
ZBD: Using Transparent Compression at the Block
Level to Increase Storage Space Efficiency
Thanos Makatos∗†, Yannis Klonatos∗†, Manolis Marazakis∗, Michail D. Flouris∗, and Angelos Bilas∗†

∗ Foundation for Research and Technology - Hellas (FORTH)
Institute of Computer Science (ICS)

100 N. Plastira Av., Vassilika Vouton, Heraklion, GR-70013, Greece
† Department of Computer Science, University of Crete

P.O. Box 2208, Heraklion, GR 71409, Greece
{mcatos, klonatos, maraz, flouris, bilas}@ics.forth.gr

Abstract—In this work we examine how transparent compres-
sion in the I/O path can improve space efficiency for online
storage. We extend the block layer with the ability to compress
and decompress data as they flow between the file-system and
the disk. Achieving transparent compression requires extensive
metadata management for dealing with variable block sizes, dy-
namic block mapping, block allocation, explicit work scheduling
and I/O optimizations to mitigate the impact of additional I/Os
and compression overheads. Preliminary results show that online
transparent compression is a viable option for improving effective
storage capacity, it can improve I/O performance by reducing
I/O traffic and seek distance, and has a negative impact on
performance only when single-thread I/O latency is critical.

Keywords-online block-level compression; I/O performance;
log-structured block device

I. INTRODUCTION

Although disk storage cost per GB has been steadily de-
clining, the demand for additional capacity has been growing
faster. For this reason, various techniques for improving effec-
tive capacity have gained significant attention [1]. In this work
we examine the potential of transparent data compression [2]
for improving space efficiency in online disk-based storage
systems.

Previously, compression has been mostly applied at the file
level [3]. Although this approach has the effect of reducing
the space required for storing data, it imposes restrictions,
such as the use of specific file-systems (i.e. NTFS or ZFS).
In our work we explore data compression at the block-level
by using a block-storage layer, ZBD, in the Linux kernel that
transparently compresses and decompresses data as they flow
in the system.

Block-level compression appears to be deceptively simple.
Conceptually, it merely requires intercepting requests in the
I/O path and compressing (decompressing) data before (after)
writes (reads). However, our experience shows that designing
an efficient system for online storage is far from trivial and
requires addressing a number of challenges:

• Variable block size: Block-level compression needs to
operate on fixed-size input and output blocks. How-
ever, compression itself generates variable size segments.
Therefore, there is a need for per-block placement and
size metadata.

• Logical to physical block mapping: Block-level compres-
sion imposes a many-to-one mapping from logical to
physical blocks, as multiple compressed logical blocks
must be stored in the same physical block. This requires
using a translation mechanism that imposes low overhead
in the common I/O path and scales with the capacity
of the underlying devices as well as a block alloca-
tion/deallocation mechanism that affects data placement.

• Increased number of I/Os: Using compression increases
the number of I/Os required on the critical path during
data writes. A write operation will typically require
reading another block first, where the compressed data
will be placed. This “read-before-write” issue is important
for applications that are sensitive to the number of I/Os or
to I/O latency. Moreover, reducing metadata footprint and
achieving metadata persistence can result in significant
number of additional I/Os in the common path.

• Device aging: Aging of compressed block devices results
in fragmentation of data, which may make it harder to
allocate new physical blocks and affects locality, making
performance of the underlying devices less predictable.

Besides I/O related challenges, compression algorithms in-
troduce significant overheads. Although in this work we do
not examine alternative compression algorithms and possible
optimizations, we quantify their performance impact on the
I/O path when using disk-based storage systems. Doing so
over modern multicore CPUs offers insight about scaling
down these overheads in future architectures as the number
of cores increases. This understanding can guide further work
in three directions: (i) Hiding compression overheads in case
of large numbers of outstanding I/Os; (ii) Customizing future
CPUs with accelerators for energy and performance purposes;
and (iii) Offloading compression from the host to storage
controllers.

In this work we use a transparent compression system at
the block layer for improving the efficiency of online storage.
We examine the performance and tradeoffs associated with I/O
volume, CPU utilization, and metadata I/Os.

For our evaluation we use four realistic workloads: Post-
Mark, SPECsfs2008, TPC-C and TPC-H. Our results show
that compression degrades performance by up to 15% and 34%

2010 International Workshop on Storage Network Architecture and Parallel I/Os

978-0-7695-4025-2/10 $26.00 © 2010 IEEE

DOI 10.1109/SNAPI.2010.15

61

for TPC-H and TPC-C respectively, but improves by 80% and
35% for PostMark and SPEC SFS respectively. This comes at
the cost of increased CPU utilization, up to 311% on an 8-core
system. We believe that trading CPU with storage capacity is
in-line with current technology trends. Compression in the I/O
path has a negative impact on performance (up to 34%) for
latency sensitive workloads that use only small I/Os. However,
our results indicate that compression can increase I/O perfor-
mance for workloads that exhibit enough I/O concurrency.

The rest of this paper is organized as follows. Section II
discusses the design of ZBD and how it addresses the associ-
ated challenges. Section III presents our evaluation methodol-
ogy. Section IV presents our experimental results. Section V
discusses previous and related work. Finally, we draw our
conclusions in Section VI.

II. DESIGN AND IMPLEMENTATION

The design of the ZBD system has been presented in [4].
For completeness we summarize here the main design issues.
In ZBD, application-generated file-level I/O operations pass
through the ZBD virtual block-device layer, where com-
pression and decompression takes place, for write and read
accesses, respectively. The block-level interface allows us
to be file-system agnostic, but raises the complication of
variable-size segments. In handling writes, ZBD compresses
the data supplied by the request originator, and fit the resulting
variable-size segments into fixed-size blocks, which are then
mapped onto block storage devices. In handling reads, ZBD
locates the corresponding fixed-size blocks, and by decompres-
sion obtains the data to be returned to the request originator.
Figure 1 illustrates the read and write paths for ZBD. In this
section, we describe these procedures in detail.

