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Abstract—Distributed file systems have become popular in 
recent years. However, they still lack functions for doing fast 
arbitrary data insertion and truncation. To solve the problem, 
we present Wofs, an object-based distributed network file 
system which supports fast arbitrary data insertion and 
truncation. Wofs splits a file into many small objects, stores 
these objects in remote file servers, and uses a special B+tree 
[1][4] to manage the metadata of these objects. Besides, Wofs 
uses the object-range locking policy to avoid data incoherence 
and improve performance. 
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I.  INTRODUCTION 
With the development of high-speed networks, 

distributed file systems have become popular in recent 
years. More and more companies build their distributed file 
systems to provide commercial transactions and services.  

Lately the concept of object-based storage has been 
brought up [7]. The main concept of object-based storage is 
to offload the space management component of an existing 
file system to the storage device itself. Application clients 
thus request for an object (or file) instead of many disk 
blocks. Some distributed file systems combined with object-
based storage devices (OSDs), such as Ceph [14] and zFS 
[9], have also been presented. 

But until now, there are still no file systems supporting 
fast arbitrary data insertion and truncation. In this paper we 
present Wofs, an object-based distributed network file 
system with support for fast arbitrary data insertion and 
truncation. Wofs splits a file into many small objects, stores 
these objects in remote file servers, and uses a special B+tree 
[1][4] to manage the metadata of these objects. Besides, 
Wofs uses the object-range locking policy to avoid data 
incoherence and improve performance. 

II. RELATED WORK 
As mentioned in Section I, fast arbitrary data insertion 

and truncation haven’t been supported on general file 
systems, but have already appeared in database systems. 
EXODUS [2] is a classic model of object-oriented 
databases. But EXODUS is a local database system, not a 
distributed network file system.  

B+tree is usually used to record the information of 
extents, or directory contents. Xfs [12] is a classic model of 
the file systems which utilize B+tree. It uses B+tree to 
record free extents, file extent maps, and directory contents. 
B+tree enables xfs to become more scalable and stable. 
However, xfs doesn’t use B+tree to handle data insertion 
and data truncation. As far as we know, there has been no 
file system using B+tree to efficiently handle data insertion 
and data truncation so far. 

Since there is still no real OSD manufactured and sold in 
stores, we modify two programs respectively called v9fs [13] 
and spfs [11] for the implementation of our Wofs. The two 
programs communicate with each other via the 9p protocol 
[6] to simulate OSDs. We also modify the 9p protocol to 
support data insertion and data truncation in Wofs. 

III. DESIGN AND IMPLEMENTATION 

A. The methods for data insertion and data truncation 
Before we introduce the architecture of Wofs, we need 

to introduce how to do data insertion and data truncation in 
a file system first. As shown in Fig. 1, without supporting 
data insertion and data truncation like Wofs, a file system 
still can do data insertion by reading out all data after the 
specific offset, merging with to-be-inserted data, and then 
writing them back to the file. But this method for data 
insertion is very inefficient. The bigger the file is, the longer 
time the data insertion needs to take. Data truncation also 
needs to read out and write back data, so it has the same 
problem, too. So without a special mechanism, data 
insertion and data truncation can take a lot of time to do. 

To solve this problem, we can just split a file into many 
fixed standard-sized chunks (objects) with a data structure 
managing them, and then do data insertion by just reading 
data out and writing back data as shown in Fig. 2. Thus, the 
amount we read out and write back is much smaller, and the 
time needed for data insertion will be much less, too. Data 
truncation works similarly. That is the main reason why we 
split a file into many objects in Wofs. 
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Figure 1.  Normal insertion in common file systems. 

In Wofs, we allow a user to insert the data of any size at 
any offset of a file. We also allow a user to truncate any 
range of a file. But to maintain the performance of data 
insertion and data truncation, we have to limit the object size 
in Wofs. 

To limit the object size after data insertion, we have to 
split this inserted object into many smaller objects if the size 
of the inserted object is beyond the standard object size. Just 
as shown in Fig. 2, after Step 3 of insertion, the inserted 
object “A” becomes too large, so it must be split into 3 new 
objects “L”, “M” and “N” to limit the sizes of all objects. 
Also, after data insertion or data truncation, sometimes the 
size of some object will become smaller than the standard 
object size, like the new object “N” in Fig. 2. To support this, 
Wofs is designed to allow a file to have many objects with 
various sizes, but it needs a well-designed architecture to 
support that. 

