

CERN Data Archive

Operational Challenges while going to Exa-Scale

Vladimír Bahyl, IEEE MSST2010

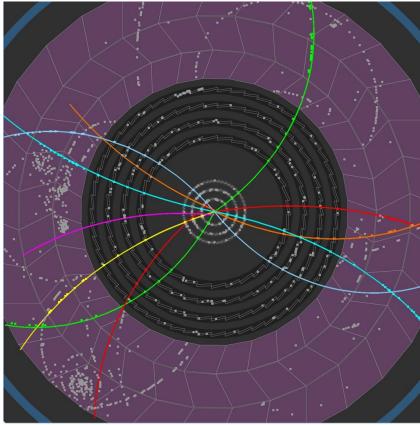
- Introduction to CERN
- Our Requirements
- Architecture
- Solutions vs. Challenges
 - Disk and Tape details
 - Monitoring
- Exa-Scale and us
- Open Questions
- Conclusion

Introduction to CERN

- Conseil Européen pour la Recherche Nucléaire
 European Laboratory for Particle Physics Research
- 20 member states, 8 observers, 36 nonmembers
- Budget: ~1 billion CHF (~950 million USD)
- Personnel: 2600 Staff, 800 Fellows and Associates, 9000 Users from 562 Institutes in 80 countries

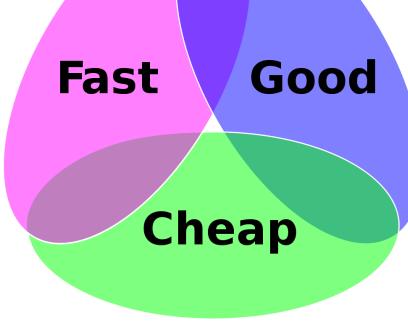
Fundamental Physics Questions

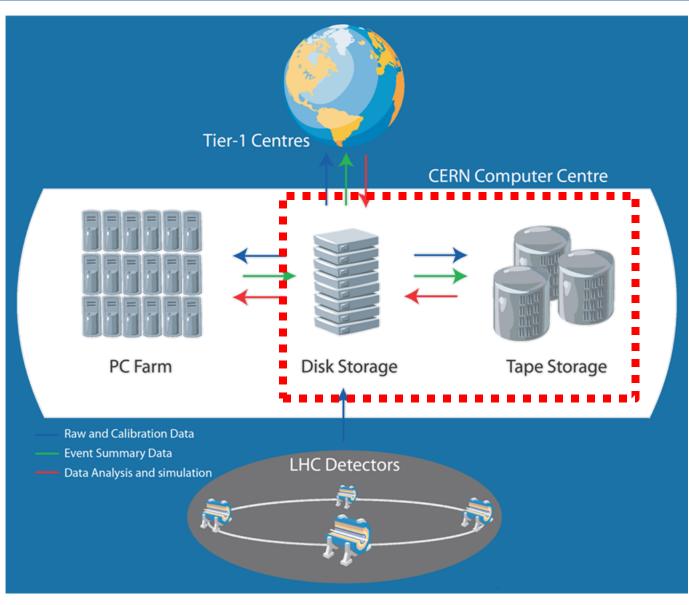
- Why do particles have mass?
 - Newton could not explain it and neither can we...
- What is 96% of the Universe made of?
 - We only know 4% of it!
- Why is there no antimatter left in the Universe?
 A proof that Nature is not symmetrical
- What was matter like during the first second of the Universe's life, right after the "Big Bang"?
 - A journey towards the beginning of time



- The world's most powerful particle accelerator: LHC
 - A 27 km long tunnel filled with high-tech instruments
 - Equipped with thousands of superconducting magnets
 - Accelerates particles to energies never before obtained
- 4 very large sophisticated detectors
 - Hundred million measurement channels each
 - Data acquisition systems processing Petabytes per second
- Top level computing to distribute and analyse the data
 - Sufficient computing power and storage to handle massive amounts of data, making it available to thousands of physicists for analysis
 - A Computing Grid linking ~200 computer centres around the globe

What kind of data?

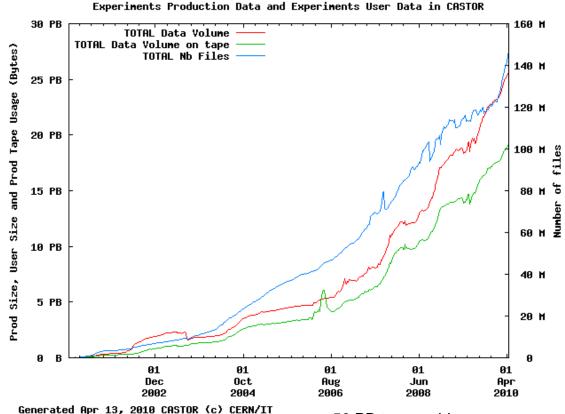

- Digitized tracks of particles in detectors
- Data must be collected as it is generated (~18 months uninterrupted)
- One event similar to the others
- Volume: 15-20 PB/year
- Transfer rates: ~0.5 1.5
 GB/s
- Keep for > 10 years (forever)


http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Archive Requirements

- Supported access types:
 - Streaming (data recording, distribution)
 - Random (analysis, reprocessing)
- Physical data location hidden
 - Transparently move data from slower media to faster cache
- Use commodity hardware
- Reliability not exaggerated
 - Only 1 copy at CERN
 - Other copies on the grid

