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Abstract—This paper presents our replacement algorithm named 
RED for storage caches. RED is exclusive. It can eliminate the 
duplications between a storage cache and its client cache. RED is 
high performance. A new criterion Resident Distance is proposed 
for making an efficient replacement decision instead of Recency 
and Frequency. Moreover, RED is non-intrusive to a storage 
client. It does not need to change client software and could be 
used in a real-life system. Previous work on the management of a 
storage cache can attain one or two of above benefits, but not all 
of them. We have evaluated the performance of RED by using 
simulations with both synthetic and real-life traces. The 
simulation results show that RED significantly outperforms LRU, 
ARC, MQ, and is better than DEMOTE, PROMOTE for a wide 
range of cache sizes. 

Keywords:  exclusive caching; replacement algorithm; resident 
distance 

I.  INTRODUCTION 
In general, storages and their clients (such as web servers, 

database systems) are physically detached to reduce the cost of 
management and maintenance in today’s distributed computing 
environments. To enable the quick re-reference of data blocks, 
both of them typically have gigabytes even terabytes of buffer 
caches. Data requests from an application must travel through a 
client buffer before they reach a storage cache, which incurs 
redundancy of blocks and weak temporal locality [2, 3, 12, 14, 
15] in a storage buffer cache. 

In practice, storages and their clients are usually managed 
by independent cache policies, so they often duplicate the same 
blocks along their retrieval route. The duplication in a storage 
cache, however, is approximately useless and results in a waste 
of expensive cache space, since data requests are firstly 
satisfied by a client cache. To address this issue, exclusive 
caching [14, 15] has been proposed to eliminate redundant 
blocks and expected to deliver the performance commensurate 
with the aggregating cache sizes of a client-storage cache 
hierarchy. For example, Wong and Wilkes [14] suggest a 
storage cache to discard the block that has been sent to a client 
and to buffer the block that has been ejected by a client in their 
DEMOTE technique. Exclusive caching shows significant 
performance gain over inclusive caching [16] which has 
duplications. Unfortunately, most exclusive caching policies 
require extensions to communication protocols and changes to 
client software. Furthermore, exclusive caching is a multi-level 

collaboration technique in essence, and how to better utilize a 
storage cache remains an unresolved problem. 

Locality-based policies work because of capturing access 
pattern. However, they perform poorly in a storage cache [1, 9], 
especially when exclusive caching is applied for a multi-level 
collaboration. For exclusive caching like DEMOTE, nearly all 
the blocks in a storage cache are originated from the demotion 
of an upper client cache, so it is hard to capture access pattern 
directly through the blocks that a storage cache holds. Previous 
work usually uses FIFO or LRU [5] policies to manage a 
storage cache, but they are obviously just better than nothing. A 
direct way of obtaining access pattern is to explicitly retrieve 
from a client.  It seems promising, but leads to high 
communication cost and modifications to client software, 
which is undesirable for some real-life systems. 

In this paper, we present our replacement policy for storage 
caches, in which Resident Distance is proposed as a new 
criterion to capture access pattern of an application, so we call 
this policy RED. Resident Distance is the amount of time that a 
block stays in a client cache. It can be used to distinguish 
locality strengths among blocks and make a replacement 
decision. A block with high Resident Distance should remain 
in the storage longer than one with low Resident Distance 
when they are reloaded into a storage cache after being ejected 
by a client. We follow Wong and Wilkes’s work [14] to attain 
exclusion property, and we extend the Client Content Tracking 
Table in the paper [3] to avoid modifications to a client. 

The rest of this paper is organized as follows. In Section 2, 
we introduce our replacement algorithm RED. In Section 3, we 
present our experiment setting, followed by simulation results 
in Section 4. In Section 5, we briefly discuss the related work. 
Finally, in Section 6, we conclude this paper. 

