BLUE WATERS SUSTAINED PETASCALE COMPUTING

The Crisis in Massive Storage

Dr. William Kramer Blue Waters Deputy Director

GREAT LAKES CONSORTIUM

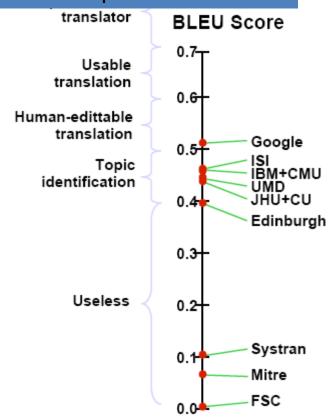
BLUE WATERS SUSTAINED PETASCALE COMPUTING

Data

A Beautiful Disaster?

A Frightening Crisis?

The "Data Deluge" is like the "Boy Who Cried Wolf"



Easy Access to Data Give Advantages

- Being able to access and use data gives advantage
 - Science
 - Business
 - Competitiveness
- Simple contest resulted in Google Translate –
 - "Google's free online language translation service instantly translates text and web pages"
- The web/cloud generation expect immediate access to any information desired

Arabic translation: Google with more data beats others with more specialists

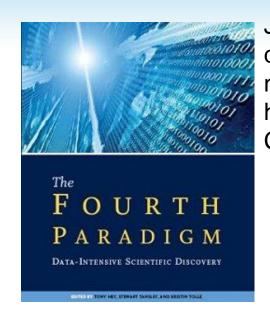
Is the Crisis Really Here This Time - Yes

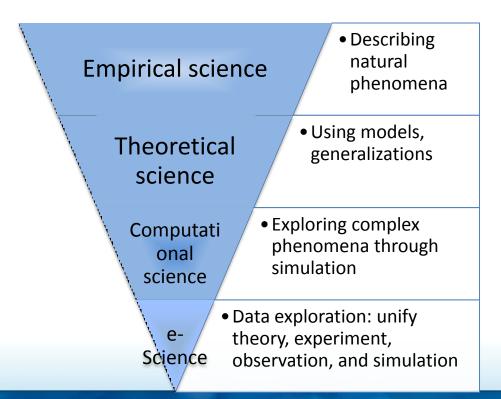
- Exponential increase in sensors
 - Big Sensors
 - Limited in number produce impressive amounts of organized data
 - Examples
 - Accelerators O(10) world wide
 - Telescopes O(100) world wide
 - Satellites O(1000) world wide
 - **Small Sensors**
 - Relatively small amounts but very large numbers
 - Examples
 - **Environment Sensing**
 - **Building and Structure Sensing**
 - Ships and Planes
 - Medical and life science lab instruments and testing
 - Video Surveillance

Presentation Title

Is the Crisis Really Here This Time - Yes

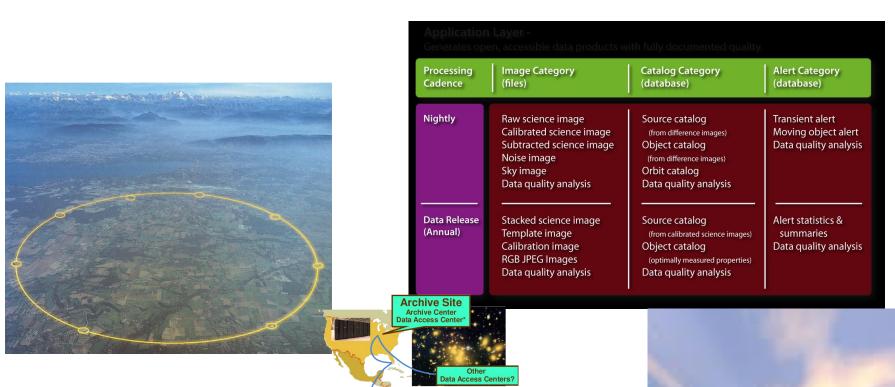
- Increased Data Assimilation
- Increased coupling with simulation
- The "e-clouders"