Architecture overview

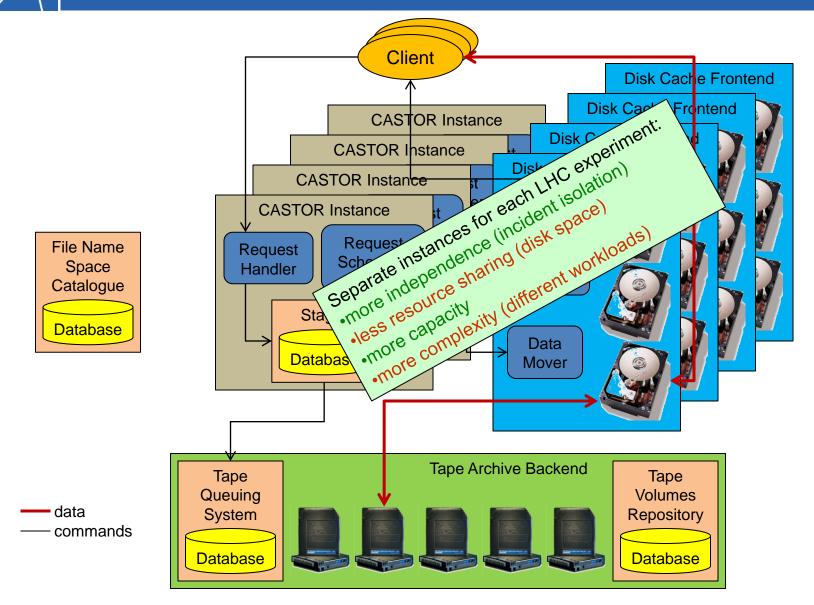


Archive today – CASTOR

- CERN Advanced STORage manager
 - Hierarchical Storage Management system
 - File based with POSIX like hierarchical name space
 - Made @ CERN
 - Used also at other HEP sites
 - Oracle database used for: request queue and metadata repository
 - LSF (from Platform Computing) used for load distribution across disk servers to access files
 - Runs on Scientific Linux

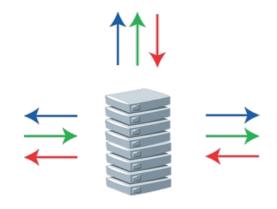
• ~150 M files; ~26 PB data on disk; ~19 PB of data on tape; average file size 150 MB

- 10 PB disk cache
- 1500 (storage in a box) disk servers
- 60 000 SATA disks; 22 disks / server
- Filesystem used: XFS
- Setup evolution
 - Space: RAID5 with 5 but later with 3 disks;
 Performance: RAID1 today


50 PB tape archive

4 x Sun SL8500, 3 x IBM TS3500

- 70 x Sun T10000B, 60 x IBM TS1130
 - 2 vendors minimize risk in case of issues
- Using enterprise drives and media
 - Initial cost higher than LTO, but allows media reuse


CASTOR Architecture (simplified)

CERN

- Receiving data:
 - Coming from the detectors
 - From the tape layer for analysis
 - Results of the analysis
 - From other centers
- Sending data:
 - From the detectors to the tape layer
 - For analysis at the batch farm
 - To other centers world wide for processing
- Other bulk data transfers
 - Between servers to fight hot spots
 - File merging
 - Draining/Emptying servers for: OS upgrade; Hardware replacement

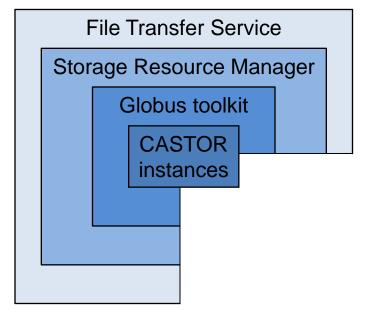
Disk Storage

Disk layer challenges

- Be cheap use SATA disks consequences
 - Capacities increase fast while the transfer rate performance is lacking behind
 - Size of user files not changing significantly
 - Huge slow disk with many small files
- Usage pattern challenge
 - Sparse file access
 - · Many clients access remotely few files at the same time
 - Many remote open() files
 - Users keep connections open for long time as they seek within the file and analyze data
- Current limitations
 - Difficulties scaling 1000s connections per disk pool (hundreds per server) to 10x or more
 - Low transfer rate per stream per server
 - Often not higher than 60 MB/s issue for bulk transfers
 - Unable to prioritize streams, causing e.g. transfers from tape to starve
 - Scheduling already in place, but not enough as jobs look the same
 - Investigating throttling

- Files vs. Data sets
 - Experiments work on data sets corresponding to collisions during certain beam run
 - Current system is file based