B. The architecture of Wofs 
Wofs has three components: one centralized metadata 

server (MDS), several clients and several OSD servers. The 
OSD server is the remote storage server of Wofs used to 
store objects. They are connected by a network. The 
architecture of Wofs is shown in Fig. 3. 

As implied by the name, the centralized metadata 
server of Wofs stores all metadata in Wofs and is inquired 
for the metadata by clients. To shorten the time needed for 
getting metadata in MDS, MDS stores all metadata in 
memory and just stores the metadata in the disk at some 
fixed times. 

The clients communicate with MDS for metadata, and 
then use the metadata to access OSD servers. In essence, 
they are Linux kernel modules with network functions in 
Wofs. 

 
Figure 2.  Quick insertion in Wofs. 

The OSD servers are the remote storage servers of 
Wofs used to store objects. In Wofs, a file is split into many 
chunks, and we use OSD servers to store these chunks. In 
OSD servers, these chunks are called “objects”. But because 
there is no real object-based disk commercially available, 
we use a program called “spfs” [11] to simulate an object-
based device and call it an OSD server. So in fact, we use 
this program to control objects and store these objects in the 
form of files on ext3. 

The communication among these three components in 
Wofs is shown in Fig. 3. In Wofs, MDS and OSD servers 
need not communicate with each other. They have no 
information needed to exchange with each other. Only 
clients exchange information with them to complete all 
work. 

 
Figure 3.  The communication for file access in Wofs. 
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C. The communication in Wofs 
Wofs is a Linux file system, and we design it to 

support three file types: directories, files, and symbolic 
links. The content of a directory is the metadata of all files 
included in this directory, and the content of a symbolic link 
is the name or path of the directory or file it points at. Since 
the contents of directories and symbolic links are small, we 
see the contents as their metadata and just store them in 
MDS. Storing all data of directories and symbolic links in 
MDS is good for performance. Clients can know which file 
is included in a specific directory by just accessing MDS 
without accessing OSD servers. Besides, since MDS stores 
all metadata in its memory, we can more quickly get the 
contents of directories and symbolic links. 

But files in Wofs are different. Because the data of a 
file is usually big, we need to store file data in disks. In 
Wofs, the data of a file is split into many objects and stored 
in OSD servers, but the metadata of that file is stored in 
MDS. The metadata of a file includes the information about 
which OSD servers objects are stored in. So clients need to 
access MDS, and then access OSD servers. If we choose to 
read this file, we cannot allow other clients to modify this 
file simultaneously. So in Wofs, MDS also takes charge of 
locking the metadata to avoid data incoherence. 

As shown in Fig. 3, Wofs does communication three 
times to accomplish one file access. Clients do the 1st and 
the 3rd communication with MDS, and do the 2nd 
communication with OSD servers. At the 1st 
communication, a client delivers some information to tell 
MDS the file and the file range it wants to access. And then, 
MDS will find out which objects reside at that file range and 
lock the metadata of these objects. Then, MDS sends clients 
some information about which OSD servers these objects 
are stored in. At the 2nd communication, clients use this 
information to access correct OSD servers to get correct 
object data. At the 3rd communication, clients tell MDS the 
file access is done, and MDS will unlock or modify the 
metadata of these objects. 

Whether this file access is read, write, insertion, 
truncation or deletion, MDS locks the metadata of objects at 
the 1st communication and unlocks it at the 3rd 
communication. During the whole period of file access, the 
metadata of the accessed objects is locked and protected. So 
we can ensure that data incoherence won’t occur in Wofs. 

D. MDS 
As mentioned in Section III.B, MDS stores all 

metadata in memory to accelerate the inquiry of metadata. 
To manage all metadata efficiently, we use a simple 
hierarchical data structure to record the file hierarchy of 
Wofs. As shown in Fig. 4, the root of this hierarchical data 
structure records all system metadata about this file system. 
Then the root points to the metadata of the top directory. 

Finally, by traversing the hierarchical data structure, we can 
find the metadata of files we want to access. 

 
Figure 4.  The hierarchical data structure used to record the file hierarchy 

of Wofs. 