Presentation Title



Jim Gray concluded economic necessity mandates putting the data near the application, since the cost of wide-area networking has fallen more slowly (and remains relatively higher) than all other IT hardware costs - Distributed Computing Economics. Queue 6, 3 (2008), 63–68

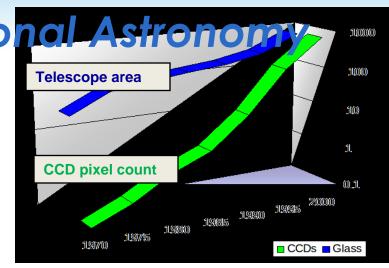
 Management and integration of data early into the science life cycle

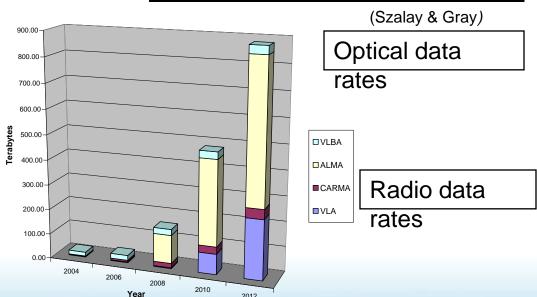


Big Sensors – LHC, LSST and SKA

Mountain Site

Base Site
Base Facility
Data Access Center



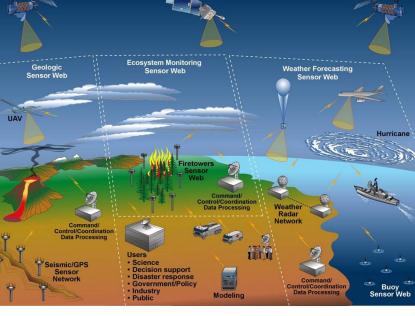


Data rates in observational Astronom

- Data rates are driven by:
 - Contemporary astrophysics questions require surveys of large cosmic volumes
 - Moore's Law advances in detector counts and data output
 - Increasingly sophisticated data processing needed.
- Data rates are <u>exponential</u> and require fundamentally new approaches to data management and processing.

