in Proc. USENIX Annual Tech. Conf.
(USENIX 2001), Boston, MA, pages 91–104, June 2001.

[10] S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference recency
set replacement policy to improve buffer cache performance”, in Proc.
ACM SIGMETRICS Conf., pages 31-42, 2002.

[11] N. Megiddo and D.S. Modha, “ARC: A Self-Tuning, Low Overhead
Replacement Cache”, in Proc. Second USENIX Conf. File and Storage
Technologies, pages 115-130, Mar. 2003.

[12] S. Jiang and X. Zhang, “ULC: A file block placement and replacement
protocol to effectively exploit hierarchical locality in multi-level buffer
caches”,in Proc. ICDCS Conf., pages 168–177, 2004.

[13] M. Factor, A. Schuster, and G. Yadgar, “Karma: Know-it-all
replacement for a multilevel cache”, in Proc. FAST Conf., pages 169-
184, 2007.

[14] T. M. Wong and J. Wilkes, “My cache or yours? Making storage more
exclusive”, in Proc. of the USENIX Annual Technical Conference,
pages 161-175, 2002.

[15] B. S. Gill, “On Multi-level Exclusive Caching: Offline Optimality and
Why promotions are better than demotions”, in Proc. FAST Conf.,
pages 49-65, 2008.

[16] J.-L. Baer and W.-H. Wang, “On the inclusion properties for multi-level
cache hierarchies”, in ISCA ’88: Proceedings of the 15th Annual
International Symposium on Computer architecture, pages 73–80, Los
Alamitos, CA, USA, 1988. IEEE Computer Society Press.

[17] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim,
“LRFU: A spectrum of policies that subsumes the least recently used
and least frequently used policies”, IEEE Trans. Computers,
50(12):1352–1360, 2001.

[18] Darryl L. Willick, Derek L. Eager, and Richard B. Bunt, “Disk cache
replacement policies for network fileservers”, in International
Conference on Distributed Computing Systems, pages 2–11, 1993.

[19] Kevin W. Froese and Richard B. Bunt, “The effect of client caching on
file server workloads”, in HICSS (1), pages 150–159,1996.

[20] Rui Chu, Nong Xiao, Yongzhen Zhuang, Yunhao Liu, Xicheng Lu, “A
distributed paging RAM grid system for wide-area memory sharing,” in
Proc. IPDPS Conf. pages 10-17, 2006.