A. Space Management

Compressing fixed-size blocks results in variable-size seg-
ments, that require special handling for storing them. Com-
pressed blocks are stored in fixed-size physical extents. The
extent size, a multiple of the block size of the underlying
storage, defines the unit of I/O operations in our system. A
logical-to-physical mapping, via a translation table, determines
the corresponding physical extent for each logical block ref-
erenced in an I/O operation. This translation map is stored
persistently within a reserved region of the underlying storage.
Since an extent may host at any point in time multiple logical
blocks, an additional mapping is needed to determine which
region within the extent corresponds to a referenced logical
block. This extent-level mapping is achieved by traversing a
linked-list embedded within the extent. The traversal takes
place in system memory, once the extent has been fetched
from the underlying storage. With space savings from data
compression typically in the order of 40%, we have found
that the linked-list within an extent consumes around 0.6% of
the space needed for the actual data contents. All free space
within an extent is contiguous, located at the end of the extent.

Block re-writes generally result in a different compressed
footprint, making in-place updates complicated. Rather than

Fig. 1. ZBD read and write paths.

handling the complications of updating the space representa-
tion within the affected extent, we have opted to always write
modifications to new extents, similar to log-structured file-
systems [5]. A key benefit is that we do not have to read the
affected extent in memory before modifying it. On the other
hand, as time progresses the contents of a large fraction of the
extents on the underlying storage may become invalid, while
still consuming space. ZBD incorporates a cleaner thread,
which is triggered when the amount of free extents falls below
a threshold and tries to reclaim extents, similarly to the cleaner
of Sprite LFS [5]. The cleaner needs to determine which of
the blocks within an extent are valid, or “live”, and then to
compact “live” blocks into new extents, updating the logical-
to-physical translation map in the process. Extents with no
“live” blocks are marked as members of a free-extents pool.
Moving a “live” block to a new extent only requires a memory
copy but no compression/decompression.

The cleaner generates read I/O volume proportional to the
extents that are scanned and write I/O volume proportional to
the extents resulting from compacting live blocks. To improve
cleaner efficiency in terms of reclaimed space, we use a
first-fit, decreasing-size policy when moving live blocks to
new extents. This approach minimizes the space wasted when
placing variable-size blocks into fixed size extents, as it places
larger blocks into as few extents as possible and uses smaller
ones to fill extents having little free space.

Placement issues during cleanup are important. Note that
the relative location of logical blocks within an extent is
not as important, because extents are read in memory in
full. There are two issues that arise as a consequence: (a)
which logical blocks should be placed in a specific extent
during cleanup; and (b) whether a set of logical blocks that
are being compacted will reuse an extent that is currently
being compacted or an extent from the free pool. ZBD tries
to maintain the original “proximity” of logical blocks, by
combining logical blocks of neighboring extents to a single
extent during compaction. As a result, each set of logical
blocks is placed in the previously scanned extents rather than
new ones to avoid changing the overall location on the disk.

Production servers usually exhibit periods of low activity, so

62

we expect the cleaner to not directly interfere with application-
generated I/O operations. The impact of the cleaner is explic-
itly evaluated in Section IV-I.

B. Extent Buffer

To mitigate the impact of additional I/Os due to read-
modify-writeback sequences, the compression layer of ZBD
uses a buffer in DRAM for extents. This a fully-set-associative
buffer with LRU eviction. Extents are classified in “buckets”
depending on the amount of free space within the extent. Each
bucket is implemented as a LIFO queue of extents. An extent
remains in the extent buffer until it becomes reasonably full.
The extent size, number of buckets, and the total size of the
extents buffered are all tunable parameters.

The extent size affects the degree of internal fragmentation,
and may have an effect on locality: larger extents have
higher probability to contain unrelated data when applications
generate random writes, while smaller extents suffer from
internal space fragmentation. Furthermore, data locality may
be affected as extents age by remaining in the extent buffer
for long periods. On the other hand, if extents are evicted too
early, internal fragmentation may be increased. To balance this
tradeoff, the extent buffer uses an aging timeout that specifies
the maximum amount of time an extent can remain in it.

When writing compressed blocks from concurrently exe-
cuting contexts, a decision must be made as whether to write
blocks in the same or different extents. Concurrent writes to
an extent involve a tradeoff between lock contention and CPU
overhead for memory copies. Our experience has shown that
it is best to preserve locality of reference as much as possible,
albeit at the cost of less efficient space utilization. We have
determined that buffering a small number of extents in memory
suffices for preserving locality. Extents are written back (if
modified) as soon as (a) they become full, i.e. there is not
enough space for a write to append more blocks, and (b) there
is no reference to them, i.e. no ongoing read I/O operation
references this extent.

The size of the extent buffer is set to 16 MB: this size
can help performance for workloads with small but sequential
accesses. A larger extent buffer does not affect performance,
as the more DRAM dedicated to the extent buffer, the less
DRAM is left for the buffer cache.

C. Work Scheduling

Adding compression and decompression overheads in the
I/O path increases the latency of single I/O operations; yet,
the common case is that a server needs to handle multiple
outstanding I/O operations. By explicitly managing concur-
rency, we have a chance to effectively hide the compression
latency, as the result of overlapping these computations with
other concurrent operations.

To allow for a high degree of concurrent I/O operations
progressing asynchronously, ZBD uses callback handlers to
avoid blocking on synchronous kernel calls. To hide the impact
of compression on large I/Os, ZBD uses multiple cores when
processing a single large I/O. We split large I/O requests to

units of individual blocks that are compressed or decompressed
independently by different cores. This decreases response time
for reads and writes, and also reduces the delay writes may
introduce to read processing.

With ZBD active beneath the file-system layer and the
buffer-cache, write requests typically come in batches as the
result of buffer-cache flushing. However, it is less common to
have multiple concurrent large reads, therefore decompression
can significantly increase their response time. ZBD manages
two work-queues for all CPU-cores, one for reads and one for
writes, with the read work-queue having higher priority.