GREAT LAKES CONSORTIUM

The A-Train

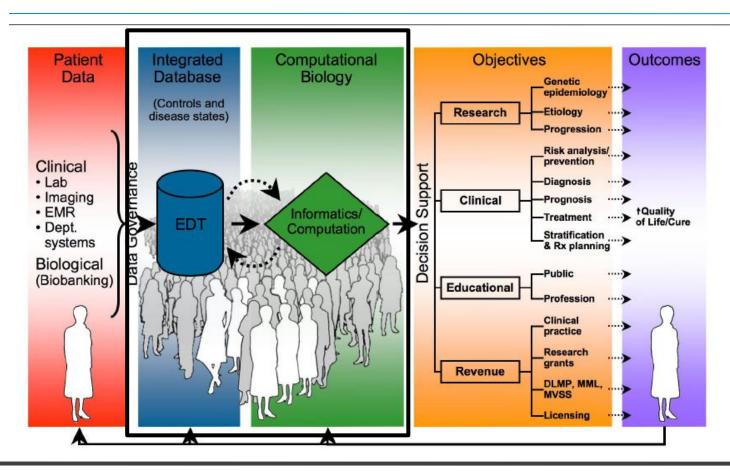

SUSTAINED PETASCALE COMPUTIN

Little Sensors – Geophysics Data Drivers

Satellite

Lidar

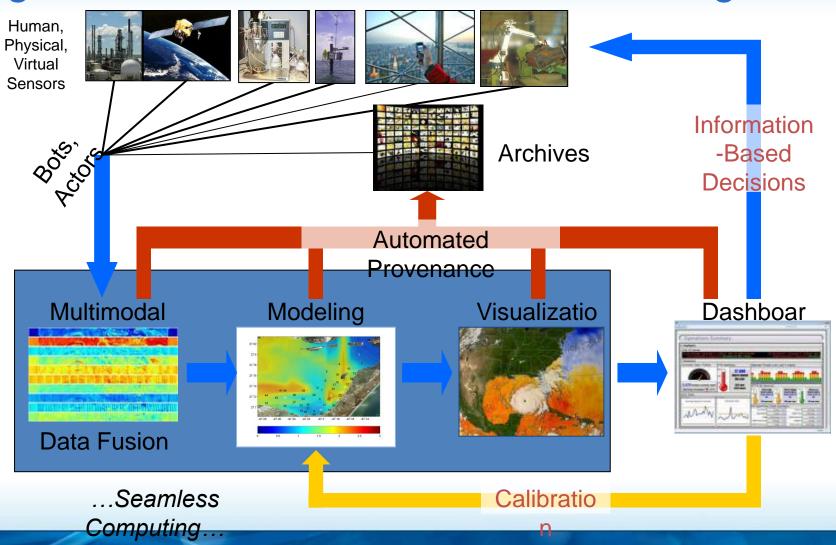
GIS



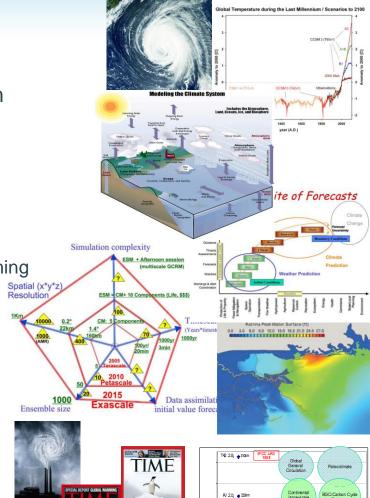
Little Sensors - Information-based medicine

Life Science – Medical "Opportunities"

- Data management solutions for high-throughput biology
 - "Next generation" sequencing currently generates tens of TB raw data per experiment, steep increases likely due to technical improvements in instruments 2-4x Moore's Law
 - Other technologies are also rapidly increasing output: proteomics with prior spatial and/or chemical separation, high-throughput high-resolution imaging, epigenomics...
- Understanding the relationship between genotype and phenotype
 - Rapidly increasing production of full genome sequences from individuals within one species (mostly human) and from different species; millions of differences observed, thousands of genomes being sequenced
 - Identifying genomic determinants of phenotypic differences is a major data mining / statistical problem



Integrated, Information-Based Decision Making

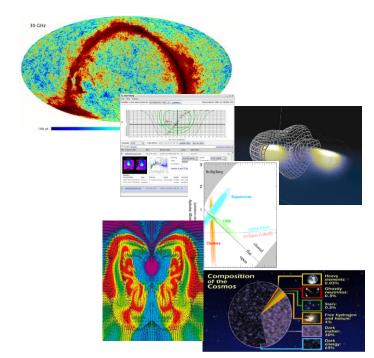

GREAT LAKES CONSORTIUM

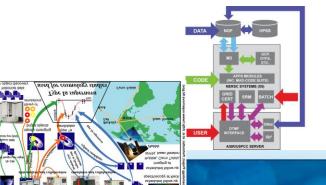
Science Examples

Climate Science

- Today: IPCC 4th Assessment Report US Effort
 - Open Source NCAR Community Climate System Model (CCSM-3)
 - Development effort: ~1 person-century
 - ~1 quadrillion operations/simulated year
 - 11,000 model years simulated with "T85" resolution
 - Rate of simulation: 3.5 simulated years/day
 - Data volume for IPCC: ~110 TB
 - Impact: Wide public acknowledgement of the global warming and policy change
- Near Term
 - Ensemble calculations many runs to study mitigation
 - Regional impacts
 - Severe weather studies and mitigation
 - 1 PB on-line storage for a year
- CCSM estimated storage for just IPCC assessments
 - AR4 2004-2005 100 TB
 - AR5 2010-2011 1000 TB
 - AR6 2016-2017 10000 TB

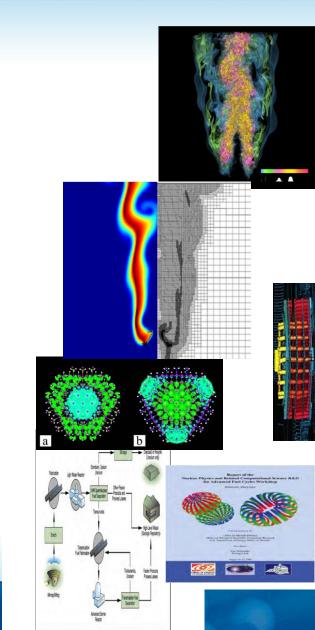
(Above assume 1 degree ocean and 1 month output)