II. RED 

A. Attain Exclusion Property 
We are inspired by DEMOTE [14] and Chen’s eviction-

based placement [3] to give an approach making a storage 
cache exclusive: (1) put the most recently used block to the 
position of being discarded, and drop it on the next replacement, 
since it will be buffered in a client, (2) detect the blocks ejected 
by a client, and reload them from storage disks. We follow 
Chen’ work [3] to use the Client Content Tracking Table (CCT)  
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Figure 1. After receiving a read request Read (n, db2), we can infer 
that the block db1 has been ejected by a client cache. 

for detecting: (1) when a block is ejected by a client cache, and 
(2) which block is ejected. The Client Content Tracking Table 
is also used in the uCache [2]. Fig. 1 shows how to keep track 
of the contents of a client cache by using the Client Content 
Tracking Table. Each entry in the CCT table records a virtual 
memory address (VMA) of a client cache and the disk block 
(DB) that resides at the VMA location. Both of these fields can 
be easily retrieved from the standard I/O interface. Upon 
receiving a read request issued from a client, the storage cache 
lookups the CCT table to check which disk block locates at the 
given client’s virtual memory address. If the old block is 
different from the requested block, we can infer that the old 
block must have been ejected by the client cache, so we should 
reload it into the storage cache from disks. The reload overhead 
can be ignored due to various masking mechanism [3]. 

Compared with other exclusive caching, such as centralized 
-controlled, client-directed and hint-based policies [12, 13, 14, 
15], the approach presented in this paper is smart and totally 
transparent to client applications. The cost of implementation is 
restricted within a storage server, which is important for real-
life systems. 

B. Resident Distance 
We use Resident Distance (RD) to distinguish the blocks 

with low re-reference probability from those with high 
probability, instead of commonly used Recency and Frequency 
[4] due to weak locality in a storage cache. Resident Distance is 
defined as the time difference between when a block is passed 
to a client and when it is evicted by the client. Fig. 2 shows the 
Resident Distance Table (RD table) that records the RD values. 
When a block is about to be passed to a client, we record the 
time to the Tp field in the RD table. If we infer the block is 
ejected by the client on receiving a request at the time T, we 
reload it to the storage cache, and assign {T-Tp} to its RD field. 

RD table                                        RD table 
DB Tp RD 
db0 Tp0  
db1 Tp1  
db2 Tp2  
… …  
dbn Tpn  
… …  

 

DB Tp RD 
db0 Tp0  
db1 Tp1  
db2 Tp2  
… …  
dbn Tpn T-Tpn
… …  

 

 
Figure 2. If we know the block dbn is passed to a client at the time Tpn, and 
we infer that the block dbn is ejected by the client at the time T, we assign 
{T-Tpn} to its RD field. 

Resident Distance denotes a relative long-time history 
access pattern, so it is better than Recency as a quantified 
criterion to distinguish blocks in a storage cache. Moreover, it 
can be easily obtained without changes to client software. It is 
also simple to use. When a free cache slot is needed, we just 
discard the block with the lowest RD value to make space. 

C. Data Structure 
Making a replacement decision requires ranking blocks. 

Ranking usually has the logarithmic time complexity. However, 
the LRU policy uses a LRU stack reducing the time complexity 
to a constant value. We build a similar data structure called a 
RD stack, shown in the Fig. 3. The RD stack contains M entries, 
each of which represents a block either in a client cache or in a 
storage cache. M is the total number of all the blocks in both 
caches. When a copy of a block is about to be passed to a client, 
we promote its entry to the top of the RD stack. When the 
client copy is ejected, we mark the entry and leave its position 
unchanged. So the position in the RD stack can approximately 
denote Resident Distance. To differentiate the blocks in the RD 
stack, RED sticks a boolean bit called homeFlag to each entry. 
The homeFlag is set to TRUE if a block is from a client cache, 
otherwise is set to FALSE. The RD stack is partitioned into 
two sub stacks. One is a SG stack, containing the blocks from a 
storage cache. The other is a CT stack, containing the blocks 
from a client cache. Hence, each block has a pair of entries: one 
is in the RD stack, the other either in the SG stack or in the CT 
stack. In fact, the SG stack and the CT stack can serve as the 
index to operate the RD stack. Since the entries in the SG stack 
are ordered by Resident Distance, when replacement occurs, 
RED can immediately discard the entry on the top of the SG 
stack, and then discard the pair entry in the RD stack by the 
mapping. When receiving a read request issued from a client, 
RED can also easily find the pairs of entries representing the 
victim block in the CT and RD stack. 