In this hierarchical data structure, the metadata of 
directories, files and symbolic links records different 
contents. The metadata of a directory records the memory 
address of the metadata of the directories or files belonging 
to this directory. The metadata of a symbolic link records 
the name or path of the directory or file it points at. And the 
metadata of a file is a data structure called bptree used to 
manage the metadata of all objects belonging to this file. 

As mentioned in Section III.A, splitting a file into 
many chunks to do data insertion and data truncation is a 
practical way to reduce the time consumption. But since 
Wofs supports insertion and truncation, some objects will be 
added, deleted or truncated, so the metadata of these objects 
will be added, deleted or modified. In terms of the data 
structure, it is difficult to record and manage the object 
metadata efficiently. 

For example, as shown in Fig. 5, if we use an array to 
manage the metadata of objects, this array will need another 
linked list to record the metadata of objects whose size is 
not a “standard size”. Since Wofs limits the maximum of the 
object size to maintain the performance of insertion and 
truncation as mentioned in Section III.A, we call this limited 
object size “standard size” and call the object whose size is 
not a standard size “nonstandard object” for convenience. If 
a file has no nonstandard objects, we can find out the 
specific object based on a specific offset by just dividing the 
offset by the standard size. But if a file has one or more 
nonstandard objects, dividing the offset by the standard size 
gives the wrong object. 

As shown in Fig. 5, if we want to know which object 
the offset 2.3MB points at, we can get the object index of 
this object by calculating the quotient of dividing 2.3 by 1 
ignoring the remainder. This is because there is no 
nonstandard object in front of the offset 2.3MB. But if we 
want to know which object the offset 4.7MB points at, 
dividing 4.7 by 1 will get 4, but the offset 4.7MB doesn’t 
point at the object whose object index is 4 actually, because 
there is one nonstandard object in front of the offset 4.7MB. 
We can get the right object only by consulting the linked 
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list. So to find out the specific object based on a specific 
offset, generally, the array needs to consult its linked list 
from the head of this linked list until the object is found. 

 
Figure 5.  The data structure “array”. An array contains 2 parts: 1 array 

table and 1 linked list. The array table records all object metadata and the 
linked list just records the metadata of nonstandard objects. 

But there comes a problem. With more nonstandard 
objects, the linked list will get longer to record more 
metadata of nonstandard objects, and then it becomes less 
efficient to find the object. Moreover, when an object in the 
middle of a file is deleted, the corresponding metadata also 
needs to be deleted and the metadata in the rear of this array 
also needs to be moved forward, which means this array 
needs to be modified heavily and that takes a lot of time. 

In comparison, as shown in Fig. 6, we can see the 
bptree records all metadata of objects in the same way 
whether these objects are standard or nonstandard, which 
means that Wofs has stable performance. The bptree is a 
kind of B+tree, so unbalanced sub-trees will not be 
generated, which can maintain good performance. To look 
for a particular object based on the specific offset quickly, 
the bptree clusters some objects into a group, and records 
the offsets  of  these  objects.   Then, the bptree continues to  

 
Figure 6.  The data structure “bptree”. Each group is a small table used to 
record the local offset, and the squares in the bottom of the figure are used 
to record the object size for each object. (The object arrangement in this 

figure is the same as Fig. 5, but the data structures used to record them are 
different.) 

cluster these small groups into a bigger group, and records 
the offsets of these small groups. The bptree repeats this 
action until the root group is generated. Usually, a large file 
has a higher bptree depth. 

And after the bptree is built, we can start to find out 
which object a specific offset points at by comparing this 
offset with the local offsets recorded in groups from top to 
bottom. For example, as shown in Fig. 6, if we want to 
know which object the offset 3.2MB points at, we can 
compare the number 3.2 with the local offsets recorded in 
the root group. Because 3.2 is less than 4.5 but greater than 
2, we need to choose the middle branch and go down to 
Group B. When we go down to Group B, the number 3.2 
has to be subtracted by 2 and we have to use the difference 
of 1.2 to compare with the local offsets recorded in Group 
B. Since 1.2 is less than 1.5 but greater than 1, finally we 
can find the offset 3.2 MB points at the object whose object 
index is 3. 

The subtraction in the process of finding objects is the 
concept of local offsets in bptree. The design of recording 
local offsets is very important to bptree. With this, when 
some object in the middle of a file is deleted, we can just 
modify the metadata of affected objects and some local 
offsets in bptree. This is the main advantage of using a 
bptree to manage the object metadata. And in Section IV, 
we will compare the performance of the bptree with the 
array. 

