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Abstract—Cluster-based storage systems increasingly use
commodity communication technologies, such as Fibre Channel
over Ethernet (FCoE), for accessing stored data over the
network. Data is striped over multiple storage nodes, and
storage traffic often shares the network with non-storage
traffic. In such conditions, storage clients can experience
severely degraded performance, such as TCP throughput
collapse and network congestion due to competing network
traffic. Furthermore, consolidation of multiple virtual machines
(VMs) onto fewer physical nodes can worsen the performance
of network storage systems. The root cause of this performance
problem is that network traffic from multiple sources can
cause transient overloads in the switch buffers. In this paper,
we make the case that virtualization opens up a new set of
opportunities to alleviate and solve such performance problems
experienced by network storage in particular, and data center
Ethernet in general. We present an architecture, called XCo,
for explicit coordination of network traffic among VMs in a
data center Ethernet that is inexpensive, fully transparent,
currently feasible, and complementary to any switch-level
hardware support. We present experimental evidence via proof-
of-concept implementation and evaluation to support this claim
and describe the challenges and opportunities in a complete
solution.

I. INTRODUCTION

Considerations of cost, sustainability, and consolidation
are driving the widespread deployment of network storage
systems over commodity networking technologies such as
Gigabit Ethernet and 10GigE. For example, iSCSI [1] allows
storage clients to send SCSI commands over IP networks to
storage devices on remote servers. Similarly, Fibre Channel
over Ethernet (FCoE) [2] enables the use of fibre channel
protocol over Gigabit and 10GigE networks. Commodity
Ethernet hardware is cheap, easy to install and manage, and
can be used in a shared mode with non-storage network
traffic. However, this commoditization often comes at a
price, such as higher latency and smaller, lower-performance
packet buffers. Another related trend is CPU virtualization
which leads administrators to consolidate more virtual ma-
chines (VMs) on fewer physical servers and less networking
hardware. These VMs rely on the commodity networking
hardware for both their storage and communication needs.
Consequently, Ethernet switch buffers can become over-
whelmed by high-throughput traffic that can be bursty and
synchronized, leading to packet losses.

A typical network congestion scenario could be as fol-
lows. Suppose service-oriented VMs are handling peak client

loads over the network. At the same time, network storage
traffic, such as database access or storage backup operations
are fired up over FCoE. Meanwhile, administrators may need
to live-migrate multiple VMs across the network fabric [3],
[4] for load-balancing. The resulting network contention
across the switching fabric could easily bring down the ef-
fective network throughput (or “goodput”), increase latency
for critical services and possibly cause congestion collapse.

The root cause of congestion (and hence lost packets) in
a layer-2 switch is that the number of packets contending
for an output port at any instant exceeds the buffering
capacity of the switch for that port. Hardware and software
mechanisms to control network congestion or support QoS
in layer-2 switches are far from well-developed [5]. Current
hardware support for QoS is limited [6] and not scalable.
Cluster administrators are often reluctant to enable whatever
little switch-level support that currently exists for the fear
of slowing down the forwarding performance in switches.
Current industry practice is to simply throw more hardware
at the problem by adding higher capacity network switches,
expensive multi-port network cards, and physically separate
layer-2 networks for storage, communication, and control
traffic. However this merely tends to increase the network
cost and complexity without addressing the fundamental
problem.

Data center nodes are closely coupled with extensive
central monitoring and resource control. This makes certain
coordination mechanisms practical in data centers that may
not be feasible in a wide-area network. This paper makes
the case for explicit coordination of network transmission
activities among virtual machines (VMs) in the data center
Ethernet to proactively prevent network congestion. We
argue that virtualization has opened up new opportunities
for explicit coordination that are simple, effective, currently
feasible, and complementary to switch-level hardware sup-
port. We show that explicit coordination can be implemented
transparently without modifying any applications, standard
protocols, network switches, or VMs. Our solution, called
XCo, co-ordinates the network transmissions from multiple
VMs so that they do not overflow the intermediate switch
buffers, while simultaneously increasing network utilization.
We present experimental evidence via a proof-of-concept
implementation and outline challenges and opportunities in
a complete solution.
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Figure 1. Experimental setups: Multiple senders transmit to (a) one
receiver via 1Gbps link, (b) different receivers via 10Gbps uplink.

