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Abstract—Today’s file systems typically need multiple disk
accesses for a single read operation of a file. In the worst
case, when none of the needed data is already in the cache,
the metadata for each component of the file path has to be
read in. Once the metadata of the file has been obtained, an
additional disk access is needed to read the actual file data.
For a target scenario consisting almost exclusively of reading
small files, which is typical in many Web 2.0 scenarios, this
behavior severely impacts read performance. In this paper,
we propose a new file system approach, which computes the
expected location of a file using a hash function on the file
path. Additionally, file metadata is stored together with the
actual file data. Together, these characteristics allow a file to
be read in with only a single disk access. The introduced
approach is implemented extending the ext2 file system and
stays very compatible with the Posix semantics. The results
show very good random read performance nearly independent
of the organization and size of the file set or the available cache
size. In contrast, the performance of standard file systems is
very dependent on these parameters.

I. INTRODUCTION

Today many different file systems exist for different pur-
poses. While they include different kinds of optimizations,
most aim to be ”general purpose” file systems, supporting
a wide range of application scenarios. These file systems
treat small files very similar to gigabyte-sized database files.
This general approach, however, has a severe impact on
performance in certain scenarios.

The scenario considered in this paper is a workload
for web applications serving small files, e.g. thumbnail
images for high-traffic web servers. Real world example
of such scenarios are given at different places and scales.
Jason Sobel reports that Facebook accesses small profile
pictures (5-20 KB) at a rate of more than 200k requests
per second, so that each unnecessary disk seek has to be
avoided1. Another example for such a scenario is “The
Internet Archive”, whose architecture has been described by
Jaffe and Kirkpatrick [1]. The Internet Archive is built up
from 2500 nodes and more than 6000 disks serving over a
PB of data at a rate of 2.3 Gb/sec.

1A summary of Jason Sobel’s talk can be found at http://perspectives.
mvdirona.com/default,date,2008-07-02.aspx

Such workloads have very different properties from usual
desktop or server workloads. Our main assumptions are
that the files are small (4–20 KB) and that the file size
distribution is nearly uniform. This is different from web
traffic that is shown to have a heavy-tailed size distribution
[2]. Additionally, we assume that the ratio between the
available main memory and the disk capacity is small, which
limits the amount of cache that can be used for inodes,
directory entries and files.

We also assume that:
• accesses are almost exclusively reads.
• filenames are nearly randomly generated or calculated

(e.g. based on the user id, a timestamp or a checksum of
the contents) and have no inherent meaning and also do
not constitute an opportunity for name-based locality.
A directory-based locality as used by most general
purpose file systems cannot be used with hashFS.

• the traffic is generated by a high number of concurrent
users, limiting the ability to use temporal-locality.

• maintaining the last access time of a file are not
important.

The design goal for the file system presented in this paper
has been to optimize small file read-accesses, while still
retaining a fully functional file system that supports features
like large files and hard links without much performance
loss.

While caching web server data in memory is an immense
help, it is usually impossible to buffer everything due to the
sheer amount of existing data. It has been shown that web
requests usually follow a Zipf-like distribution [3], [2]. This
means that, while the traffic is highly skewed, the hit-ratio
of caches grows only logarithmically in the cache size, so
that very large caches would be necessary to absorb most
requests. A similar argument can be made based on results
presented for the Internet Archive data [1].

Accordingly, it is important to optimize small file hard
disk accesses. Accessing files with state-of-the-art file sys-
tems typically results in multiple seeks. At first the location
of the metadata (inode) has to be located using directory
information, which results – if not cached – in multiple
seeks. After the metadata is read, another head movement
is required to read the actual file data. In a scenario, where
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a huge number of small files needs to be accessed, these
head movements can slow access times tremendously. Of
course, the caches of the operating system (block cache,
inode cache, dentry cache) can avoid some or most of these
lookups. We will show, however, that the caches themselves
are not sufficient for efficient small file reads.

Contributions of this paper:: In this paper, we show
that extending an existing file system by a hashing approach
for the file placement is able to significantly improve its read
throughput for small files. Based on the ext2 file system, we
use randomized hashing to calculate the (virtual) track of a
file based on its name and path. Adding additional metadata
for each (virtual) track, we are able to access most small
files with a single head movement.