E. Client 
A client in Wofs takes charge of accessing file data from 

MDS and OSD servers. In essence, a client in Wofs is a 
Linux kernel module modified from v9fs [13] which is 
mentioned in Section II. It receives a user request from user 
space of Linux and accesses MDS and OSD servers 
according to this request. And at last, it replies the user with 
the data one wants or some other information one wants to 
know. Because the virtual file system of Linux doesn’t 
support insertion and truncation, and Linux does not provide 
system calls for insertion and truncation, we need to modify 
the Linux kernel to support insertion and truncation. 

F. OSD server 
As mentioned previously, in Wofs, OSD servers store all 

objects of files in the form of normal files on ext3, and the 
filename of an object is its object index. The objects 
belonging to the same file are stored in the same directory, 
and the name of this directory is the inode number of this 
file. Since all contents of directories and symbolic links are 
stored in MDS, unlike files, directories and symbolic links 
store nothing in OSD servers. 
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IV. PERFORMANCE EVALUATION 

A. Hardware specification 
Before we discuss the performance of Wofs, we have to 

know the specification of computers used to evaluate the 
performance of Wofs. Because we need a lot of clients to 
evaluate the performance of Wofs in Section IV.E, we use 4 
computers with 8 physical CPU cores as our clients to create 
32 clients totally. Then, to handle many requests from these 
32 clients, we also use this type of computer as our MDS. 
We use five computers each with one physical CPU core and 
one RAID-1 disk system as our OSD servers. All computers 
have Gigabit Ethernet cards to connect with each other via a 
Gigabit switch. 

In all performance evaluations, basically, we use a bptree 
to manage all metadata of a file and use the object-range 
locking policy to lock objects. Besides, we always access a 
file randomly and only access 1MB of this file. We also limit 
the standard object size to be 1MB, and we only use 1 client 
to do the performance evaluations. However, there are 
exceptions in some performance evaluations as listed in 
Table I. In Section IV.D, we will compare bptree with array, 
so we also use an array to manage all metadata of a file in 
Section IV.D. We also need to use different values of file 
entropy to compare bptree with array, so the sizes of some 
objects in Section IV.D need to be smaller than 1MB. The 
definition of file entropy will be introduced in detail in that 
section. Besides, in Section IV.E, we will compare object-
range locking with global locking, so we use the global 
locking policy to lock objects in Section IV.E. Moreover, in 
Section IV.E, we need a lot of clients to do performance 
evaluations, so the number of clients in Section IV.E needs 
to be more than 1. All the default experimental factors and 
exceptions are summarized in Table I. 

In all tests, we limit the object size to be 1MB. That is, 
the standard size of an object is 1MB. This is because using a 
bigger object size can reduce the object number in a file, and 
then clients can reduce the communication with MDS. But 
using a bigger object size will increase the amount of the 
data read out and written back when we do insertion and 
truncation. So for compromise, we choose 1MB to be the 
standard size of an object. 

TABLE I.  THE EXPERIMENTAL FACTORS IN ALL PERFORMANCE 
EVALUATIONS. 

 Default Exceptions
Data structure for file 
metadata 

Bptree Array 

Locking policy Object-range 
locking 

Global locking

Access model Random access None
The amount of a file 
accessed once 

1MB None

Object size 1MB < 1MB 
The number of clients 1 >1(up to 32)

 

B. Basic performance evaluation 
In this performance evaluation, we test 5 kinds of 

operations. These 5 kinds of operations are shown in Fig. 7. 
At first, we read 1 complete object from a file and write 1 
complete object into a file as shown in Fig. 7(a)(b). And 
then, we insert 1 complete object into the middle of some 
object in one file just as shown in Fig. 7(c). The so-called 
“Trunc 1” means we truncate 1 complete object in one file, 
and the so-called “Trunc 2” means we truncate 1MB across 
2 objects in one file and leave two objects of 0.5MB in size 
just as shown in Fig. 7(d)(e). No matter what the operation 
is, all accessed objects are randomly picked. 