II. THE THROUGHPUT COLLAPSE PROBLEM

Consider two experimental setups shown in Figure 1. End
nodes running Xen [7] VMs are connected via a layer-2
switched network consisting of Nortel 4526-GTX switches,
each having 24 1000Base-T ports (for end host connectivity)
and two XFP slots with 10Gbps optical transceiver modules
(for uplink between switches). Hosts run Xen 3.3.1/Linux
2.6.29.2. Although both setups in Figure 1 are somewhat
simple, they serve to illustrate the basic traffic contention
problem in larger switched Ethernet hosting networked stor-
age.

[TCP Throughput Collapse] We first illustrate the prob-
lem of TCP throughput collapse, also known as TCP In-
cast Collapse, that is observed with synchronized request
workloads and was documented earlier in [8], [9], [10]. This
problem is observed in high-bandwidth low-delay networks
where multiple servers send barrier-synchronized traffic to a
single client receiver node. For example, assume that nodes
in Figure 1(a) form an iSCSI storage network in which data
blocks are striped across N storage servers S1...SN . We
wrote a client application which requests striped blocks of
data from server applications. If block size is B bytes then
each server is requested B/N bytes of data where N is the
number of servers. The client node requests such a block
of data from N servers, sending the request for next block
only after all servers have responded. Each server responds
to the client request with the fragment of the data block
that it holds. Figure 2, shows the steep collapse in observed
throughput at the client as the number of servers increase
from 1 to 10 for a fixed block size of 1MB.

Such barrier-synchronized requests are often observed in
cluster-based applications such as parallel I/O in cluster
filesystems, multiple back-end responses to search queries,
or in parallel query processing in parallel distributed
databases. The near-simultaneous response from multiple
servers overload the buffer at the receiver’s port. Since com-
modity switches have limited buffer space, excess packets
arriving at the client port are dropped by the switch. When
a packet is dropped, TCP waits for atleast RTOmin time
before retransmitting the packet. This in turn delays the
client’s request for next block of data. The ratio of TCP’s
RTOmin (typically 200ms) to the time taken to transfer
the data blocks is high. Consequently, synchronized packet
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Figure 2. TCP throughput collapse for barrier-synchronized reads.

losses and timeouts result in large network idle times (akin
to idle-time bubbles) leading to TCP throughput collapse.

While a number of application-specific and TCP-specific
solutions have been proposed to address TCP throughput
collapse problem (see Section VI), we show in Section III
that our XCo solution can alleviate TCP throughput collapse
without modifying any application-specific or TCP-specific
parameters. In addition, it can also alleviate a more general
congestion collapse problem due to the presence of non-
TCP-friendly traffic in the network.

[Throughput collapse due to non-TCP-friendly Traffic]
We now show that even in the absence of synchronized
traffic, the presence of traffic that is not TCP-friendly can
lead to throughput collapse in Gigabit networks. Figure 1(a)
shows a setup where five Xen VMs executing on five
different hosts send a mix of TCP and UDP network traffic
to a common receiver VM on another host. Each sender
uses the Netperf [11] benchmark to generate either TCP or
UDP traffic to a Netperf server on the receiver. The plot in
Figure 3 shows the received throughput as the number of
UDP senders is increased and, correspondingly, number of
TCP senders is decreased. All five senders transmit without
any coordination. When all five senders send TCP traffic, the
received throughput is more than 900Mbps since competing
TCP streams reduce their congestion window (and hence
sending rate) in response to packet losses. In contrast, UDP
traffic does not back off in the face of packet loss. Hence, as
we increase the number of UDP senders in the mix, we see
an immediate drop in the received throughput due to output
port contention.