Our file system can be used without any changes on
existing applications and infrastructure. Also existing file
management tools (even file system checks) work out of the
box, which significantly reduces administration overhead.
In contrast to other approaches to improve small file read
access, we do neither need a huge memory cache nor solid
state disks to achieve a very good performance, independent
from the total number of files.

After discussing related work in Section II, we present
our ext2 extensions in Section III. The analysis of the
approach is based on simulations and experiments. The
results presented in Section IV show that our hashing
approach improves file system performance by a factor of
more than five in realistic environments without requiring
any additional hardware.

II. FILE SYSTEM BASICS AND RELATED WORK

In this section, we discuss some file system design basics,
as well as some general-purpose file systems and related
approaches for small file read performance.

A. Hard Disk Geometry

In order to understand the arguments for the file system
proposed in Section III, a basic understanding of hard
disks themselves is necessary. A hard disk (also called
magnetic disk drive) basically consists of one or more plates
/ disks containing concentric tracks, which are themselves
subdivided into sectors. While there are several possible
configurations, the most commonly used consists of two
read/write heads for each plate, one hovering above the plate
and another beneath it. All heads are locked together in an
assembly of head arms, which means that they can only be
moved together. The set of all tracks that can be accessed
with a fixed head position is referred to as a cylinder.

When an I/O request needs to be served, the service time
is the sum of the head positioning time (seek time), which is
the time required to move the head from its current position
to its target track, the rotation latency, which is the time
until the desired sector has rotated under the head and the
transfer time, which is needed to read or write the data [4].

super
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block
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block
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inode
bitmap

inode
table

data
blocks

Figure 1. Structure of an Ext2 Block Group

B. Linux Virtual File System (VFS)

The virtual file system (VFS) is part of the Linux kernel
and many other Unix operating systems and defines the basic
conceptual interfaces between the kernel and the file system
implementations. Programs can use generic system calls like
open(), read() or write() for file system operations regardless
of the underlying physical medium or file system. These are
passed to the VFS where the appropriate method of the file
system implementation is invoked.

C. ext2 File System

The second extended file system was one of the first
file systems for Linux and is available as part of all Linux
distributions [5]. The ext2 file system is divided into block
groups.

Figure 1 shows the composition of an ext2 block group.
Information stored in the super block includes, for example,
the total number of inodes and blocks in the file system and
the number of free inodes left in the file system. The block
descriptors contain pointers to the inode and block bitmaps
as well as the inode tables of all block groups. The block
and inode bitmaps represent usage of data blocks / entries
in the inode table. This enables each block to store its usage
in a quickly accessible manner. The inode table stores the
actual inodes of files stored in this block. Because a big file
can span multiple block groups, it is possible that the inode
that corresponds to the data blocks of a block group is stored
in another block group.

An ext2 inode of a file contains all metadata information
for this file as well as pointers to the data blocks allocated to
the file. Since an ext2 inode has a fixed size of 128 bytes,
it cannot store direct pointers to all data blocks of a file.
Therefore, each inode only stores 12 direct data pointers to
the first 12 data blocks of a file. If the file is bigger than
12 data blocks, the inode also contains an indirect pointer.
This is a pointer to a data block that contains pointers to
the data blocks allocated to the file. Because the block size
is normally four kilobytes, an indirect block can store 1024
pointers. If this is still not enough, there exists a double and
a triple indirect pointer.

D. Additional General Purpose File Systems

The third extended file system ext3 adds journaling modes
to ext2, but stays otherwise completely compatible to ext2
[6]. The newest member of the ext family is ext4, which
addresses several performance limits of ext3 and removes the
16 TB maximum filesystem and the 2 TB file size limit [7].
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Most other filesystems use B+ trees or B* trees to manage
their metadata. They either provide a global tree (ReiserFS
[8], btrfs [9]), one tree for each directory (JFS [10]), or for
each allocation group (XFS [11], [12]). ReiserFS and btrfs
additionally provide an efficient packing for very small files.