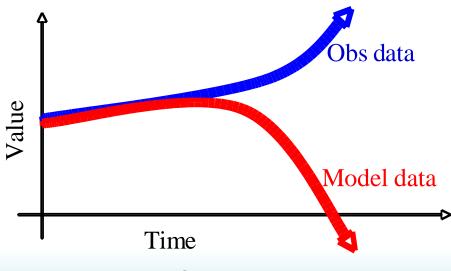
Science Examples The Fate of the Universe

- Today:
 - CMB Analysis (2006 Nobel Prize)
 - Supernova Factory
 - Find and examine in detail up to 300 nearby Type Ia supernovae - Discovered 34 supernovae during first year (more than entire pas) and now discovering 8-9 per month
 - First year: processed 250,000 images
 - Archived 6 TB of compressed data
 - Gravity Wave Search (Ligo, Cactus)
 - Supernova Simulation
 - Impact: The realization we can see only 5% of the universe = Dark Energy
- Upcoming
 - Analysis JDEM satellites and experiments
 - PLANCK
 - 1.5 billion pixels (12 GB) per sample 2.5TB
 - >10,000 cores for computation



Science Example Energy

- Today
 - Combustion 85% of US Energy usage
 - Today's simulations need tremendous data resources
 - 0.3% of NERSC computational resources used 400-500 TB
 - 2% of needs 26 TB on-line for parallel access at all times
 - Coarse 3-D or high resolution 2-D
 - **Nuclear Fusion**
 - Design for ITER
- **Future Goals**
 - Combustion
 - High Fidelity 3-D, many species DNS and LES simulations using AMR
 - **Nuclear Fusion**
 - Operational ITER Seven International Partners - 30 sites
 - ~2,000 test "shots" per year 1 TB raw data per test shot
 - Remote control rooms
 - **Energy Efficiency**
 - Solar and Alternative Energy
 - **Nuclear Fission**