Fig. 8 and Fig. 9 show the results of the basic 
performance evaluation. In Fig. 8, we can see these 4 
operations have stable performance in Wofs no matter how 
big the file is. It also shows that the time needed for 1 
insertion is more than the time needed for 1 read or 1 write. 
This is because inserting 1 object into the middle of an 
object will result in data migration inside the OSD server as 
shown in Fig. 2. The data migration means reading out data 
and writing it back. In addition, we can see the time needed 
for these 2 types of truncation is much less than the time 
needed for 1 read or 1 write. This is because a client in 
Wofs does not need to send a lot of data to OSD servers to 
do truncation. It just needs to send the parameters about the 
objects it wants to truncate to OSD servers, and the OSD 
servers will truncate these objects for it. Moreover, we can 
see the time needed for “Trunc 1” is much less than the time 
needed for “Trunc 2”. This is because OSD servers just need 
to delete the object truncated completely in “Trunc 1”, but 
OSD servers have to truncate objects partially in “Trunc 2”, 
which needs data migration inside OSD servers and takes 
much more time than “Trunc 1”. 

Fig. 9 shows the throughput of these 4 operations in 
Wofs under the Gigabit Ethernet network. Because we use a 
Gigabit switch to connect all components in Wofs, 
theoretically, the speed a client sends data to OSD servers 
can reach 125MB/s. Although clients need to do 3 
communications with MDS and OSD servers in Wofs, and 
MDS and OSD servers also need some time to handle the 
requests from clients and access objects, in Fig. 9, we still 
can see that the throughput of read and write in Wofs can 
reach 82MB/s. Besides, in Fig. 9, although the data 
migration inside OSD servers takes some time, we still can 
see the throughput of insertion in Wofs can reach 60MB/s. 
Furthermore, in Fig. 9, we can see the throughputs of “Trunc 
1” and “Trunc 2” are much more than the throughputs of 
read, write and insertion. We see the throughput of “Trunc 1” 
can reach about 700MB/s, and the throughput of “Trunc 2” 
can reach about 290MB/s. Because clients just need to send 
the parameters for truncation to OSD servers to do 
truncation, the throughput of truncation can be much larger 
than the bandwidth of Gigabit Ethernet. 
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Figure 7.  The access models for basic performance evaluation. 

 
Figure 8.  The time needed for doing 1 read, 1 write, 1 insertion and 1 

truncation with different file sizes. (The curve of the performance of read 
almost overlays that of write.) 

C. Insertion and truncation 
In Section IV.B, we can see Wofs has stable and good 

performance in data insertion and data truncation with 
variable file sizes. Now we compare Wofs with ext3 to 
evaluate the advantage of supporting data insertion and data 
truncation. We choose to compare Wofs with ext3 because 
ext3 is the most popular file system in Linux and OSD 
servers use it as their base file system to store object data. 
Fig. 10 shows the results of this comparison. The so-called 
“Insert”, “Trunc 1” and “Trunc 2” in Fig. 10 are just the 
access models shown in Fig. 7. Besides, because Wofs is a 
distributed network file system and ext3 is a local file 
system, to compare them fairly, we eliminate the time 
needed for delivering data or parameters in the network to 
test the time required for doing insertion and truncation in 
Wofs. 

 
Figure 9.  The throughput of read, write, insertion and truncation in Wofs 

with different file sizes. 

 
Figure 10.  The time needed for doing 1 insertion and 1 truncation on Wofs 

with different file sizes ignoring the time needed for network 
communication, and the time needed for doing 1 insertion and 1 truncation 

on ext3 with different file sizes. 

In Fig. 10, we can see Wofs has stable performance in 
data insertion and data truncation as usual, no matter how big 
the file we access is. In comparison, in Fig. 10, we can see 
the bigger file we insert and truncate, the more time needed 
for doing insertion and truncation in ext3. It shows the 
advantage of supporting data insertion and data truncation. In 
Fig. 10, we can see the time needed for doing insertion and 
truncation in Wofs is a little more than the time needed in 
ext3 when the file size is 1MB. This is because the object 
size in Wofs is equal to 1MB, and the file which is 1MB in 
size only has 1 object. So inserting or truncating a file in 
Wofs is totally the same as inserting or truncating a file in 
ext3 except that Wofs needs to do communication inside 
itself to do 1 file access but ext3 doesn’t need that. Except 
that special case, Wofs has better performance than ext3 in 
data insertion and data truncation ignoring the time needed 
for network communication. 
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D. Bptree and array 
Since the performance of the data structures used to 

manage the file metadata is very important to Wofs, we also 
need to test and compare the performance of these data 
structures. We use 2 different data structures to manage the 
file metadata for comparison: bptree and array. The bptree is 
the data structure shown in Fig. 6, and the array is the data 
structure shown in Fig. 5. We have already described the 
disadvantage of the array and the advantage of the bptree in 
Section III.D. 