E. Related Work

There are several existing approaches to improve small
file performance. Ganger and Kasshoek proposed two im-
provements, which are both based on name-based locality.
Firstly, they embed inodes into the directory entries of the
parent directory and secondly, they co-locate related files on
adjacent disk locations [13]. Because theses improvements
are based on a name-based locality, they will fail in our
scenario. Another approach, proposed as “Same Track File
system (STFS)”, optimizes small file writes by always stor-
ing file metadata and file contents in the same track [14]. The
basic approach can be compared to the hashFS file system,
which is proposed in this paper. Nevertheless, not reading the
complete track, they have to use standard directory lookup
procedures, which adds a significant overhead in scale-out
environments.

Additional related research can be found in the context of
web cache file systems, which are based on similar, but not
identical assumptions. The web cache scenario differs from
our scenario concerning

1) Data reliability: If a file is lost in a web cache scenario,
it can be re-fetched from the original source.

2) Scalability: It is allowed for a web cache file system
to replace old files using a cache replacement strategy,
if the amount of files in a file system gets too large

3) Locality: In an highly distributed scale-out scenario,
we cannot allow to bet on any kind of locality. Existing
caching layers in form of content delivery networks
(CDN) in front of the actual file delivery servers often
remove all kind of locality.

Dámelo! is a web cache user-space file system, which
does without directories and is based on user-defined group
numbers, where the same group number implies locality
[15]. It is focused on small files and large files are stored
in a separate general purpose file system. Similar to our
approach, they prefetch larger chunks of 16 KB to 256 KB.

Another reduced functional, specialized web cache file
system is UCFS [16]. They hash the filepath to an in-
memory table storing a mapping to a cluster of 32 KB to 256
KB size. Similar to the other web cache approach, related
files are stored on adjacent disk locations by grouping them
in a cluster. While this approach, similar to ours, eliminates
disk accesses during lookup, the cluster table gets prohibitive
large for larger file systems, requiring 96 MB RAM for each
4M files.

The Hummingbird file system is also a specialized file
system for web caches, which co-locates related files in

clusters and does its own memory cache management in
the proxy to avoid unnecessary copies [17].

Independently from our work, Badam et al. presented the
HashCache user-level storage system that also hashes to bins
containing multiple files and used in its basic version no
in-memory index structure [18]. This makes it suitable for
servers with a large Disk/RAM ratio. However, HashCache
also is highly specialized for caching and does not provide
a full filesystem interface. The evaluation of HashCache
compares it to web proxies. We think that a comparison with
file systems and with an eye on the different file systems
caches is insightful.

Jaffe and Kirkpatrick examined, how an SSD-based cache
is able to reduce the IO load of the backend storage [1]. In
contrast to them, we aim to improve the performance without
additional hardware. DualFS is a journaling file system that
separates metadata and data and stores them on different
disks [19]. Especially, if metadata is stored on solid state
disks with high random read performance, it might improve
the overall performance at moderate costs, while compared
to our report still requiring additional hardware.

III. DESIGN AND IMPLEMENTATION

The design and implementation of a new file system from
scratch has not been within the scope of this paper. For
this reason, the file system extensions are based on the ext2
file system, which has been the most practical candidate. Its
implementation is relatively simple while still showing good
benchmarking results. Furthermore, its main missing feature
– journaling – does not impact the results of our evaluation.
It should be noted that our design is not limited to ext2 and
can be incorporated into other filesystems, too.

It is important to notice that our approach stays, with one
exception, completely POSIX compliant. The only differ-
ence is that we are not able to evaluate the directory access
rights of a file path during file operations, while we are still
able to evaluate the access rights to the file itself. We assume
that these missing directory access checks are not an issue.
In our scenario, security is handled at the application layer,
not at the file system. It will not update the last access times
of the directory in the pathnames of the file.

The aim of a file system targeted to improve small file read
performance is to decrease the number of necessary seeks.
The main idea of the proposed file system is to perform only
one seek to the metadata and data. Therefore, the proposed
file system stores all necessary metadata together with the
actual data, enabling one read operation to read both parts of
information. To circumvent additional disk accesses needed
to find the location of this information, a hash function on the
complete path name is used in order to compute the expected
location. Accordingly, the file system will be referred from
now on as “hashFS”.
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A. File System Layout

The simplest and most accurate way to describe a location
on a hard drive is by using a sector number. It is, however,
not practical in our case. Hash collisions can occur and
future hash results cannot be predicted. Accordingly, it is
impossible to keep sectors needed by future writes free. For
this reason, the track number has been chosen as the target
for the hash function to identify the location of a file. This
has multiple benefits:

1) A whole track can be read in at once without produc-
ing multiple head movements.