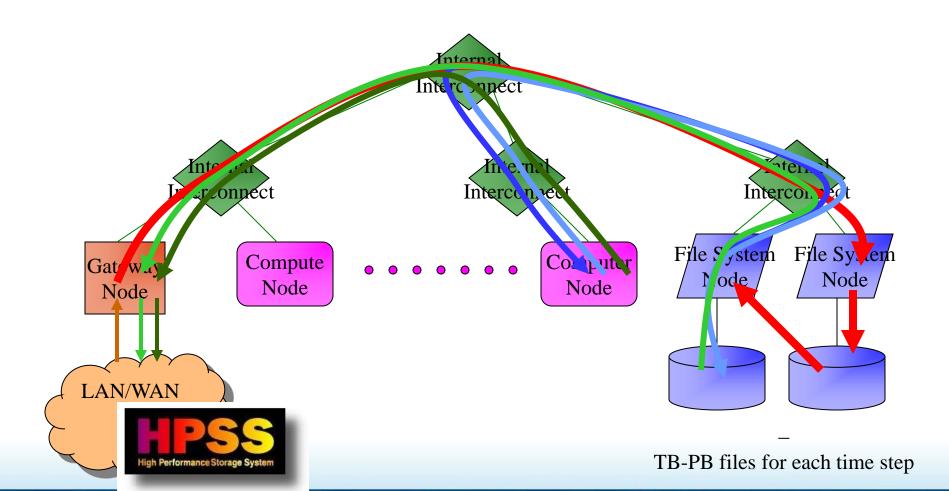


Data Value Proposition

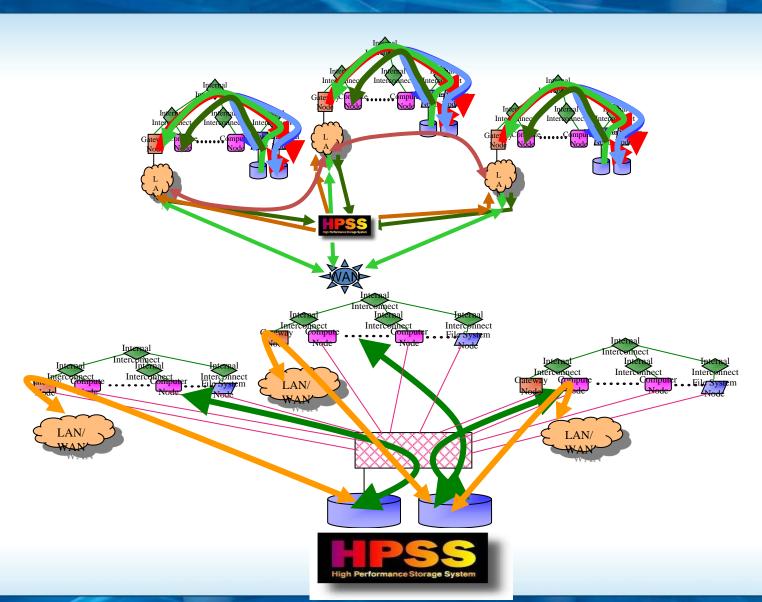
- The volume and complexity of observational data is overshadowing data from simulation
 - LHC
 - ITER
 - JDEM/SNAP
 - PLANCK
 - SciDAC
 - Genomic Program
 - Earth Systems Grid

Courtesy L. Buja

Current State of the Practice Has Not Changed Much


- Storage and I/O Strategies are a significant limitation to systems and science
- Locally attached disk is decreasing and generally not user accessible
- SANS systems for most parallel storage systems
 - FC, IB at the high end
 - Separate Disk Controllers
 - Range of disk types
- NFS still very common for low end commodity clusters limitation of performance
 - pNFS not yet settled
 - Ethernet interconnect is common in data intensive computing farms also a major limitation
- Parallel File systems
 - Production
 - GPFS, Lustre (supported), Pansas, cxfs
 - Experimental
 - PVFS, others
- Linear (tape storage)
 - "Today, storage silos and tape farms of various sorts are keeping up with the1.7-1.9 CAGR" for several more years – Kogge DARPA report

Data Divergence Problem



REAT LAKES CONSORTIUN

Current State of the Practice

- Application I/O strategies are primitive for the most part and inefficient
- Many systems are fundamentally limited for data access
- Science Teams spend O(FTEs) managing files and data
 - The philosophy of many storage systems is to cause users sufficient pain so they
 won't store all that darn data
 - Or 99% of the data is never used so why store it
 - Science teams focus on porting, Core performance and science who has time for better I/O
- More science is becoming fundamentally limited by data access
 - HEP/NP and Genomics are the poster childs but many other areas are impacted
 - Synergy of simulation and data assimilation is contributing to the issues
- Exascale planning is not really concentrating on I/O

A major motivation for the current concentration movement (aka the cloud) is the concentration of resources around data to reduce large scale data transfer

Disk Capacity - Transfer Rates Diverge

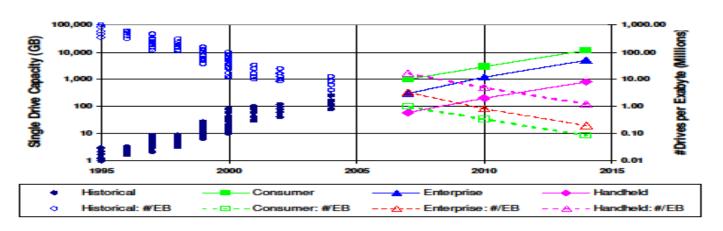


Figure 6.28: Disk capacity properties.

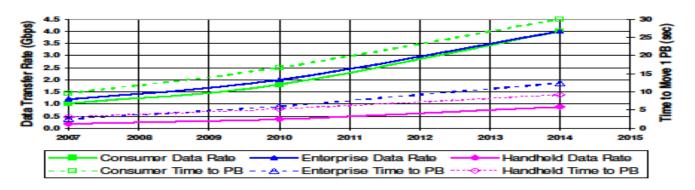


Figure 6.30: Disk transfer rate properties.