Decompression is performed after the I/O read to the disk
has completed and the extent has been read in memory.
Decompression could be performed earlier when the read
callback for the extent is run in a bottom-half context, reducing
the number of context switches. However, bottom-half context
execution is scheduled on the same CPU the top-half occurred,
hence restricting parallelism. With separate threads for issuing
I/Os and performing decompression, this problem is mitigated.

Finally, ZBD takes special care to allow multiple readers
and writers to access non-overlapping regions within the same
extent. Placing a compressed block in an extent is done in two
steps: First, free space in the extent is reserved. Second, block
contents are copied inside the extent. Multiple write contexts
can copy blocks into the same extent simultaneously, since the
pre-allocation step ensures proper space management.

D. Metadata and Data Consistency

The logical-to-physical translation map along with the free
extents pool are all the metadata ZBD requires. In this work we
focus on the performance aspect of transparent compression
and assume that metadata consistency in case of a failure is
guaranteed by the use of NVRAM. The use of NVRAM is
essential in our design to avoid synchronous metadata updates.
Moreover, the extent buffer also needs the persistence guar-
antees of NVRAM, otherwise a write request would require
a full extent flush before it is completed, which would result
in significantly higher write I/O volume, and consequently,
lower performance. The amount of NVRAM required is small,
typically in the order of a few tens of MB, as it only requires
to store pending extent writes and dirty metadata blocks.

E. Power Efficiency

The trading of CPU cycles for increased storage capacity
has power implications as well. On the one hand, by consum-
ing more CPU cycles for compression and decompression, we
increase power consumption. On the other hand, compression
translates to reduced I/O volume and possibly less devices,
improving power consumption. This is an additional parameter
to be taken into account when trading CPU cycles for I/O
performance, storage capacity or improved manageability.
However, we believe that it is important to examine this
tradeoff alongside offloading compression, e.g. to specialized
hardware, and we leave this for future work.

63

III. EXPERIMENTAL PLATFORM

We present our evaluation results using a commodity server
built using the following components: eight 500-GB Western
Digital WD800JD-00MSA1 SATA-II disks connected on an
Areca ARC-1680D-IX-12 SAS/SATA storage controller, a
Tyan S5397 motherboard with two quad-core Intel Xeon 5400
processors running at 2 GHz, and 32 GB of DDR-II DRAM.
The OS installed on this host is CentOS 5.3 (kernel version
2.6.18-128.1.6.el5, 64-bit). The peak disk throughput is 100
MB/sec for reads, and 90 MB/sec for writes, respectively,
while the average seek time is 12.6 milliseconds. Disk caching
is set to write-through mode. The disks are configured as
RAID-0 devices, using the MD software-RAID with the chunk-
size set to 64 KB.

Compression Decompression Space savings
lzo 46 µs 14 µs 34%
zlib 150 µs 60 µs 54%

TABLE I
COMPRESSION/DECOMPRESSION COST OF A 4-KB BLOCK.

The algorithms and implementations used for compression
and decompression of data are the default zlib [6] and
lzo [7] libraries in the Linux kernel without any modifi-
cations, except for the pre-allocation of workspace buffers.
zlib supports nine compression levels, with the lowest
favoring speed over compression efficiency and the highest
vice versa. We set the compression level to one, since for
4 KB blocks higher compression levels disproportionally in-
crease the compression overhead with a minimal improvement
in space-consumption (30% additional compression cost for
only 2% additional space savings). The implementation of
lzo we use does not support compression levels. Table I
compares the performance characteristics of the zlib and
lzo implementations. The extent size used is 32 KB in all
of our experiments but we evaluate the impact of extent size
separately in Section IV-F. We use four popular benchmarks,
running over an XFS file-system with block-size set to 4 KB:
PostMark, SPECsfs2008, TPC-C, and TPC-H. For TPC-C and
TPC-H, we use MySQL (v.5.1) with the default configuration
and the MyISAM storage engine.

A. PostMark

PostMark [8] is a file-system benchmark that simulates a
mail server that uses the maildir file organization. It creates
a pool of continually changing files and measures transaction
rates and I/O throughput. We present results from executing
50,000 transactions for a 35:65% read-write ratio, with 16 KB
read/write operations, over 100 mailboxes where each mailbox
is a directory containing 500 messages, and the message size
ranging from 4 KB to 1 MB. By default, PostMark generates
random (therefore, uncompressible) contents for each written
block. In our evaluation we have modified PostMark to use real
mailbox data as the contents of the mailbox files. In general,
mail servers benefit little from data caching in DRAM, since

it is common for the size of the mail-store to exceed that
of the server’s DRAM by at least one order of magnitude [9],
and, moreover, the I/O workload is write-dominated. For these
reasons, we use 1 GB of DRAM for PostMark.

B. SPECsfs2008

SPEC SFS [10] simulates the operation of an NFSv3/CIFS
file-server; our experiments use the CIFS protocol. In
SPEC SFS, a performance target is set, expressed in
operations-per-second. Operations, both read/writes of data-
blocks and metadata-related accesses to the file-system, are
executed over a file-set generated at benchmark-initialization
time. The size of this file-set is proportional to the performance
target (≈120 MB per operation/sec). SPEC SFS reports the
number of operations-per-second actually achieved, and the
average response time per operation. We set the performance
target at 3,400 CIFS ops/sec, a load that the eight disks can
sustain, and then increase the load up to 4,600 CIFS ops/sec.
As with PostMark, we modify SPEC SFS to use compressible
contents for each block. For the SPEC SFS results, the DRAM
size is set to 2 GB, under the assumption that this is close to
the common file-set size to DRAM-size ratios in audited SPEC
SFS results [11].