2) Multiple files can be written to the same track until
the track runs out of free blocks.

3) It is possible to reserve space on a track for future
writes.

Disk Geometry Information: If files are to be hashed
to track numbers, some information about the disk geometry
has to be known: At least the total number of tracks and their
start and end sectors are necessary to identify a target range
for the hash function. This information can be extracted
using tools like the “Disk Geometry Analyzer (DIG)” [20].
During this paper, we work with “virtual tracks”, where we
assume that each track has the same number of sectors.

Block Allocation: Allocating blocks for a file on the
computed track is not as trivial as it appears at first glance.
It might not be possible to store all blocks of the file on the
specified track because the size of each track is limited. A
one megabyte file already spans up to four tracks on today’s
disks. Furthermore, if space is reserved on a track for future
writes, then the number of sectors on that track which can
be assigned to a single file is further limited. At the same
time, the file system approach can only promise performance
gains if a file is completely stored on its hashed track.

The described design conflict – reserving sectors on a
track for later use and at the same time trying to store
files completely on their hashed track – can only be solved
with reference to the expected workload. The target scenario
consists almost exclusively of reads to small files. Therefore,
the important point is to succeed in storing small files on
their respective tracks, while larger files can be handled
differently. The size of a small file, however, is not explicitly
defined by the scenario. It depends on the particular applica-
tion case. Accordingly, the size of files which are considered
to be “small files” should be configurable.

The following block allocation strategy, which we will
call “Free Percentage Algorithm”, is the result of these
considerations: The first x blocks of a file are allocated on
the hashed track, where x defines the maximum file size for
which the file system is optimized. If a file is larger than x
blocks, then the remaining blocks are only allocated on the
same track if after the allocation the remaining space on the
track would be sufficient for future writes. The percentage
of a track that is reserved in this way depends on the file

system load. At the beginning, 50% of each track will be
reserved, and, as the hard disk fills up, the reserved space
will shrink reflecting the diminishing total free space. It is,
of course, still possible that a track runs out of free space. In
this case, all blocks would have to be allocated on a different
track.

Tracks that are filled with standard ext2 metadata, as, for
example, copies of the super block or group descriptors, are
an additional issue. Using default ext2 settings 1.63% of
all tracks on the disks used are completely filled with ext2
metadata, additional 0.26% are partially filled. Files hashed
to these tracks cannot be stored there, which results in a
decrease of performance. However, since the allocation of
this ext2 metadata is done statically during the formatting, it
is easy to calculate these tracks and remove them from the
disk geometry information. As a result no files are hashed
to these tracks.

Track Metadata: Metadata and data for each file have
to be stored on the same track to optimize read performance.
We store this metadata in a data structure called “track
inode” at the beginning of each track. Every file has a track
inode on its hashed track. The normal ext2 inodes are used as
normal to support other file system operations and to handle
large files.

A track inode is not a simple copy of a normal ext2 inode,
because not all information contained in an ext2 inode is
needed. Even a few unnecessary bytes in a track inode will
have a severe impact in our scenario. The track inode stores
the inode number, the file size, the security attributes and
direct pointers to the first x blocks of the file and the hash
value for the file’s path.

Another hash of the path is necessary to identify the
correct track inode for a file out of all track inodes on the
same track. It is not possible to store the pathname directly
for identification purposes, because it can be arbitrarily large.
To rely on hashing for pathname comparison creates the
possibility for hash collision problems. The hash length must
be chosen so that a collision of the track hash and of the
name has is nearly impossible, e.g. by using a combined
hash length of 96 bits on a 10 TB disk written full with 1
KB files results in probability of 6.3e−12 of a data loss due
to hash collisions (birthday paradox).