- Disk CapacityGrows at 10x / 6years
- •Disk transfer rate grows 3x-4.5x / 6 years
- Seek Rates (latency) are flat

User Desired Attributes Of Science Driven Data Subsystems

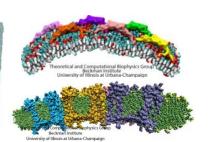
- Exa-scale Data for Petaflops/s systems
 - Zeta Scale Data for Exa-scale computation
 - Data at PB/s per system
- Within an HPC facility (a single administrative domain)
 - Automated data summarization, subsetting and feature recognition
 - Automated data movement controlled by facility policy and transparent to clients
 - Multiple storage device layers
 - Multiple storage fabrics
 - Uniform Namespace
 - · Tightly coupled at each resource data layer
 - · Coupled between layers
 - Highly parallel
 - Many processes/threads to many files not what we want
 - Many processes/threads to one file
 - One process/thread to many files
 - Near equipment bandwidth and latency
 - Provisioned by Hardware SW should have minimal impact on performance
 - Scalable metadata services
 - Not just creates/second also stats per second
 - Sophisticated Analysis and Data management tools
 - Common and tuned Middle ware I/O libraries
- External access to the HPC facility

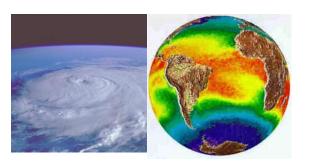
Example PS++ Use Case – The Scientists' Data Cart

- Data Search and Retrieval
 - Web-based "Data Shopping"
 - Search "wizard" for typical and fast searches
 - Free form search and query for complex searches such as:
 - "Simulations using CCSM 3.0 with a resolution of T85 or greater run between January and May 2007"
 - "Supernova simulations for Type Ia US between January and May 2007"
 - Results determined by client roles
 - Data in different classes of annotations and persistence.
 - Put data "objects" (files) into their "data cart".
 - Carts have suites of actions such as download, compare, move for computation, visualize...
 - A "data cart" API defined so clients can plug in their own actions for analyzing and manipulating the data.
 - Similar functions will exist on the computational platforms in the form of shell scripts and tools.

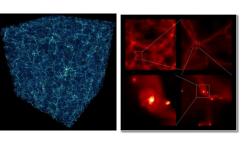
- Data Creation, Importation and Categorization
 - Default meta data defined
 - Example attributes (really in XML)
 - Originator, Source of data {simulation code, experiment, observation...), Sharing role {public, collaborative scientist, system-wide, project only, creator defined access control list, none), Formatting {flat, HDF5, netCDF...),Dates of creation and categorization, Data life time {temporary, N months (N=12?), infinite), Data integrity (i.e. {alternate copy location = [none, COS-dual, remote site...]}, {number of copies = [1,2, ... N]})
 - Simulation data could be automatically annotated with creation time environment parameters
 - Standard methods used so data created at one site can be used at other sites
 - The Metadata wizard could annotate other data whenever metadata is not already associated.
 - The Wizard would be both web and command line based.
 - The Wizard extracts metadata automatically, and/or informs clients that metadata needs to be supplied when an automated process is insufficient. Site specific context and application specific translation may be feasible.
 - Data may flow from simulations done on other systems as well as from observations (satellites, ground sensing, etc.)
 - Must be infrastructure not problem specific

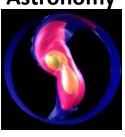
GREAT LAKES CONSORTIUN





Sustained Petascale computing will enable advances in a broad range of science and engineering disciplines:


Molecular Science


Weather & Climate Forecasting

Astrophysics

Astronomy

Earth Science

Health Life Science

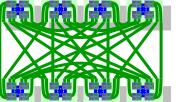
Materials

NSF Petascale Computing Resource Allocation (PRAC) Awardees

Pls	Field	Institutions
Schulten	Bio-molecular Dynamics	Illinois
Sugar	Quantum Chromodynamics	UC-Santa Barbara
O'Shea	Early galaxy formation	MSU
Nagamine	Cosmology	UNLV
Bartlett	Parallel language, Chemistry	U. FL
Bisset, Brown, Roberts	Social networks, Contagion	VA Tech, CMU, Research Triangle Inst.
Yeung	Turbulent flows	GA Tech.
Zhang	Materials science	Wm. & Mary
Wilhelmson	Tornadoes	Illinois