The problem illustrated above is the well-known problem
of congestion collapse, and is precisely the reason why TCP
was designed. However, not all network traffic is TCP (or
TCP-friendly) and not all protocols perform self-regulation
the way TCP does. In fact, a growing proportion of network
traffic is not TCP-friendly [12] such as streaming me-
dia, voice/video over IP, and peer-to-peer traffic. Although
TCP is self-regulating, even a small amount of non-TCP-
friendly traffic can disrupt fair-sharing of switched network
resources.
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Figure 3. Throughput collapse at receiver’s port in Figure 1(a).
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Figure 4. Throughput collapse at the 10Gbps uplink in Figure 1(b).

To illustrate further, Figure 1(b) shows another experi-
mental setup where 13 sender VMs on different hosts send
a mix of TCP and UDP Netperf traffic to 13 receiver VMs,
again on separate hosts. Each sender VM is connected via
a 1Gbps link to one Nortel 4526-GTX switch. The receiver
VMs are similarly connected to another Nortel switch. The
two switches are connected to each other by a 10GigE
optical link via their XFP transceiver modules. The plot in
Figure 4 shows the link utilization at the 10Gbps link as
the number of UDP senders is increased. With increasing
number of UDP senders (and correspondingly fewer TCP
senders), there is a steep drop in the utilization of the
10Gbps link due to port contention at the first switch. The
second experiment above shows that simply replacing 1Gbps
hardware (switches, links, and network cards) with their
10Gbps counterparts is not going to avoid the problem
of congestion collapse. If anything, it could worsen the
problem, because one multi-core server can easily run 8 to
16 VMs in parallel with today’s technology. This means that
one end host alone can very quickly fill up a 10Gbps pipe
originating from its NIC [13].

[Impact of Congestion on Live VM Migration Time]
We now use another simple example of live VM migra-
tion [3] to understand the actual impact of throughput
collapse on real operations in data center clusters. Again
consider the same setup as in Figure 1(a). We initiate the live
migration of a 256MB idle VM from one of the host S1 to
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Figure 5. Increasing live VM migration time with competing traffic.

R1. Simultaneously, we initiate Netperf traffic from different
number of senders S2...S5 to R1. We measure the total time
taken to perform live migration as the number of Netperf
senders is increased. Figure 5 plots the total migration
time when all Netperf senders transmit either TCP or UDP
traffic. We see that in the presence of even one or more
competing Netperf UDP sender, the total migration time
increases exponentially since UDP traffic tends to gobble
up any available uplink bandwidth. With competing Netperf
TCP senders, there is an almost ten fold increase in total
migration time, though the increase is not as dramatic as
with UDP. Note that even though all TCP sessions back off
when network congestion is detected, it does not completely
eliminate output port contention.

III. XCO: DESIGN AND IMPLEMENTATION

This section presents the design and implementation of
the XCo framework for preventing congestion collapse.
Although presented in the context of Xen [7] virtualization
platform, the fundamental principles presented here are
applicable across different virtuallization technologies.
A. Xen Network Subsystem Background

Xen exports virtualized views of network devices to each
VM, as opposed to real physical network cards. The actual
network drivers that interact with the real network card
execute within Domain 0 – a privileged domain that can
directly access all hardware in the system. The privileged
Domain 0 and the unprivileged VMs communicate by means
of a split network-driver architecture shown in Figure 6. Do-
main 0 hosts the backend of the split network driver, called
netback, and the VM hosts the frontend, called netfront. All
netbacks attach to a software bridge (when in bridged mode)
in Domain 0, which multiplexes and demultiplexes packets
from/to the VMs. Under normal operations, all outgoing
packets are forwarded by the software bridge to the native
driver for the network interface card (NIC). XCo interposes a
local coordinator module after the software bridge to control
transmissions.

B. Overview of the XCo Framework

XCo works on the principle that if one can prevent
too many end hosts from sending too much data at the
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Figure 6. Xen networking subsystem in end hosts.

same time then we can avoid the throughput collapse seen
earlier. The cluster administrator may not have complete
control over the type of traffic being generated by each
VM, such as in a subscriber based cloud computing model
where different external users may own individual VMs.
The cluster administrator also may not have the freedom
to modify the application or operating system image within
each VM. However, the cluster administrator does have
control over a privileged VM, such as Domain 0, which can
intercept, monitor, and control the traffic being transmitted
from all other VMs in a host machine.