B. Lookup Operations

We will now describe the pathname lookup operation of
hashFS. In Linux, the default lookup strategy is to read in
the metadata of every component of the file path iteratively,
until the meta data of the actual file has finally been read.
This is necessary, as the location of the metadata of a path
component is stored in the previous path component, which
corresponds to the directory enclosing the current path com-
ponent. The pathname lookup strategy used by hashFS, in
contrast, simply hashes the complete pathname to a track and
reads the complete track. If the track inode corresponding
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Figure 2. Lookup Strategy with Pathname Lookup Approach

to the path is found, the real on-disk inode is not read
separately. Because the lookup strategy is implemented in
the Virtual File System (VFS) layer, it has been expanded
to allow for an alternative, pathname based lookup approach
by the underlying file systems.

The general logic of a pathname lookup operation is
presented in Figure 2. If the pathname lookup is successful,
the whole iterative lookup process for each path component
can be completely bypassed and it therefore requires exactly
one read operation.

Similar to the original strategy, a dentry data structure (a
cached, in-memory representation of a directory entry) is
created for the file. However, because the path components
are not processed independently, the hierarchical information
normally available is missing. This is solved by interpreting
the pathname starting from the mountpoint as a filename.
So the dentry of the mountpoint is used as parent directory.
Therefore, the dentry cache works as usual.

It is worth noticing that other POSIX file operations (like
renames of files and directories, links) as well as larger
files are still supported by HashFS using the normal ext2
metadata. Files that have not been stored at the hashed
location will be found using the default ext2 lookup.

IV. EVALUATION

This section presents simulation results as well as the
experimental evaluation of hashFS. Inside the simulation
part of this section, we discuss fundamental properties of
the hashing approach, e.g. the number of hash conflicts for
certain utilization degrees. The behavior of the properties
is much more difficult to evaluate in real experiments and
simulation offers an opportunity to evaluate many different
settings.

The results for our hashFS implementation are described
in the experimental part of this section.

Table I
DEVELOPMENT OF TRACK INODE ERRORS FOR DIFFERENT NUMBER

OF FILES

M Files Disk Average Track Per Mille Values
Util. Inode Errors Average Conf. Interval

1-12 <64.5% 0.0 0‰ [ 0.0, 0.0 ]
13 69.6% 0.0 0‰ [ 0.0, 0.0 ]
14 74.7% 1.9 <0.001‰ [ 0.0, 0.0 ]
15 79.8% 25.7 0.002‰ [ 0.002, 0.002 ]
16 84.9% 277.9 0.017‰ [ 0.017, 0.018 ]
17 90.0% 1946.6 0.115‰ [ 0.113, 0.116 ]
18 95.1% 10170.0 0.565‰ [ 0.561, 0.569 ]

A. Simulation

Prior to the implementation of the file system, a simulation
tool was used to analyze different hashing properties. The
simulation tool initially reserves the same blocks on the
virtual disk, which are reserved for ext2 metadata during
file system creation. Additionally, it reserves the track inode
block for each track and simulates block allocation accu-
rately. It does not simulate normal ext2 directory creation,
however, and thus fails to allocate the data blocks of each
directory. As a result, the observed disk utilization is slightly
below the disk utilization that would occur in reality. Nev-
ertheless, simulations allow examining allocation problems
for a high number of possible file sets, which would be
impractical using only the actual file system.

The simulation uses the geometry of a WDC WD800BB-
00CCB0 hard disk, extracted using the DIG track boundary
detection tool. This 80 GB hard disk has 225, 390 tracks,
whose size varies between 500 and 765 sectors per track.

For all simulations, a block size of 4 KB and a configured
maximum size of four blocks for “small” files is used. Using
that configuration, 113 track inodes can be stored in a single
track inode block. Observed results are given as average
values and 95% confidence intervals of 30 runs.

Taking into account the modified geometry information,
two possible causes for allocation problems remain, which
might slow down the hashing file system:

Track Inode Miss:
No free track inode remains in the track inode,
where the file has been hashed to.

Data block Miss:
Not enough blocks remain at the hashed track
to allow the allocation of the minimal configured
amount of data blocks.