D. Detailed Implementation 
Fig. 4 shows the program flow chart of the RED algorithm. 

Procedures used in this figure are explained below. For 
simplicity, we assume that all the misses and hits to a storage 
cache are incurred by I/O requests issued from a client in the 
following discussion. 

RD stack             CT stack             SG stack 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Data structure of the RED algorithm. 
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Figure 4. The program flow chart of the RED algorithm. 
 

On-Detect-Eviction procedure: This procedure starts when 
a storage cache receives an I/O request issued from a client. We 
firstly parse the request to obtain the currently accessed disk 
block address (DB) and the corresponding virtual memory 
address (VMA) of a client, and then lookup the CCT table to 
check whether another block has resided at the given virtual 
memory address. If a different block does not exist at that 
location, a new record (VMA, DB) representing the new block 
is created and inserted into the CCT table, and then we can 
check if the requested block is in the storage cache. Otherwise, 
we update the CCT table by using the new block address to 
replace the old block address, and then we can call the On-
Handle-Eviction procedure. 

On-Handle-Eviction procedure: This procedure starts when 
a block is detected to be ejected by a client through the On-
Detect-Eviction procedure. We can firstly find the entry 
representing the block in the CT stack, and then find the pair 
entry in the RD stack by the mapping between the CT stack 
and the RD stack. If the block is already buffered in the storage 
cache, that is to say- it is duplicated in both caches, we simply 
discard the pair entries. If the block is not buffered, we load the 
block into the storage cache, change the homeFlag bit of the 
pair entries to False, and then move the entry from the CT stack 
to the SG stack to indicate that the block has been moved from 
the client cache to the storage cache. Finally, the pair entries 
are modified to point to the cache location where the block is 
loaded.  

On-Hit procedure: This procedure starts when a cache hit 
occurs in a storage cache. We send a copy of the requested 
block to a client directly from the storage cache. The existing 
entries representing the block are promoted to the top of the 
RD and SG stack. After that, we create new entries to represent 
the copy, and place them on the top of the RD and CT stack. 

On-Replacement procedure: This procedure starts when a 
cache miss occurs in a storage cache that is full. We remove the 
entry on the top of the SG stack and the corresponding entry on 
the RD stack, and then discard the block it represents.  

On-Miss procedure: This procedure starts when a cache 
miss occurs in a storage cache that has free cache space. We 
load the requested block into a free cache slot, and then send its 
copy to the client. After that, we create entries separately 
representing the block in the storage cache and its copy in the 
client cache. These entries are placed on the top of the 
corresponding stacks. 

In a single-client single-storage model, according to the 
conditions whether the storage cache and the client cache are 
full, we can define the following four different cases: 

• NF: neither cache is full. 

• SFCN: the storage cache is full, but the client is not. 

• CFSN: the client cache is full, but the storage is not. 

• AF: both caches are full. 

Initially, both the storage cache and the client cache are 
empty. The cache hierarchy is in the NF case until one of them 
is full. In the NF case, no block is ejected, so the contents of 
the storage cache and the client cache are the same. Since read 
requests that reach the storage are misses from the client, these 
requests also incur misses in the storage cache, so the On-Miss 
procedure is carried out immediately after the On-Detect-
Eviction procedure completes. 

If the client cache is larger than the storage cache, after a 
short-period running, there must be a time when the storage 
cache is full and the client cache is not. At that time, the cache 
hierarchy is in the SFCN case. In this case, no block is ejected 
by the client cache. Hence, the blocks in the storage cache are a 
subset of the blocks in the client cache. For the same reason as 
in the NF case, there are no hits occurring in the storage cache. 
Because the storage cache is full, the On-Replacement 
procedure must be carried out to make space after the On-
Detect-Eviction procedure completes, and then the On-Miss 
procedure can start.  