Figure 6 shows a local coordinator in Domain 0. It is
a kernel module that intercepts outgoing network traffic
and enforces any form of transmission control. The specific
form of transmission control is determined by one or more
central controllers shown in Figure 7, which reside in
the same switched network as the other nodes. A central
controller takes as input (i) switch interconnection topology,
(ii) location of VMs on physical nodes, (iii) current traffic
matrix of the network (from local coordinator feedback) and
(iv) policies such as VM priority, bandwidth, and response
times, and generates periodic transmission directives to the
local coordinators.

Transmission directives are explicit instructions to local
coordinators at each physical node on how to regulate
the high throughput transmission activity of each VM.
For example, a transmission directive could take the form
of explicit time scheduling, such as “which VM gets to
transmit packets when and for how long”. Or a transmission
directive could be explicit rate scheduling, such as “at what
rate should a VM’s traffic be transmitted for the next N
milliseconds”. Or the directives could be a combination of
both or could take any other form suited to the performance
objectives.

In theory, if central controllers in the above framework can
carefully coordinate the transmission activities of all VMs
across the data center, then one could precisely control the
extent of network load at each link in the switched network.
Of course, there are a number of practical challenges to
implementing such a network-wide transmission control.

In this section, we provide an overview of one form
of transmission directive issued by the central controller,
namely global timeslice scheduling, illustrating how to solve

Figure 7. Explicit coordination framework for data centers.

the congestion collapse problems demonstrated earlier in
Section II for simple network topologies. Section III-C
describes the complete timeslice scheduling algorithm for
general network topologies. Section V discusses larger chal-
lenges in implementing a complete explicit coordination
framework.

[Timeslice scheduling]: A central controller temporally
divides network transmission into equal-sized timeslices and
explicitly decides which VM gets to transmit in which
timeslice. The goal is to prevent excessive concurrent VM
transmissions that can potentially cause congestion collapse
in some part of the switched network, while permitting suf-
ficiently high network activity to achieve high utilization. In
each timeslice, the central controller transmits a transmission
directive to all local coordinators indicating which VMs are
eligible to transmit during that timeslice. The granularity of
the timeslice is small, in the order of 1ms to 10ms. The
local coordinators act as transmission gatekeepers for VMs
at their nodes.

For example, consider the experimental setup shown in
Figure 1(a) where the output port leading to the common
receiver VM is susceptible to congestion collapse. In this
case, the central controller can permit only one of the sender
VMs to transmit at a time. Hence it sends a periodic bitmask
of the form shown in Figure 8(a) every 10ms. In this case,
only one VM gets the green light to transmit in any one
10ms period.

Similarly, consider the experimental setup shown in Fig-
ure 1(b) where the output port leading to the 10Gbps uplink
is susceptible to congestion collapse. In this case, it would
be inefficient to allow only one VM to transmit in each
timeslice since each VM is only capable of sending at a
maximum 1Gbps. Hence the central controller permits up
to 10 VMs to transmit simultaneously in each timeslice by
sending the bitmask sequence shown in Figure 8(b).

[Distributed Work Conservation] It may so happen
that some of the VMs may not have any traffic to send
when the central controller allows them to send whereas
other VMs without permission may be backlogged. To
prevent network under-utilization in such cases, we designed
timeslice scheduling to be work-conserving [14]. When a
local coordinator finds that a VM with permission to transmit
has no pending packets, it gives up the VM’s share of the
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Figure 8. Global timeslice scheduling for setups in Figure 1.

unused timeslice back to the central controller. The central
controller then transfers the remaining timeslice to another
backlogged VM. To avoid giving up a VM’s timeslice too
quickly, the local coordinator introduces a a small hysteresis
delay (200µs in our implementation) before returning the
unused timeslice.