The first problem results in a failure of the pathname
lookup approach for the associated file. The resulting normal
lookup operation can cause one disk access for each path
component. Compared to that, the second problem incurs
a lesser performance decrease: Because the data location is
still obtained from the read in track inode, only a single
additional disk access is needed to read the corresponding
data blocks.
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Figure 3. Development of Allocation Problems for Different File Sizes

Relation of Track Inode Misses to the Number of Files:
At first, we examine track inode misses. These misses solely
depend on the number of files hashed to a track, and
therefore the total number of file allocated in the file system.
Because the size of a track inode is constant, the actual size
of the allocated files is non-significant. The file size is fixed
at four kilobytes for the first set of simulations. All files are
in the same directory, because the directory structure makes
no difference for these simulations.

Table I shows the results of the simulation for different
numbers of files. Because the observed number of track
inode misses was too small to be expressed as a percent-
age value compared to the total number of files, they are
expressed as a per mille value.

The percentage of files for which no track inode could
be generated is less than 0.057% for 18 million files, which
corresponds to a disk utilization of 95%, which is also the
worst case in our setting. If the average file size would be 8
KB, less than 10 million files could be stored on the disk. As
can be seen in the table, no track inode misses are expected
in this case.

Simulations without removing the ext2 metadata tracks
from the disk geometry show a 1.63% higher track allocation
miss rate. This shows how important it is to handle these
metadata collisions separately.

Relation of Allocation Problems to the Size of Files:
The following simulations examine the impact of differing
file sizes on the failure rate on the allocation of data blocks
on the hashed track. File sets are generated in the same
manner as for the previous simulation runs, differing only
in the size of the allocated files. Because each file occupies a
multiple of the block size, we have examined the file sizes 4,
8, 12, and 16 KB. The obtained average values are plotted
in Figure 3 in order to compare the results. All observed
confidence intervals are less than 0.02% and are therefore
not additionally shown.

The allocation problems increases with increasing file
size. The explanation for this phenomenon is that the
increased allocation requirements for each file causes the
file system to become less forgiving towards a less-than-
optimal distribution. Viewed from another perspective, the
allocation of a file with a file size of 8 KB is the same as

Flat File Set

Deep File Set

0

50

100
Read Operations / Second

0 20 40 60 80 100
x 1000 Files Read

Figure 4. Ext2 Performance starting with a Cold Cache

allocating two 4 KB files to the same track. Thus, achieving
a certain disk utilization with 8 KB files is the same as using
every computed hash value twice for 4 KB files. Deviations
from an optimal distribution are thus increasingly worse for
increasing file sizes.

B. Experimental Results

The benchmarks used to evaluate hashFS performance
are based on “SolidFSBench”, a benchmark environment
specifically developed to benchmark very large file sets.
Existing benchmark tools, e.g. filebench [21], have shown
weaknesses when dealing with millions of different files.

The file set generation is configurable by the root directory
of the file set, the number of files, the size and size distribu-
tion of the files, the number of directories and the maximum
directory depth. The created directory tree is a balanced
n-ary tree with n chosen in a way so that the maximum
depth is not exceeded. Since no in-memory representation
of the whole tree is kept, there is no limit besides disk space
and file system limits regarding the maximum number of
directories or files created. Differently from filebench the
workload generation is done offline instead of online during
the workload execution. Main advantages of this approach
are that it is now possible to execute exactly the same
workload multiple times and that it is no longer necessary
to have knowledge of the whole file set during workload
execution, which circumvents limits regarding the possible
workload size. Furthermore, the usage of computation in-
tensive randomization during workload generation has no
impact on the benchmark performance.

Each file set configuration is benchmarked 10 times. The
file systems are mounted with the noatime and nodiratime
options, preventing unnecessary write accesses.

The benchmarks were run on four test platforms, each
having exactly the same hardware and software configuration
with two WDC WD5002ABYS-0 500 GB hard disks. The
benchmarked file sets were located on a dedicated hard drive.

In order to limit the size of the file sets needed to
achieve high disk utilizations and the hardware requirements,
partitions with a size of 90 GB, beginning at sector 0,
were created. In order to have realistic disk/RAM ratios
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and comparable results, we scaled down the available RAM
using kernel boot options.

We only used the number of tracks of a disk as geometry
information. Furthermore, we will show in the following
that it can be even beneficial to use a different than the real
number of tracks in certain scenarios. For all benchmarks
where the disk geometry is not specified, a geometry with
500 sectors per track is used. Given the partition size of
90 GB and removing all tracks used by ext2 metadata,
the resulting geometry contains a total of 377, 438 tracks.
For each track, a 4 KB track inode block is allocated in
the hashing file system. As a result, the utilization of the
benchmark partitions for the same number of allocated files
is around 1.6% greater for the hashing file system than it is
for the ext2 file system.