Otherwise, if the client cache is smaller, the client cache 
will be full prior to the storage cache. At the time when the 
client cache is full and the storage cache is not, the cache 
hierarchy is in the CFSN case. In this case, because the client 
cache is full, it needs to eject an old block to make space after 
retrieving a new block from the storage, so the On-Handle-
Eviction procedure needs to be carried out after the On-Detect-
Eviction procedure completes. After that, both the On-Hit 
procedure and the On-Miss procedure may start to handle the 
I/O requests depending on whether the requested block is in the 
storage cache. However, since the storage cache is not full, the 
On-Replacement procedure will not be used in this case. 
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Figure 5. A single-client two-level cache hierarchy. 
 

After a warm-up process, both the storage cache and the 
client cache are full. The cache hierarchy is in the AF case, 
which is very representative for a running system. In this case, 
all the five procedures may start to accomplish I/O requests. 

III. EXPERIMENTS SETTING 

A. Cache Model 
Since exclusive caching policies do not always perform 

well in the multi-client systems, especially when the clients 
share significant amounts of blocks, it is usually used in the 
single-client systems or a proportion of multi-client systems in 
which each client accesses disjoint workloads. In this paper, we 
test our algorithm in a single-client two-level cache hierarchy, 
and we believe the simulation results can be extended to multi-
level systems.  

Fig. 5 shows the cache hierarchy and its configurations: the 
average network latency between the client and the storage is 
0.2ms, the average disk latency is 10ms, and here we ignore the 
network latency between the storage and the disks. 

B. Traces 
We use both synthetic and real-life workloads to evaluate 

the performance of our cache replacement algorithm. 

Zipf: we use a trace with a Zipf-like distribution, where the 
frequency of a READ for block i is proportional to 1/iα, for α 
close to 1. This approximates many common access patterns, 
such as file access in web servers: a few are accessed 
frequently, others not. We follow previous work [13, 14, 15] to 
choose this workload for evaluating multi-level caching 
algorithms.  

TPC-H: this trace is collected by running the TPC-H 
database benchmark, which is a decision support system 
defined by Transaction Processing Council (TPC). It contains 
long sequential and little random access, which is also used in 
previous work [13, 14].  

T1-T2: these traces are collected over several months from 
a real-life high performance storage system, which is called the 
China National Grid system (CNGrid). Several large-scale 
applications are currently deployed in the CNGrid, such as 
National Meteorological Grid, Spatial Information Grid and 
Remote Sensing Data Processing system. These traces have 
been used in the paper [20]. 

C. Competitive Policies 
We have implemented LRU, ARC [11], MQ, Demote and 

Promote in our cache simulator. LRU and ARC are widely-

used and powerful single level algorithms; MQ is a smart 
second level algorithm; Demote and Promote are two typical 
multi-level collaboration policies. 

We use LRU to manage the client cache. In the Demote and 
Promote policies, LRU is also used to manage the storage 
cache. We ignore the write commands in all the traces for 
simplicity since a write cache is typical managed using a 
different police from a read cache. 

All the above algorithms except Promote have the same hit 
ratio in the client cache, so the hit ratio in the storage cache can 
represents their performances. We use the average response 
time as the metric when compared with Promote, since its hit 
ratio in the client cache is different.  

IV. SIMULATION RESULTS 
We change the size of the client cache from 20K to 180K 

while keeping the total size of the cache hierarchy equal to 
200K blocks. The hit ratio in the storage cache on different 
polices is plot in Fig. 6. When the storage cache is enlarged, the 
hit ratio increases simultaneously. Depending on the hit ratio 
curve, we can divide these policies into three groups. The first 
group includes LRU and ARC, which are inclusive caching. 
When the storage cache is increased from 0K to 100K blocks, 
there are almost no hits in the storage cache. The second group 
contains only one policy MQ, which is designed for the 
second-level buffer cache. Essentially, it is an inclusive policy, 
however, it holds more blocks with high access frequency, 
which is different from the client cache, so it performs better 
than the policies in the first group. Demote and RED belongs to 
the third group. They are exclusive, and achieve good 
performance in the simulations. As we expected, RED 
performs better than Demote, about 10-15% when the storage 
cache is comparable with the client cache in size.  