C. Timeslice Scheduling in Arbitrary Network Topologies

[Notations and Assumptions] Consider a network with
a set N of (physical) end-hosts. Each end-host can host
one or more VMs. Assume that the central controller knows
the interconnection topology of all the layer-2 switches in
the network, which could be arbitrary. There are L links in
the network interconnection topology. A transmission link
from node i to node j is represented by an ordered pair
(i, j), where a node could be either a switch or an end-host.
Conversely, the transmission link in the reverse direction
from node j to node i is represented by (j, i), even though
physically a single bidirectional cable might connect the two
nodes. Assume that the central controller has knowledge
of the subset of links ST which constitute the spanning
tree among switches at any point in time. This information
can be queried from modern managed switches via their
management interfaces. Maximum bandwidth capacity of
link (i, j) is represented by Cij . For ease of exposition, the
maximum bandwidth capacity of the outgoing link Cnj from
an end-host n to switch j is represented by Cn (assuming
there is only one outgoing link per end-host). Given the
spanning tree ST , we pre-compute the path Pxy from every
end-host x to every other end-host y.

Pxy = { (i, j) (i, j) lies in the path from x to y in the
spanning tree ST }

[Backlog and Active Contention Groups] At any instant
in time, we define the backlog group Bn of an end-host n as
the set of destination end-hosts for whom n has backlogged
traffic. Further, we define the active contention group AGij

of a link (i, j) as the set of end-hosts which have backlogged
traffic that would pass through link (i, j) and are allowed to
transmit by the central controller during a given quantum.

AGij = { n ∃m ∈ Bn s.t. (i, j) ∈ Pnm and n is allowed
to send via link (i, j) }

[Feasibility Condition] The feasibility condition
F (AGij , Cij) is the condition under which the link (i, j)
will not experience congestion collapse. Specifically, the
sum of all traffic allowed through link (i, j) should not
exceed the link capacity Cij . More formally, F (AGij , Cij)

is defined by the following inequality:

F (AGij , Cij) :
∑

∀n∈AGij

Cn ≤ Cij (1)

[Scheduling Algorithm] We now outline the algorithm used
by the central controller to coordinate the transmission activ-
ities of end-hosts across the network. The central controller
takes as input (1) the spanning tree ST , (2) Pre-computed
paths Pxy∀ end-host pairs x, y, and (3) Current backlog
group Bn ∀ end-hosts n.

As output, the central controller generates a set of des-
tination nodes Dn for each end-host n, such that n is
allowed to transmit only to the nodes in Dn during the
next scheduling quantum without violating any feasibility
condition. If Dn = ∅, then n is not allowed to transmit
during the scheduling quantum. Formally:

Dn = { m m ∈ Bn and n ∈ AGij ∀(i, j) ∈ Pnm }
In other words, Dn is allowed to transmit to node m in a
scheduling quantum if and only if n had backlog traffic for
m and n is a member of the active contention group AGij

for every link (i, j) along the path from n to m. Algorithm 1
describes the algorithm to compute Dn. Algorithm 1 has a
worst-case complexity of O(N2D), where N is the number
of end-hosts in the network and D is the network diameter.

Algorithm 1 Algorithm to compute the destination set Dn ∀n.

1: Input: (a) Current spanning tree ST
2: (b) Pre-computed paths Pxy∀ end-host pairs x, y
3: (c) Current backlog group Bn ∀ end-hosts n
4: Output: Destination set Dn∀n
5:

6: for each link (i, j) do
7: AGij := ∅
8: end for
9:

10: for each end-host n do
11: Dn = ∅
12: for each end-host m ∈ Bn do
13: for each link (i, j) ∈ Pnm do
14: if n /∈ AGij and F ({n} ∪ AGij , Cij) = false

then
15: Skip to next m on line 12.
16: end if
17: end for
18: for each link (i, j) ∈ Pnm do
19: AGij := AGij ∪ {n}
20: end for
21: Dn = Dn ∪ {m}
22: end for
23: end for

[Generating Schedules for Successive Quantums] Algo-
rithm 1 will generate one transmission schedule for a given
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scheduling quantum. For successive scheduling quantums,
the central controller has to ensure that distinct transmission
schedules are generated and that no backlogged traffic is in-
definitely starved. Algorithm 2 lists the algorithm to generate
distinct transmission schedules for successive time quantums
while avoiding starvation. This algorithm has the worst-case
time complexity of O(NL + N2D) for each time quantum,
where N is the number of end-hosts, L is the number of links
in the spanning tree ST , and D is the network diameter.