C. TPC-C (DBT-2)

DBT-2 [12] is an OLTP transactional performance test,
simulating a wholesale parts supplier where several workers
access a database, update customer information, and check
on parts inventories. DBT-2 is a fair usage implementation
of the TPC’s TPC-C Benchmark specification [13]. We use a
workload of 300 warehouses, which corresponds to a 28 GB
database, with 3,000 connections, 10 terminals per warehouse
and benchmark execution time limited to 30 min. The database
is compressed by 34% and 46%, when using lzo and zlib,
respectively. For TPC-C, we limit system memory to 1 GB.
This amount of DRAM is large enough to avoid swapping,
but small enough to create more pressure on the I/O system.

D. TPC-H

TPC-H [14] is data-warehouse benchmark that issues data-
analysis queries to a database of sales data. For our evaluation,
we have generated a scale-4 TPC-H database (4 GB of data,
plus 2.5 GB of indices). We use queries Q1, Q3, Q4, Q6, Q7,
Q10, Q12, Q14, Q15, Q19, and Q22, that keep execution time
to reasonable levels. The compression ratio for this dataset
is 39% using lzo and 48% using zlib. TPC-H does a
negligible amount of writes, mostly consisting of updates to
file-access timestamps. For this workload, we have set the
DRAM size to 1 GB, under the assumption that this is close
to the common database-size to DRAM-size ratios in audited
TPC-H results [15].

IV. EXPERIMENTAL EVALUATION

In this section we first examine the impact of compression
on performance and then we explore the impact of certain
parameters on system behavior.

64

1 2 4 8

Number of CPUs

0

20

40

60

T
P

S
Native
pass-through

(a) Trans. per sec (TPS)

1 2 4 8

Number of CPUs

0

20

40

60

80

100

%
C

P
U

ZBD (lzo)
ZBD (zlib)

(b) CPU Utilization

Fig. 2. Results for PostMark with variable number of CPUs.

1 2 4 8

Number of CPUs

0

20

40

60

T
P

S

Native

(a) Trans. per sec (TPS)

1 2 4 8

Number of CPUs

0

20

40

60

80

100

%
C

P
U

ZBD (lzo)
ZBD (zlib)

(b) CPU Utilization

Fig. 3. Results for PostMark using more compressible data.

A. PostMark

Figure 2 shows results for PostMark during the transac-
tion execution phase, with 1, 2, 4 and 8 CPUs, and two
compression libraries, lzo and zlib. Native performance
is unaffected by the number of CPUs, as PostMark’s needs
in CPU cycles are minor. ZBD achieves higher performance
than native by up to 69%, mainly due to the log-structured
writes, as indicated in Figure 2(a). In pass-through mode,
ZBD processes each I/O as if compression fails, no actual
compression/decompression is performed. As the number of
CPUs decreases, ZBD performance drops by up to 12%,
especially when using zlib, as it is much more demanding
in CPU cycles. When more compressible contents used as
data generated by Postmark, shown in Figure 3, performance
increases by 2% over the less compressible data, as the former
requires less CPU and its higher compression ratio results to
lower I/O volume. When using all eight CPUs, ZBD offers
substantially higher performance than ZBD in pass-through
mode, as compression reduces the I/O volume of the log-
structured writes.

B. SPEC SFS

Figure 4 shows our results for SPEC SFS. Native sustains
the initial load of 3,400 CIFS ops/sec, but fails to do so
for higher loads. Log-structured writes help ZBD to sustain

3.4 3.7 4.0 4.3

Load (x1,000)

0

1

2

3

4

op
s/

se
c

(x
1,

00
0)

Native
ZBD (lzo)
ZBD (zlib)
pass-through

(a) Throughput

3.4 3.7 4.0 4.3

Load (x1,000)

0

5

10

15

m
se

c/
op

(b) Latency

3.4 3.7 4.0 4.3

Load (x1,000)

0

10

20

30

40

50

%
C

P
U

(c) CPU Utilization

Fig. 4. Results for SPEC SFS.

higher loads, up to 3,700 CIFS ops/sec, as indicated by ZBD
in pass-through mode. Data compression further improves per-
formance; ZBD (lzo) sustains the load of 4,000 CIFS ops/sec.
By using zlib, the higher compression ratio can sustain the
highest load point, but fails to do so for loads beyond 4,300
CIFS ops/sec. Compression also improves latency, by up to
150% for zlib. The impact of higher compression ratio is
also reflected by the reduced latency for zlib compared
to lzo, up to 23%. Finally, compression increases CPU
utilization by 80% and 90% for lzo and zlib, respectively.

Figure 5 shows our results for SPEC SFS when using more
compressible data for file contents. Higher compression ratio
results in lower I/O volume, hence higher throughput. ZBD
(lzo) now sustains the load of 4,300 CIFS ops/sec but not
the one of 4,600 ops/sec. ZBD (zlib) sustains the highest
load point due to higher compression ratio.

SPEC SFS has an abundance of outstanding I/Os, hence
overall performance is not affected by compression, as it is
overlapped with I/O. Further, the additional overhead intro-
duced in the I/O path by compression does not hurt latency,
since the more efficient I/O compensates for the increased
CPU overhead with significant performance benefits.

C. TPC-C (DBT2)

Figure 6 shows our results for TPC-C. Performance de-
grades for ZBD by 31% for lzo and by 34% for zlib,
whereas CPU utilization increases by 64% and 72%. TPC-
C exhibits reads that are small (usually 4 KB) and random,
leading to disproportionally high I/O read volume. Each read
request practically translates to reading a full extent (32 KB
in this configuration). In addition, decompression can not be
parallelized effectively for small reads, leading to increased

65

4.63.4 3.7 4.0 4.3

Load (x1,000)

0

1

2

3

4

op
s/

se
c

(x
1,

00
0)

Native
ZBD (lzo)
ZBD (zlib)

(a) Throughput

4.63.4 3.7 4.0 4.3

Load (x1,000)

0

5

10

m
se

c/
op

(b) Latency

4.63.4 3.7 4.0 4.3

Load (x1,000)

0

10

20

30

40

50

%
C

P
U

(c) CPU Utilization

Fig. 5. Results for SPEC SFS using more compressible data.