In Fig. 7, we present the average response time to compare 
RED with PROMOTE, since their hit ratio in the client cache is 
different. The average response time increases along with the 
enlargement of the storage cache, because the number of hits in 
the client cache decreases simultaneously. We observe that 
RED performs slightly better than Promote. 

V. RELATED WORK 
Single level cache algorithms have been studied extensively, 

such as LRU, LFU, LRFU [17], LRU-K [7], 2Q [8], LIRS [10], 
and ARC. However, such policies perform poorly when the 
cache level is beyond one. Zhou et al. proposes a Multi-Queue 
[9] algorithm for the second level buffer cache. Based on the 
observation that frequently used blocks is more important than 
recently used blocks for a storage server [18, 19], they use N 
queues to distinguish differently referenced blocks, where  Qi 
maintains blocks which are referenced at least 2i times and no 
more than 2i+1-1 times. The drawback is that the multi-queue 
duplicates the same blocks both at the storage side and at the 
client side. Recent researchers devote themselves to diminish 
such duplications among cache hierarchies. Bairavasundaram 
and Sivathanu infer contents of the client cache by monitoring 
update information of the file system metadata in their X-RAY 
[6] algorithm, which is constructed to manage RAID controller  
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Figure 6. The hit ratio in the storage cache. The total size of the cache hierarchy is 200K block. 
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Figure 7. The average response time seen by the client. The total size of the cache hierarchy is 200K block. 

 
 



 

caches. However, this work suffers from low guess accuracy. 
The Karma [13] policy presented by Yadgar and Factor uses 
specific application hints to make allocation and replacement 
decisions among all the cache levels. Although the database 
applications can benefit a lot from using this method, since the 
Karma is hint-based, it is hard to be applied to other kinds of 
applications. Jiang and Zhang propose a client-directed cache 
replacement algorithm called ULC [12], in which the client has 
the knowledge of all the caches, and controls the movement of 
blocks between low and high level caches by issuing Retrieve 
and Demote commands. The client cache has to keep track of 
the contents of all the caches, so the algorithm is very invasive 
and costly in the implementations. To enable the collaboration 
of independent policies among cache hierarchies, Wong and 
Wilkes suggest a general technique called DEMOTE [14], 
which can be applied to existing replacement policies to 
maintain exclusivity property. The main idea is before a client 
ejects a block, it first returns the block to the storage cache. 
This approach induces extra network traffic, so the 
performance gain may decline when the network bandwidth is 
limited.  Chen et al. propose an eviction based cache placement 
policy [3] to eliminate such network traffic, in which a Client 
Content Tracking Table is used to monitor whether a client has 
discarded a block. Once such a block is found, the storage will 
reload it directly from storage disks. He et al. propose the 
uCache [2] by combining exclusive caching with cooperative 
caching, so it can achieve good performance even used in high-
correlated multi-clients systems. Gill uses an adaptive 
probabilistic filtering mechanism to conduct the placement of 
blocks among cache hierarchies in the PROMOTE [15] policy, 
which provides exclusivity with low network traffic. In 
PROMOTE, the more a block is referenced, the faster it is 
promoted to a client cache, so more hits are accumulated in a 
client cache. However, implementing PROMOTE requires 
modifications to both storage and client caches, which is 
undesirable in some real-life systems.  

VI. CONCLUSION 
We have proposed Resident Distance, a new distinguished 

criterion for making a replacement decision; we have presented 
RED, an efficient replacement algorithm to enforce the cache 
hierarchy exclusive without modifications to client software; 
we have demonstrated its performance using trace-driven 
simulations. In our tests, RED significantly outperforms LRU, 
MQ, ARC, and is better than DEMOTE, PROMOTE in most 
cases. 
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