Algorithm 2 Algorithm to compute transmission schedules for
successive time quantums.

1: Input: (a) Current spanning tree ST
2: (b) Maximum link capacity Cij∀(i.j) ∈ ST
3: Output: Sequence of transmission schedules for each

quantum.
4:

5: for each end-host n do
6: Set Bn to current backlog at n
7: end for
8: for each time quantum do
9: Compute schedule Dn ∀n using Algorithm 1

10: Output Dn ∀n
11:

12: /*Ensure distinct schedule for next quantum*/
13: for each end-host n do
14: for each end-host m do
15: if m ∈ Dn then
16: Bn := Bn − {m}
17: end if
18: if Bn = ∅ then
19: Skip to line 22
20: end if
21: end for
22: Append the new backlog at end-host n to Bn

23: end for
24: end for

D. Global Rate Scheduling

The end-system coordination framework in Figure 7 is
flexible enough to allow for transmission control strategies
other than timeslice scheduling described above. For ex-
ample, the periodic directives from the central controller
could alternatively specify the maximum rate at which
each VM should transmit until the next directive. Thus the
central controller could proactively throttle VMs that are
contributing to an imminent congestion buildup. We have
also developed corresponding algorithms for this strategy
and implemented them in the XCo framework. We omit
the details of the rate scheduling algorithm here for space
constraints, but include preliminary evaluation in Section IV.

Figure 9. Transmission control among VMs in a single node.

E. Implementation Issues

[Transmission control within each node] Figure 9 shows
the internal architecture of transmission control among mul-
tiple VMs within a single node. We first created a custom
Linux Traffic Control [15] setup in Domain 0. We use
Hierarchical Token Bucket (HTB) queuing discipline (qdisc)
as the root queue communicating with the network card. This
root queue is configured to contain one Priority (PRIO) qdisc
for each VM in the host. The root HTB qdisc has a packet
classifier which queues each VM’s outgoing packets in their
corresponding PRIO qdiscs. The root HTB qdisc dequeues
packets from these PRIO qdiscs for transmission over the
NIC. We modified the implementation of PRIO qdisc in
Domain 0 to add the local coordinator. The local coordinator
and the central controller communicate directly using a new
layer-3 protocol type for control messages and thus bypass
the standard TCP/IP stack in Domain 0. Each VM (and its
PRIO qdisc in Domain 0) is assigned a globally unique ID
by the central controller. For timeslice scheduling, only the
PRIO qdiscs which are marked in the directive from central
controller can transmit. For rate scheduling, each PRIO qdisc
transmits at or below the rate specified in the directive.

[Synchronization] of network transmission activity
among different physical nodes is particularly important
for timeslice scheduling. Hence each local coordinator syn-
chronizes its “network transmission clock” with the central
controller at the boundary of every timeslice whenever it
receives a periodic transmission directive. Within a timeslice
the local coordinator uses the local high resolution clock to
track events.

[Dynamic Join/Leave] When a physical node joins the
network, its local coordinator registers itself with the central
controller. Whenever a new VM is started (or migrated) in
a physical node, the local coordinator obtains a globally
unique ID for the VM and sets up its PRIO qdisc. Con-
versely, when a VM terminates or the node shuts down, the
local coordinator informs the central controller.

IV. PERFORMANCE EVALUATION

[Solving Incast Problem] Consider the same experimen-
tal setup described in Section II. As we saw earlier in
Figure 2 the plot labeled “Incast Problem” shows the effect
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Figure 10. Solving Incast problem using XCo.
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Figure 11. Solving output port contention in Figure 1(a)

of TCP throughput collapse in networked storage setup. To
solve this problem in XCo, the central controller decides
which storage server sends data to the client in a given
timeslice. The central controller broadcasts a control packet
every 2ms and allows one of the storage servers to transmit.
Figure 10 shows that the plot labeled “2ms TimeSlice”
maintains a high receive throughput between 700Mbps to
900Mbps, thus overcoming the incast problem. A slight
reduction in throughput between 3 to 5 servers is likely due
to inefficiencies in our implementation of distributed work
conservation mechanism. This is being further investigated.