Two file sets with different directory structures were
generated in order to examine the behavior of the different
lookup approaches of the file systems.

Flat File Set:
The first file set contains relatively few directories
with 10, 000 files in each directory. The tree has a
maximum depth of 2.

Deep File Set:
The second file set contains one hundred times as
many directories, with a maximum depth of 6.

Influence of Cache State on ext2 Performance: The ext2
read performance strongly depends on the cache size and
state. This can be explained by the ext2 lookup strategy:
Each lookup operation for a path component of the file
results in disk I/O, unless the metadata for that path com-
ponent is already available in the cache. The more lookup
operations are executed, the more metadata is cached. This
naturally increases the probability that at least parts of the
required metadata are already cached. Because the available
cache size is limited by main memory, performance will
stabilize after a certain number of lookup operations, as all
available cache space is already occupied and new metadata
read from disk will replace old cached metadata. After this
state is achieved, the cache is referred to as “hot”.

The amount of permanent read operations in the tar-
get scenario will quickly warm-up the cache. Therefore,
benchmarking results obtained with a cold cache are non-
significant. Accordingly, before each benchmark of the ext2
file system, a number of read operations were executed in
order to warm-up the cache. Figure 4 shows the development
of the number of achieved read operations per second. The
configuration contained 18 million files for both file sets
and a main memory size of 1024 MB, the second largest
used in the benchmarks. After approximately 50, 000 read
operations, the cache is warmed-up for both file sets and a
relatively steady read performance is achieved.

In the following, we will perform 100, 000 read operation
as warm-up for all benchmarks. It is safe to assume that it
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Figure 5. Random Read Performance for the Flat File Set (Light = hashFS,
Dark = ext2)

will result in a warmed-up cache for all other configurations
as well.

Uniformly Distributed Read Benchmarks: The first set
of benchmarks consists entirely of uniformly distributed
random read benchmarks. Random reads can be considered
as the worst case scenario for a file system, because the
probability that a file which is read in is already contained
in the cache is very small. As such, the obtained results show
the worst case behavior of the file systems.

We highlight that the ratio between the available main
memory to disk capacity/number of files must be considered
carefully. For this purpose, the number of files in the
benchmarked file sets is varied between 6, 12, 18 and 20
million files, corresponding to a utilization of approximately
27%, 54%, 81% and 90% of the benchmark partitions.
Furthermore, each benchmark is performed with a main
memory size of 256 MB, 512 MB and 1024 MB.

Figure 5 shows the achieved read performance for the
flat file set, given as completed read operations per second.
Darker bars show ext2 file system performance, lighter bars
the performance of hashFS. The darker colored sections at
the end of the bars indicate the corresponding confidence
intervals of 95%. Figure 6 shows the analogous data for
the deep file set. One thing becomes immediately apparent:
Results for the hashing file system are almost constant across
all benchmarked parameters, while ext2 performance heavily
depends on cache sizes.

Table II shows the average number of read operations
which were executed in the block layer for a read of
single read operation of a file. The corresponding confidence
intervals were very small and therefore omitted. Comparing
the scheduled read operations for each file with the achieved
performance, it is obvious that both parameters inversely
correlate: An increasing number of disk accesses leads to a
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Figure 6. Random Read Performance for the Deep File Set (Light =
hashFS, Dark = ext2)

decreasing performance in all cases. It is interesting to see
that the block layer splits every read operation for hashFS
into two adjacent block read operations.

Benchmarks using a Zipf Distribution: Access patterns
for files on the internet have been shown to closely resemble
a Zipfian distribution with an approximate α-value of 0.95
[3], [2]. While one or more cache layers flatten the skew
of the distribution by processing frequently accessed files,
they probably will not result in a uniformly distribution as
assumed in the last section. We have generated in our envi-
ronment a second workload with skew factors of α = 0.95
and α = 0.5.