1 2 4 8

Number of Disks

0

100

200

300

400

500

T
P

M

Native

(a) New Order Transactions per
min

1 2 4 8

Number of Disks

0

10

20

30

40

50

%
C

P
U

ZBD (lzo)
ZBD (zlib)

(b) CPU Utilization

Fig. 6. Results for TPC-C.

read response. As the number of disks decreases, I/O latency
significantly increases making the decompression overhead
less important. When using only one disk, performance im-
proves by 29% and 34% for lzo and zlib, respectively.

D. TPC-H

Figure 7 shows per-query results for a subset of the TPC-H
queries, executed back-to-back. Most queries suffer perfor-
mance penalty when using ZBD by up to 33% and 38% for
lzo and zlib, respectively. Overall, performance decreases
by 11% and 15% and CPU utilization increases by up to
242% and 311%. TPC-H has very few outstanding I/Os, and
decompression cannot be effectively overlapped with I/O, thus
degrading performance.

In Figure 8 we execute Q3, varying the number of CPUs.
Native is unaffected by the reduction in CPU power, as the

1 3 4 6 7 10 12 14 15 19 22

Query

0

50

100

se
c

Native
ZBD (lzo)
ZBD (zlib)

(a) Execution Time

1 3 4 6 7 10 12 14 15 19 22

Query

0.0

12.5

25.0

37.5

%
C

P
U MySQL

Native
ZBD (lzo)
ZBD (zlib)

(b) CPU utilization. 100% is the maximum CPU utilization for all eight cores.

Fig. 7. Results for TPC-H.

1 2 4 8

Number of CPUs

0

20

40

60

80

100
T

im
e

(s
ec

)

Native

(a) Execution Time

1 2 4 8

Number of CPUs

0

20

40

60

80

100

%
C

P
U

ZBD (lzo)
ZBD (zlib)

(b) CPU Utilization

Fig. 8. Results for TPC-H (Q3) with variable number of CPUs.

query can consume at most one CPU. ZBD (lzo) suffers
performance penalty when running at only one CPU by 13%,
whereas ZBD (zlib) intensively contends with MySQL for
CPU cycles, resulting in 67% performance degradation.

Next, we explore the effect on system performance of
data locality, extent size, log-structured writes, compression
efficiency, cleaning overhead and metadata I/Os.

E. Effect of Compression on Data Locality

When using transparent compression, there are some less
obvious factors that affect performance. As data are kept
compressed, disk transfer time is reduced by a factor governed
by the compression ratio achieved. Furthermore, the average
seek distance is reduced by roughly the same ratio, as data
are “compacted” to a smaller area on the disk platter. Figure 9
illustrates the access pattern for TPC-H (Q3); ZBD generates
disk accesses that are within a 4 GB zone on the disk, whereas
native’s accesses are within a 6.5 GB zone. This means that the
average seek distance for ZBD is smaller than native’s. Finally,
compacting data to a smaller area keeps it to the outer zone
of the disk platter, making ZCAV effects more vivid. Despite

66

0 20 40 60 80

Time (sec)

0

2

4

6

8

G
B

(a) Native

0 20 40 60 80

Time (sec)

0

2

4

6

8

G
B

(b) ZBD (lzo)

Fig. 9. Disk access pattern for TPC-H (Q3).

these considerations, performance is still lower than native, as
decompression cost dominates response time.

8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Extent Size

0
10
20
30
40
50

T
P

S

TPS
Read I/O Volume
Write I/O Volume

0

5

10

15

20

25

G
B

(a) PostMark

16
K

32
K

64
K

12
8K

Extent Size

0

5

10

m
se

c/
op

Response Time
Read I/O Volume
Write I/O Volume

0

5

10

15

20

G
B

(b) SPEC SFS

8K 16
K

32
K

64
K

12
8K

Extent Size

0

100

200

300

400

T
P

M

TPM
Read I/O Volume
Write I/O Volume

0

20

40

60

80

100

G
B

(c) TPC-C

16
K

32
K

64
K

12
8K

25
6K

Extent Size

0

100

200

300

400

T
im

e
(s

ec
)

Time (sec)
Read I/O Volume

0

10

20

30

40

G
B

(d) TPC-H

Fig. 10. Impact on performance of the extent size.

F. Extent Size

Figure 10 illustrates the impact of the size of the extent
on performance. For PostMark, shown in Figure 10(a), per-
formance increases with extent size, but starts to decline after
512-KB extents. Larger extents favor performance as larger

0 5 10

GB

ZBD (lzo)

ZBD (zlib)

pass-through

Native

Read
Write

(a) SPEC SFS

0 10 20 30 40

GB

ZBD (lzo)

ZBD (zlib)

pass-through

Native

(b) TPC-C

Fig. 11. I/O volume for SPEC SFS at 3,400 CIFS ops/sec load, and for
TPC-C using eight disks.

sequential writes are exhibited, in conjunction with PostMark
being write-dominated. Write I/O volume always decreases, as
larger extents have fewer free space left unutilized. Read I/O
volume is high when using 8-KB extents, as the placement of
compressed block is inefficient and more extents must be used
to store the same amount of compressed data. Read volume
remains the same for extents between 16 KB and 64 KB, but
increases after 128 KB, as the degree of locality exhibited
by PostMark is smaller than the extent size. For SPEC SFS,
shown in Figure 10(b), we use a 3,400 ops/sec load. SPEC SFS
performs best when using 64-KB extents and degrades at larger
extent sizes as the read I/O volume significantly increases.
Similarly, TPC-C (Figure 10(c)) performs roughly the same for
extents between 8 KB and 32 KB, but performance drops for
larger extents. TPC-H, shown in Figure 10(d), is less sensitive
to the extent size, as most queries are CPU bound. Overall,
extent sizes between 16 KB and 64 KB seem to be a reasonable
choice for such workloads.