[Solving throughput collapse due to non-TCP-friendly
traffic] Now we reconsider the problem of throughput
collapse due to non-TCP-friendly traffic demonstrated earlier
in Figures 3 and 4. Recall Figure 1(a) where the output
port leading to the common receiver VM is susceptible to
congestion collapse. In Figure 11, the plot labeled “Times-
lice Scheduling” shows the corresponding improvement in
received throughput when using XCo. Note that the received
throughput stays close to the maximum 1Gbps even as
the number of UDP senders increase. The plot labeled
“Rate Scheduling” in Figure 11 shows a better received
throughput than having no coordination at all, but slightly
worse than timeslice scheduling. This is because merely
reducing the transmission rate does not completely eliminate

0 2 4 6 8 10 12 14

Number of UDP Senders (K)
0

2000

4000

6000

8000

10000

R
ec

ei
ve

d 
T

hr
ou

gh
pu

t (
M

bp
s)

Without Coordination
Timeslice Scheduling
Rate Scheduling

Network Contention between Two Switches
Thirteen Senders -- K UDP senders, (13-K) TCP Senders

Figure 12. Solving uplink contention in Figure 1(b)
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Figure 13. Improving live-migration time under loaded network.

port contention, which happens due to transient overload of
output port capacity.

Similarly, recall that in Figure 1(b), the 10Gbps uplink
is susceptible to congestion collapse. Hence the central
controller permits up to 10 VMs to transmit simultaneously
in each timeslice by sending the bitmask sequence shown
in Figure 8(b). In Figure 12, the plot labeled “Timeslice
Scheduling” shows that the link utilization at the common
10Gbps uplink stays close to 9Gbps even as the number of
UDP senders increases. As before, rate scheduling performs
slightly worse than timeslice scheduling but better than no
coordination.

[Improving Live VM Migration Time] Recall from
Figure 5 that, without any transmission control, live VM
migration time experiences an exponential increase with
competing UDP Netperf senders and an almost ten fold
increase with competing TCP senders. When using XCo,
the plots labeled “... + Timeslice” in the Figure 13 show
that increase in live VM migration time is far less than the
corresponding plots without timeslice scheduling for both
UDP and TCP senders. Although there is still an increase in
migration time, the increase is linear and there is almost no
difference between the cases of competing TCP and UDP
sessions.
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V. XCo CHALLENGES AND OPPORTUNITIES

[Minimizing Coordination Overhead] Central coordi-
nation is unnecessary when the network is uncongested.
To minimize coordination overhead, central controller could
permit uncoordinated transmissions under normal traffic
conditions, but keep monitoring the feedback from local co-
ordinators, including traffic load, packet delays or drops, and
any available switch-level congestion notifications. Explicit
coordination can kick in only when imminent congestion is
detected in some part of the network. Even then, the central
controller need not impose transmission control on all the
VMs. The local coordinators could identify and report those
VMs generating large network flows. These VMs could
then be regulated by the central controller without limiting
transmissions from other well-behaved VMs. The rule of
thumb is that central controller should impose minimal
constraints on the VMs in order to preempt congestion only
where necessary.

[Scalability] In large data center clusters, a single central
controller could become a potential bottleneck in trans-
mission control activities. We are investigating the use of
multiple central controllers that could self-organize them-
selves into a hierarchy of controllers. Each controller in
the hierarchy could manage transmission permissions for
different parts of the switched subnet. Peer controllers at the
same level coordinate with each other and with the controller
next level up.

[Fault Tolerance] There are three major types of failures:
controller failure, local node failure, and loss of transmission
directives. Failure of a central controller(s) does not need to
imply that network activity comes to a grinding halt. If the
local controllers do not receive a transmission directive from
a central controller for a certain time, they could switch to
uncontrolled transmission to keep their network activities
alive. Non-arrival of multiple successive directives indicates
to local coordinator that either central controller has failed,
or that the network is partitioned. Another alternative is for a
backup controller node to monitor the presence of a primary
central controller via its transmission directives and take
over the operations if the primary controller ever goes silent.
Central controller can also remove the VMs in a physical
node from its schedule if that node’s local controller does
not send feedback.