Now, to discuss how much the number of nonstandard 
objects in a file affects the performance of bptree and array, 
we need to define a value called “file entropy”. File entropy 
means the ratio of the number of nonstandard objects in a 
file to the total number of all objects in a file. From Section 
III.D, we know the array has worse performance with bigger 
file entropy. But the value of file entropy does not affect the 
performance of bptree at all. 

To evaluate the actual effect of the file size and the file 
entropy on the performance of bptree and array, we do this 
test by reading one object from a file and measure the time 
MDS needs to handle a read request. Fig. 11 and Fig. 12 
show the read performance of bptree and array based on 
different file sizes and different values of file entropy. In Fig. 
11, we can see the performance of the bptree is almost not 
affected by different values of file entropy, but the 
performance of the bptree is slightly affected by different file 
sizes. This is because a large file has a higher bptree, and 
MDS needs a little more time to traverse the entire bptree to 
access the object metadata. So MDS needs a little more time 
to handle the request for a large file. In comparison, the 
performance of the array is not so stable and much affected 
by different file sizes and different values of file entropy. By 
comparing Fig. 11 with Fig. 12, we can see MDS needs 
much more time to handle a read request when the file size 
becomes larger and the value of file entropy becomes bigger, 
which is going to dominate the total time needed for doing 1 
complete operation. Besides, we can see the bptree has much  

 
Figure 11.  The time MDS needs to handle one read request with different 

file sizes and different values of file entropy when using the bptree to 
manage object metadata. (The number “X” in BPTREE[X] in the right side 

of the figure means the object number of a file.) 

 
Figure 12.  The time MDS needs to handle one read request with different 

file sizes and different values of file entropy when using the array to 
manage object metadata. (The number “X” in ARRAY[X] in the right side 

of the figure means the object number of a file.) 

more stable performance than the array, and the bptree 
always maintains a much better performance 

E. .Object-range locking and global locking 
Traditionally, different users can’t modify the same file 

simultaneously even when the ranges of the file they modify 
are different. In Wofs, MDS locks the metadata of accessed 
objects when a client is accessing the data of those objects, 
and MDS uses the object-range locking policy to lock the 
object metadata. With the object-range locking policy, 
different clients can modify the data of different objects at 
the same time even when these different objects belong to 
the same single file. So we can infer that the performance of 
object-range locking should be better than the performance 
of global locking. To verify this inference, we do a test to 
evaluate the performance of object-range locking and global 
locking. 

Fig. 13 shows the relationship between the number of 
clients and the number of times of write error per successful 
write in Wofs. A write error means a client tries to write but 
it fails. In object-range locking, a client can fail on a write 
and get a write error only if another client is writing the 
same object with the metadata of that object locked. In 
global locking, a client will fail to write and get a write error 
if another client is writing to any place of the file since the 
second client must have the file locked already. 

The object number of the file in Fig. 13 is 1024, and 
each client tries to write only one object randomly into the 
same file as one write. So it is difficult for 2 clients to write 
the same object at the same time theoretically. In Fig. 13, 
we can see clients easily fail to write the same file 
simultaneously if MDS uses the global locking policy. And 
inversely, clients can easily succeed to write the same file 
simultaneously if MDS uses the object-range policy. Here 
we verify the performance of object-range locking is really 
better than that of global locking. With the object-range 
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locking policy, many clients may easily modify the same 
file simultaneously without waiting for others. 

 

 
Figure 13.  The number of times of the write error per write with different 

locking policies and different client numbers. 

V. CONCLUSION 
Wofs provides a more efficient method for quick file 

modification by supporting fast arbitrary data insertion and 
truncation. With Wofs, we can modify a file more efficiently 
and neatly. We don’t need to modify a file by rewriting a 
large part of the whole file anymore. Besides, it is much 
better to use the bptree to record and manage the metadata of 
objects. It provides stable and good performance, and also 
helps MDS access and modify object metadata more 
efficiently. Moreover, the object-range locking policy can 
reduce the frequency of access error significantly and 
improve the performance of Wofs. 
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