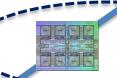
NSF Petascale Computing Resource Allocation (PRAC) Awardees(Cont'd)

Pls	Field	Institutions
Jordan	Geophysics	U. So. CA
Lamm	Chemistry	IA St. U.
Woodward	Stellar hydrodynamics	U. of MN
Campanelli	General relativity, compact binaries	Rochester Inst. Tech.
Stan, Kirtman, Large, Randall	Climate	COLA (MD), U. Miami, UCAR, CO St. U.
Savrasov, Haule	Materials science	UC-Davis, Rutgers
Schnetter	Gamma-ray bursts	LSU
Tagkopoulos	Evolution	Princeton
Wang	Geophysics	U. of WY


BLUE WATERS

SUSTAINED PETASCALE COMPUTING

From Chip to I



Rack/Bui

multiple MCMs

Quad Chip MCM

Chip

GREAT LAKES CONSORTIUM

PCF

e Waters System

1 TF Processor 32-core, 3.5-4.0 GHz, 32MB L2

128 max Threads, 8 FLOPs / cycle 512 GB/s Memory BW, 0.5 B/FLOP 192 GB/s I/O BW, 0.2 B/FLOP 800W, 0.8w/FLOP

Near-li

dicates relative of public information

Blue Waters Computing System

System Attribute	Ranger	Blu	e Waters	
Vendor	Sun		IBM	
Processor	AMD Barcelona	IE	IBM Power7	
Peak Performance (PF)	0.579	17	>10	
Sustained Performance (PF)	< 0.05	>20	>1	
Number of Cores/Chip	4	2	8	
Number of Processor Cores	62,976	~3.5	>300,000	
Amount of Memory (TB)	123	>8	>1	
Interconnect Bisection BW (TB/s)	~4	>>10		
Amount of Disk Storage (PB)	1.73	>10	18	
I/O Aggregate BW (TB/s)	?		1.5	
Amount of Archival Storage (PB)	2.5 (20)	>200	>500	
External Bandwidth (Gbps)	10	>10	100-400	

On-line File System is GPFS

- IBM is implementing scaling changes in GPFS for the HPCS/DARPA project.
- Blue Waters will implement those changes in a persistent manner

GHI

- GPFS configured to accommodate other local systems in a single namespace
- Performance requirements are appropriately scaled to BW characteristics

Near Line Storage is HPSS

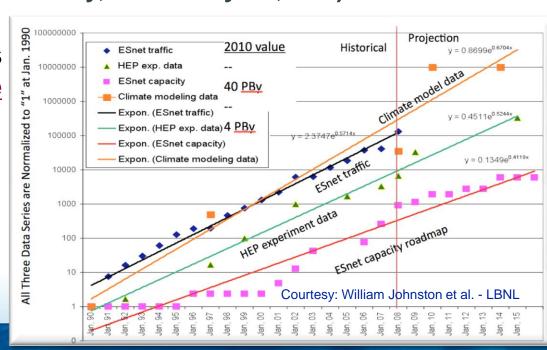
- HPSS Hardware consists of three tape robots and appropriate numbers of tape drives
 - Expect to expand this thru the lifetime of BW

HPSS integrated with BW

- GPFS-HPSS Interface
- Import-Export Portal
 - Traditional HPSS commands
- NCSA is contributing RAIT implementation to the HPSS community as part of BW

NPCF Facility Wide File Systems

- Moving to a single global name space for all systems in a facility
- What is a FWFS? a working definition
 - A production, facility-wide, high performance, parallel, shared file system
 - Makes scientific teams using systems more efficient and productive
 - Simplifies science team data management by providing a shared disk file system and single name space in production environment
 - Enables new paradigms
 - Global/Unified
 - A file system shared by all major systems without replication N systems M vendors
 - Uses consolidated storage and provides unified name space
 - Integration with Mass Storage
 - Integration with Grid is desired
 - Parallel
 - Provides performance that is scalable as the number of clients and storage devices increases
 - Performance very close to local parallel file systems
- Examples NERSC- NGF (GPFS), ORNL- Spider (Lustre), DOD-(samfs)