G. Effect of Log-structured Writes on Performance

The log-structured writes of ZBD increase performance for
workloads that consist of a fair amount of writes and are
not sensitive to latency. Figure 11(a) shows a breakdown of
the I/O volume for SPEC SFS at the 3,400 CIFS ops/sec
load point. Total I/O volume increases by 91%, 71%, and
133% for ZBD (lzo), ZBD (zlib), and ZBD (pass-through),
respectively. This increase is the result of reading entire extents
for each 4 KB read issued by the SPEC SFS load generators.
With ZBD (lzo, zlib) write I/O volume is reduced by 3%
and 26% due to compression and increases for ZBD (pass-
through) by 51% due to the space overheads of extent and per-
block headers. Although total I/O volume increases for all ZBD
configurations, performance increases, even for ZBD (pass-
through), as shown in Figure 4(b). The only difference of
ZBD (pass-through) and Native, apart from ZBD reading 185%
more data due to extent reads, is the fact that Native’s writes
are random, whereas ZBD’s are log-structured, resulting in
a more sequential workload. The large increment of read
volume affects performance negatively but it is offset by the
improved write pattern. This additional read volume translates

67

Files Orig. gzip gzip NTFS ZFS ZBD ZBD
MB -r .tar (zlib) (lzo)

mbox 1 125 N/A 29% 7% 4% 17% 11%
mbox 2 63 N/A 68% 39% 31% 54% 34%
MS word 1100 50% 51% 37% 35% 44% 33%
MS excel 756 67% 67% 47% 41% 55% 47%
PDF 1400 22% 22% 14% 15% 15% 12%
Linux
source 277 55% 76% 27% 33% 69% 46%
compiled 1400 63% 71% 47% 52% 67% 58%

TABLE II
SPACE SAVINGS FOR VARIOUS COMPRESSION METHODS AND FILE TYPES.

gzip IS USED WITH -6 (DEFAULT) IN ALL CASES.

to increased I/O transfer time, but no additional seeks are
introduced. On the other hand, log-structured writes reduce
the number of seeks compared to Native.

In contrast to SPEC SFS, TPC-C has a much higher read-
write ratio. The poor read locality TPC-C exhibits results
in more than 4x additional read I/O volume, shown in Fig-
ure 11(b). This unnecessary I/O activity, in conjunction with
TPC-C being sensitive to latency, results in a 26% performance
degradation compared to Native, as shown in Figure 6(a).
ZBD improves TPC-C writes. However, this improvement
alone cannot offset the negative impact of the additional read
volume, as writes only make up 14% of TPC-C’s I/O volume.

H. Compression Efficiency

An issue when employing block-level compression is the
achieved compression efficiency when compared to larger
compression units, such as files. The layer at which compres-
sion is performed affects coverage of the compression scheme.
For instance, block-level compression schemes will typically
compress both data and file-system metadata, whereas file-
level approaches compress only file data. Table II shows the
compression ratio obtained for various types of data using
three different levels: per archive (where all files are placed in
a single archive), per file, and per block.

In all cases, compressing data as a single archive will
generally yield the best compression ratio. We see that in most
cases, block-level compression with ZBD is slightly superior to
file-level compression when using zlib, and slightly inferior,
when using lzo.

0 100 200 300

Time (sec)

0

100

200

300

M
B

/s
ec

Application Throughput
I/O Throughput

Fig. 12. Impact of cleaner on performance.

I. Effect of Cleanup on Performance

Figure 12 illustrates the impact on PostMark performance
when the cleaning mechanism is activated during PostMark
execution. In this configuration, we use a disk partition that
cannot hold the entire write volume generated by PostMark,
activating the cleaner to reclaim free space. To better visualize
the impact of cleaner in throughput, we use a lower threshold
of 10% of free extents below which the cleaner is activated,
and an upper threshold of 25% of free extents above which
the cleaner stops. The impact of the cleaner on performance is
seen as two “valleys” in the throughput graph, between time
periods from 280 to 290 and from 355 to 370. The succession
of “plateaus” and “valleys” indicates that the cleaner regu-
larly starts and stops the cleaning process, as the amount of
available extents is depleted and refilled. When the cleaner
is running, PostMark performance degrades by up to 150%
but I/O throughput increases as a result of the large reads the
cleaner exhibits during the extent scan phase. In these two
time periods, the cleaner reclaims 15% of the disk capacity in
10 and 15 seconds, corresponding to 1.4 GB of free space.

64
K

25
6K 1M 4M 16
M

Metadata Cache Size

0

10

20

30

40

50
T

P
S

TPS
% of Total I/O

0

2

4

6

8 %
 of T

otal I/O

(a) PostMark

32 64 128 256

Metadata Cache Size (MB)

0

1

2

3

4

op
s/

se
c

(x
1,

00
0)

Throughput
% of Total I/O

0

2

4

6

8 %
 of T

otal I/O

(b) SPEC SFS

8 16 32 64

Metadata Cache Size (MB)

0

100

200

300

400

T
P

M

TPM
% of Total I/O

0

2

4

6

%
 of T

otal I/O

(c) TPC-C

64
K

12
8K

25
6K

51
2K 1M 2M

Metadata Cache Size

0

200

400

600

T
im

e
(s

ec
)

Execution Time
% of Total I/O

0

2

4

6

8

%
 of T

otal I/O

(d) TPC-H

Fig. 13. Impact on performance of metadata cache size.

J. Metadata I/Os

Figure 13(a) illustrates the impact of metadata I/Os on
PostMark performance. Although the metadata I/O volume
only accounts for a small fraction of the application’s total
one, it’s impact on performance is substantial. Metadata I/Os
are synchronous, random and interfere with application I/Os.
Given that PostMark has only one outstanding operation,
single-thread latency is significantly affected. As the size of the
metadata cache increases, performance significantly improves,
by up to 100%. For SPEC SFS, shown in Figure 13(b),

68

we use the lzo compression library at a target load of
4,000 CIFS ops/sec. Similarly to PostMark, SPEC SFS also
suffers performance penalty due to metadata I/Os by up to
49%, although at a much smaller scale, mainly due to the
abundance of outstanding I/Os. TPC-C (Figure 13(c)) suffers
less performance penalty compared to SPEC SFS, up to 33%.
Finally, TPC-H performance degrades only slightly, shown in
Figure 13(d), as the bottleneck is the single CPU that MySQL
uses for the queries.