[Handling Direct NIC Access by VMs] Recent devel-
opment of hardware IOMMU support [16] enables VMs to
directly access the network card and bypass the network
datapath via Domain 0 (or the hypervisor). Such hardware
support is still in early stages of adoption. Fortunately,
another parallel trend is the development of intelligent pro-
grammable network cards [17] with virtualization support.
Since local coordinator is a lightweight entity, it can be
easily implemented in such programmable NICs to support
XCo-like capability.

VI. RELATED WORK

[Congestion in Data Center Ethernet] The Data Center
Bridging Task Group [6] is developing specifications for
hardware QoS support in future data center Ethernet fabric
through congestion notification, priority based flow control,
and enhanced transmission selection. Work in [18] shows
that it is possible to design a fat-tree network topology for
non-virtualized data center networks that allows any pair
of hosts to communicate at full bisection bandwidth. The
architecture ties the IP address assignment to the location of
nodes in the topology. This renders the solution unsuitable
for clusters that host VMs because VMs may often migrate
from one physical host to another, carrying their original IP
address to the new location. [18] also proposes performing
centralized scheduling of large flows so that they can be
rerouted via disjoint paths. This requires reprogramming the
forwarding logic in the switches and the ability of switches
to identify and report large flows to the controller. Currently,
Virtual LANs (VLAN) [19] are extensively used to set up
logical layer-2 networks between groups of related VMs to
form virtual clusters. VLANs are intended for logical isola-
tion of Ethernet traffic and by themselves do not provide any
congestion control or QoS. ECMP [20] is a multi-path rout-
ing technique supported in many enterprise core switches
that helps reduce traffic bottlenecks by using multiple paths
via static load splitting. However, one could still end up with
congested network links since ECMP does not consider per-
flow bandwidth while splitting. Ethernet flow control in the
802.3x standard [21] allows an overloaded downstream port
to request a temporary pause of all traffic from the upstream
port. While useful in low-end edge switches, this feature is
counter-productive when enabled in backbone switches due
to head-of-the-line blocking. The XCo framework proposed
in this paper is complementary to any switch-level and
transport-level support for congestion control and QoS in
the switched network. Moreover, XCo can also work with
today’s commodity Ethernet switches that provide no such
switch-level support.

[TCP Throughput Collapse Problem] Also known as
Incast problem, TCP throughput collapse was first described
in [8] in the context of parallel filesystems. The problem was
addressed at the application level by limiting the number
of servers communicating concurrently with the client and
by reducing the advertised TCP receive buffer size. Work
in [10] examined a number of TCP improvements to ad-
dress the Incast problem, concluding that while throughput
sometimes improved, none of them substantially prevented
TCP throughput collapse. Subsequent work [9], [22], [23]
showed that reducing TCP’s minimum RTO can maintain
high throughput. However too small minimum RTO can
lead to spurious timeouts for wide-area network traffic. In
addition, none of the TCP-specific solutions to the Incast
problem address the case where non-TCP-friendly traffic
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might share the data center Ethernet fabric, causing loss
of fairness properties. Our XCo framework leverages recent
advances in virtual machine technology to guarantee that
throughput collapse is avoided under all circumstances,
irrespective of the mix of TCP and non-TCP-friendly traffic
sharing the network fabric.

VII. CONCLUSION

This paper makes the case that virtualization offers new
opportunities to alleviate congestion-driven performance
problems experienced by networked storage in particular,
and data center Ethernet in general. We present the design,
implementation, and evaluation of a prototype, called XCo,
that explicitly and transparently coordinates network trans-
missions among virtual machines in a data center Ethernet
fabric. We offer evidence through preliminary evaluation
that such explicit coordination can go a long way towards
preventing congestion and throughput collapse in commod-
ity Gigabit and 10GigE switched Ethernets. Our techniques
require no changes to the VMs, applications, protocols,
or the network switches. Besides being complementary to
future switch-level support for congestion management, we
have shown that the XCo framework can also squeeze greater
performance out of today’s unmodified switched Ethernet
infrastructure.
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