Figure 7 shows the obtained results for the flat file set.
Results for the second file set look very similar. A skew
factor of 0.5 only shows a marginal performance increase
compared to uniform random reads. It seems that even the
maximum main memory size of 1024 MB is not big enough
to capitalize on the uneven distribution. The observed results
for a skew factor of 0.95 differ significantly. In all cases,
performance is improved, as more reads can be directly
served from the cache. This effect increases with increasing
cache size. Once again, the performance of the hashing file

Table II
AVERAGE BLOCK READ OPERATIONS PER FILE

Flat File Set Deep File Set
6M 12M 18M 20M 6M 12M 18M 20M

HashFS
256MB 1.985 2.001 2.061 2.123 1.984 1.992 2.076 2.125
512MB 1.968 1.970 2.047 2.103 1.971 1.976 2.067 2.118
1024MB 1.968 1.971 2.047 2.103 1.970 1.976 2.067 2.118

ext2
256MB 26.738 27.558 28.088 28.696 6.860 7.804 8.338 8.295
512MB 2.293 12.372 18.684 20.022 3.702 4.704 5.295 5.427
1024MB 1.776 1.941 2.141 2.261 2.470 3.126 3.540 3.702
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Figure 7. Zipf Performance for Flat File Set (Light = hashFS, Dark =
ext2)
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Figure 8. btrfs Performance for Flat File Set (Light = hashFS, Dark =
btrfs)

system is not influenced by the different file sets, while the
performance of ext2 has the same dependencies, which have
been observed in the random read benchmarks.

Benchmarks using the btrfs file system: The ext2 file
system, which was the foundation of our development and
the file system against we compared hashFS against up to
now, is relatively simple, still often used, but arguably not
the most modern file system available.

To show that our results do not only rely on a bad
performance of ext2, we performed additional tests using
the state-of-the-art btrfs file system [9]. Figure 8 shows the
results using the flat file set with 6 million files with different
amounts of main memory. The btrfs file system is used in
its version 0.16 using default settings and the same system
environment as before.

Surprisingly, the btrfs file system performs much less
read operations per second in our random read scenario
than hashFS and ext2. Additionally, the number of reads
per seconds decreases if less memory is available to cache
inodes and dentry data. However, with only 256 MB of
main memory, the performance is better than ext2’s whose
performance has dropped in that configuration.

Influence of Track Size on hashFS Performance: All
hashFS benchmarks so far have been executed using a ge-
ometry with a fixed track size of 500 sectors. The following
benchmarks examine the effect of different track sizes in
the supplied geometry on the performance of the hashing
file system. As previous benchmarks have already shown,
hashFS performance is independent of the composition of
the file set and, at least with a uniform access distribution,
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independent of the cache size. Furthermore, the number
of files allocated in the file set only plays a role above a
certain level of disk utilization. The following benchmarks
were executed with constant values for these parameters:
The flat file set, containing 6 million files, was used, and
main memory was kept constant at 1024 MB.

The observed impact of the track size on the performance
is very distinct: Increasing the size by 100 sectors resulted
in a decrease in performance by approximately 3 ± 1 reads
per second (see Figure 9). The performance gain for smaller
track sizes can be explained by smaller read operations.
At first glance, the obtained benchmarking results suggest
choosing a very small track size in order to maximize
the performance. There are, however, some implications
to changing track sizes. On the one hand, the smaller the
track size, the more overall tracks exist, increasing their
required capacity. For a track size of 100 sectors, the track
inodes already occupy 8% of the disk capacity. On the
other hand, decreasing the size of the tracks increases the
expected allocation problems, because there is not enough
space available at the hashed tracks. The influence of this
effect is shown in Figure 10.

V. CONCLUSION

The evaluation of the experimental hashFS file system
shows that the hashing-based pathname lookup approach is
able to increase small file read performance for a workload
typical in many Web 2.0 scenarios. A single small file read
is performed with a single seek nearly independent of the
organization and size of the file set or the available cache.
In contrast, we have shown that ext2 heavily depends on the
ability to cache inodes and directory information to perform
well. Additionally, our approach does not rely on a name-
based or temporal locality or large in-memory lookup tables.
We also described how the pathname lookup strategy can be
integrated into the VFS layer, so that other file systems are
able to make similar optimizations.
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