K. Summary of Results

Overall, we find that transparent compression degrades
performance by up to 34% and 15% for TPC-C and TPC-H,
respectively, as they are sensitive to latency. For PostMark and
SPEC SFS, compression actually improves performance by up
to 80% and 35%, respectively, as a result of the log-structured
writes. CPU utilization increases due to compression, by up
to 311%. These results show that transparent compression is
a viable option for increasing effective storage capacity when
single-thread latency is not critical. Moreover, compression is
beneficial for I/O performance when there is an abundance of
outstanding I/O operations, as compression cost is effectively
overlapped with I/O.

V. RELATED WORK

To the best of our knowledge, this is the first work that
examines online data compression below the file-system, in
the common block I/O path to improve the space-efficiency of
disk-based storage systems. By being independent of the file-
system implementation, it becomes possible to achieve high
compression ratios, but also to assist other storage system
optimizations. In a previous work [4], we have demonstrated
how online compression can be used to increase the effective
capacity of an SSD-based storage cache. In this paper we
expose performance-related tradeoffs in the implementation of
online block-level compression for hard disks.

The only systems that have considered block-level compres-
sion are cloop [16] and CBD [17]. However, these systems
offer read-only access to a compressed block device and
offer limited functionality. Building a read-only block device
image requires compressing the input blocks, storing them in
compressed form and finally, storing the translation table on
the disk. ZBD uses a similar translation table to support reads.
However, this mechanism alone cannot support writes after
the block device image is created, as the compressed footprint
of a block re-write is generally different from the one already
stored. ZBD is a fully functional block device and supports
compressed writes. To achieve this, ZBD uses an out-of-place
update scheme that requires additional metadata and deals with
the associated challenges.

Previous research [18], [19], [20], [21], [22], [23] has also
argued that online compression of memory (fixed-size) pages
can improve memory performance, while the authors in [24]
argue that trends in processor and interconnect speeds will
favor the use of compression in various distributed and net-

worked systems, even if compression is performed in software.
A survey of data compression algorithms appears in [2].

The authors in [3] gather data from various systems and
show that compression can double the amount of data stored
in a system. They also propose the architecture of a two-
level, tiered file-system, where the first level is responsible
for caching (uncompressed) files that are used frequently and
the second for storing compressed files that are used less
frequently. Finally, today exist a number of storage systems
that encompass or take advantage of compression at the file-
level: e2compr [25] (an extension for the ext2 file-system),
ZFS [26], Windows NTFS, and LogFS (designed specifically
for flash devices, supporting compression). Unlike ZBD, these
approaches are limited to a single file-system, they are typi-
cally not used with online storage. An exception to the afore-
mentioned systems is FuseCompress [27], a pseudo file-system
in FUSE that can be used atop of any file-system. However,
FuseCompress compresses/decompresses entire files, making
it suitable only for archival storage. With large files, as in the
case of files representing the tables and indices of a relational
database system, this would be prohibitively expensive.

The authors in [28] describe how LFS can be extended
with compression. They use a 16-KB compression unit and a
similar mechanism to our extents to store compressed data on
disk. However, they rely on the Sprite file-system metadata for
managing variable size metadata. They find that compression
in the storage system has cost benefits and that in certain cases
there is a 1.6 performance degradation for file-system intensive
operations. In our work we use compression to improve
storage space efficiency independent of the file-system at the
cost of significant metadata complexity. We show how this
complexity can be mitigated and evaluate our approach on
modern architectures with realistic workloads.

The authors in [29] encompass compression to IBM’s
Information Management Systems (IMS) by using a method
based on modified Huffman codes. They find that this method
achieves 42.1% saving of space in student-record databases
and less on employee-record databases, where custom routines
for compression were more effective. Their approach reduces
I/O traffic necessary for loading the data-base by 32.7%
and increases CPU utilization by 17.2%, showing that online
compression can be beneficial not only for space savings, but
for performance reasons as well. Similarly, the authors in [30]
discuss compression techniques for large statistical databases.
They find that these techniques can reduce the size of real
census databases by up to 76.2% and improve query I/O time
by up to 41.3%. Similar to these techniques our work shows
that online compression can be beneficial for I/O performance.

Compression has been integrated in the Oracle database
system [31] with the twin goals to not only reduce storage
requirements for the database tables and indices in large-scale
warehouse, but also to improve the execution time of certain
classes of queries that access a large portion of the dataset. The
implementation of the compression algorithm is specific to the
database system, based on eliminating all duplicate values in
a database block. In our work, we show that is feasible to use

69

a transparent block-level compression layer to achieve these
benefits for a broader range of workloads.

Deduplication [32], [1], [33] is an alternative, space-savings
approach that recently has attracted a lot of interest. Dedupli-
cation tries to identify and eliminate identical, variable-size,
segments in files. Compression is orthogonal to deduplication
and is typically applied at some stage of the deduplication
process to the remaining data segments. The authors in [1]
show how they are able to achieve over 210 MB/sec for 4
multiple write data streams and over 140 MB/sec for 4 read
data streams on a storage server with two dual-core CPUs at
3 GHz, 8 GB of main memory, and a 15-drive disk subsystem
(software RAID6 with one spare drive). Deduplication has
so far been used in archival storage systems due to its high
overhead.