CHALLENGES FOR THE MASS STORAGE COMMUNITY

Presentation Title

Data Integration Challenges Facing Science

- Models will generate more data in the near future than exist today
- How best to collect, distribute, and find data on a much <u>larger scale</u>?
 - At each stage tools must be developed to <u>improve efficiency</u>
 - Substantially more ambitious community modeling projects (Petabyte (PB 10¹⁵) and Exabyte (EB 10¹⁸)) will require a <u>distributed database</u>
- Metadata describing <u>extended modeling simulations</u> (e.g., atmospheric aerosols and chemistry, carbon cycle, etc.)
- How to make information understandable to end-users so that they can interpret the data correctly
- Integration of multiple analysis tools, formats, data from unknown sources
- Trust and security on a global scale

Data is Changing

- Much, much more data
- Finer grained/relatively smaller chunks
 - Many more files
 - Much more meta data
- More integration of different data formats

Usage is Changing

- The "e-cloud" generation expect immediate access to all data
 - Will not tolerate "feeling pain"
- More interdisciplinary merges of data
- More ad-hoc queries and combinations of data
 - Correlations
 - Re-analysis
- Tighter coupling of data analysis and simulation

Systems are Changing

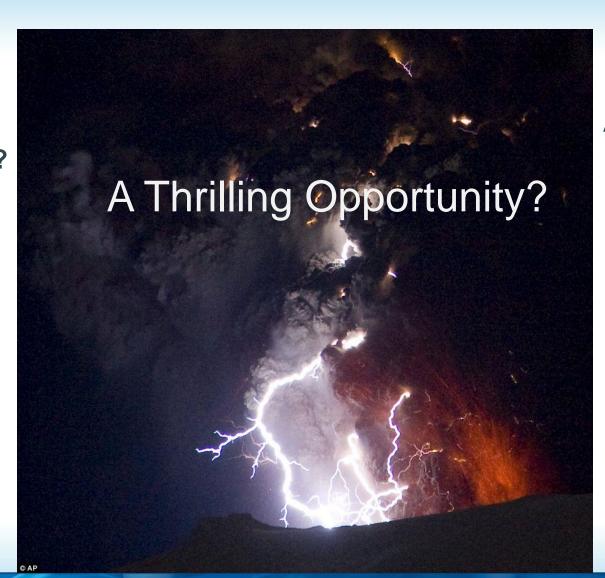
- More layers of devices
 - Solid state storage devices
 - Different service levels of on-line storage devices
 - Near-line media continues to evolve
- More layers of SW
 - Parallelization of component layers
 - Open source versions
 - More layers interact directly

- Continued device innovation
- Complexity
 - For systems and for users
- Resiliency
 - SW is fails at least as much as HW
 - Of the SW components in a large system, data services software failure rates are near the top
- Visualization and automatic feature recognition
- Need to serious consider complete re-engineering the software stack
- Need to engage new, non-traditional methods and communities

MSST 2010

- Modeling
 - For application use
 - What about for our systems?
- Improved assists for users to make good choices
 - Will our current clients use any we make
- Data Movement, Data Movement, Data Movement
 - From source to concentrated repository
 - Across layers of systems
 - Between repositories
- The circumstances are right for Zeta/Yotta-byte Initiatives – but is the Mass Storage community

MSST 2010



Data

A Beautiful Disaster?

A Frightening Crisis?

Presentation Title

Storage Common Wisdom

Old

- 1. Users have a small number of large files
- 2. Files are the lowest level unit of storage
- We need to cause users pain to move their files from place to place
- 4. Users have all the files they need in each place they compute
- One system is sufficient for all the steps a workflow

New

- Large numbers of small files dominate performance
- 2. Objects are the lowest unit of storage
- 3. It is more productive to systems and users to let systems to manage the placement of files
- User's have data in many places and need to move the data frequently - even within a facility
- Job steps are best run on systems with the most appropriate balance