VI. CONCLUSIONS

In this work we use transparent compression for online
disk-based storage systems. We examine the performance
and tradeoffs associated with I/O volume, CPU utilization
and metadata I/Os. Our results show that online transparent
compression is a viable option for increasing storage capacity,
and performance degradation is visible only when single-
thread latency is critical, by up to 34% for TPC-C and
15% for TPC-H. Performance improves for write intensive
workloads (80% for PostMark and 35% for SPEC SFS),
mainly due to the log-structured writes. Our results indicate
that compression has a potential to increase I/O performance,
provided that the workload exhibits enough I/O concurrency
to effectively overlap compression with I/O and that the CPUs
can accommodate compression overheads.

ACKNOWLEDGEMENTS

We thankfully acknowledge the support of the European
Commission under the 6th and 7th Framework Programs
through the STREAM (FP7-ICT-216181), HiPEAC (NoE-
004408), and HiPEAC2 (FP7-ICT-217068) projects.

REFERENCES

[1] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the
data domain deduplication file system,” in Proc. of FAST’08, pp. 1–14,
USENIX Association.

[2] D. A. Lelewer and D. S. Hirschberg, “Data compression,” ACM Comput.
Surv., vol. 19, no. 3, pp. 261–296, 1987.

[3] V. Cate and T. Gross, “Combining the concepts of compression and
caching for a two-level filesystem,” in Proc. of ASPLOS-IV, pp. 200–
211, ACM, 1991.

[4] T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris, and A. Bilas,
“Using Transparent Compression to Improve SSD-based I/O Caches.”
to appear in the ACM/SIGOPS European Conference on Computer
Systems (EuroSys 2010).

[5] M. Rosenblum and J. K. Ousterhout, “The Design and Implementation
of a Log-Structured File System,” ACM TOCS, vol. 10, pp. 26–52, Feb.
1992.

[6] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,” IEEE Transactions on Information Theory, vol. 23, pp. 337–
343, 1977.

[7] T. A. Welch, “A technique for high-performance data compression,”
IEEE Computer Society Press, vol. 17, no. 6, pp. 8–19, 1984.

[8] J. Katcher, “PostMark: A New File System Benchmark.” http://
www.netapp.com/ tech library/3022.html.

[9] “SPECmail2009 published results, as of Nov-06-2009.”
http://www.spec.org/mail2009/results/specmail ent2009.html.

[10] “SPECsfs2008: SPEC’s benchmark designed to evaluate the speed and
request-handling capabilities of file servers utilizing the NFSv3 and
CIFS protocols..” http://www.spec.org/sfs2008/.

[11] “SPECsfs2008 cifs published results, as of Nov-10-2009.”
http://www.spec.org/sfs2008/results/sfs2008.html.

[12] “Database Test 2 (DBT-2), an OLTP transactional performance test.”
http://osdldbt.sourceforge.net/.

[13] “TPC-C is an on-line transaction processing benchmark..”
http://www.tpc.org/tpcc/default.asp.

[14] “TPC-H: an ad-hoc, decision support benchmark.” www.tpc.org/tpch.
[15] “Top ten non-clustered TPC-H published results by performance.”

http://tpc.org/tpch/results/tpch perf results.asp?resulttype=noncluster.
[16] P. Russel, “The compressed loopback device.”

http://www.knoppix.net/wiki/Cloop.
[17] S. Savage, “CBD Compressed Block Device, New embedded block

device.” http://lwn.net/Articles/168725, January 2006.
[18] A. W. Appel and K. Li, “Virtual memory primitives for user programs,”

SIGPLAN Not., vol. 26, no. 4, pp. 96–107, 1991.
[19] L. Rizzo, “A very fast algorithm for RAM compression,” SIGOPS Oper.

Syst. Rev., vol. 31, no. 2, pp. 36–45, 1997.
[20] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The case for com-

pressed caching in virtual memory systems,” in In Proceedings of the
1999 USENIX Annual Technical Conference, pp. 101–116, USENIX
Association, 1999.

[21] F. Douglis, “The Compression Cache: Using On-line Compression to
Extend Physical Memory,” in Proc. of 1993 Winter USENIX Conference,
pp. 519–529, 1993.

[22] T. Cortes, Y. Becerra, R. Cervera, and Ra, “Swap compression: Res-
urrecting old ideas,” SoftwarePractice and Experience (SPE, vol. 30,
p. 2000, 2000.

[23] L. Yang, R. P. Dick, H. Lekatsas, and S. Chakradhar, “Crames: com-
pressed ram for embedded systems,” in CODES+ISSS ’05: Proceed-
ings of the 3rd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, (New York, NY, USA),
pp. 93–98, ACM, 2005.

[24] F. Douglis, “On the role of compression in distributed systems,” in Proc.
of ACM SIGOPS, EW 5, pp. 1–6, 1992.

[25] L. Ayers, “E2compr: Transparent File Compression for Linux .”
http://e2compr.sourceforge.net/, June 1997.

[26] J. Bonwick and B. Moore, “ZFS: The Last Word in File Systems.”
http://opensolaris.org/os/community/zfs/.

[27] “FuseCompress, a mountable Linux file system which transparently
compress its content.” http://miio.net/wordpress/projects/fusecompress/.

[28] Burrows, M. et al, “On-line data compression in a log-structured file
system,” in Proc. of ASPLOS-V, pp. 2–9, ACM, 1992.

[29] G. V. Cormack, “Data compression on a database system,” Commun.
ACM, vol. 28, no. 12, pp. 1336–1342, 1985.

[30] W. K. Ng and C. V. Ravishankar, “Block-Oriented Compression Tech-
niques for Large Statistical Databases,” IEEE Trans. on Knowl. and Data
Eng., vol. 9, no. 2, pp. 314–328, 1997.

[31] M. Poess and D. Potapov, “Data Compression in Oracle,” in Proc. 29th
VLDB Conference, 2003.

[32] U. Manber, “Finding similar files in a large file system,” in WTEC’94:
Proc. of the USENIX Winter 1994 Technical Conference, pp. 2–2,
USENIX Association, 1994.

[33] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki, “Improving du-
plicate elimination in storage systems,” Trans. Storage, vol. 2, no. 4,
pp. 424–448, 2006.

70