- WRITE to tape at >3 GB/s? no problem anymore
 - System designed to split the write stream onto several tapes
 - Waits until enough data to maximize streaming performance
- 8 Random READ access on tape
 - With data sets containing 1000s of files, these are spread across many tapes
 - Users asking for files not on disk cause random file recalls
 - Many tapes get mounts but average number of files read is very low

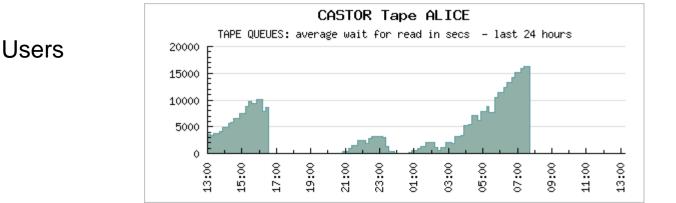

Tape layer challenges

- File collocation
 - Need to find a way how to place related files on the same tape media to improve READ performance
 - Simplest by directory structure
 - Containers offer more functionality but at a cost
- Periodic migration of data to higher capacity media (repack)
 - Costly but necessary operation in order to save on slots and new media
 - Generates significant stress on the system (i.e. repack ~1000 tapes with ~50 000 files)
 - Non trivial to implement as 100% background process
 because of error handling and resource availability
 - Takes long time
 - Copying 45,000 500GB tapes into 1000GB tapes took around a year using 1.5 FTE and up to 40 tape drives in parallel
 - Next round in 2012 will take ~2 years ... but the new drives appear every two years ... we are working on improving the performance
 - © On the positive side, migrating all data is a good way of checking that it is still readable

How is the system used?

- High level tools create several layers on top of CASTOR
 - Low level complexity is hidden from users
 - Users do not need to understand underlying technology
 - Users are not aware of the underlying technology
- Complexity is a challenge
 - Misconception that the whole system is down if problems at higher layer
 - Problem solving often requires stack of experts to find the root cause

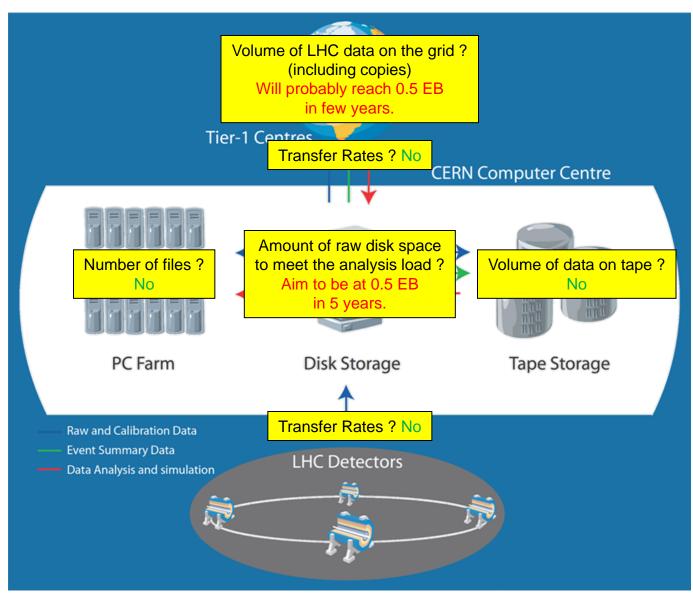
Monitoring in place


- Crucial part of the system, but pick your viewpoint carefully
- 3 types

Developers

Operators

11-03-2010 13:02:38.817923	Info	<u>lxfsrc5905</u>	<u>d2dtransfer</u>	<u>15671</u>	15673	Transfer information	<u>castorns</u>	<u>381693276</u> Stager DB	<u>7fa615e5-8605- 3d12-e040-</u> 8a8953831cb9	<u>7fa615e5-8606- 3d12-e040-</u> 8a8953831cb9	N/A	Protocol=rfio SourcePath=txfsre1108.cern.ch/srv/castor/01/76/381693276@castorns.6534668538 DestinationPath=/srv/castor/03/76/381693276@castorns.8278959834 ChkSumType= ChkSumTyalue=
11-03-2010 13:02:38.746727	Info	lxfsrc5905	<u>d2dtransfer</u>	<u>15671</u>	15673	DiskCopyTransfer started	<u>castorns</u>	<u>381693276</u> Stager DB	<u>7fa615e5-8605- 3d12-e040- 8a8953831cb9</u>	<u>7fa615e5-8606- 3d12-e040- 8a8953831cb9</u>	N/A	Protocol=rfio TotaWaitTime=60,746607 Jobid=723691 DiskCopyId=8278959834 SourceDiskCopyId=6534668538


Monitoring challenge

- User: "What happened to my file?"
- Admin: "Your file is lost."
- How to fill the gap in between?

- Monitoring systems/hardware health is often not enough
- History granularity down to the file level is often needed
 - Should span various applications / systems
 - E.g.: how the file got into the system; when was it last readable
 - Generates huge amount of log data
 - We only keep 3 months of history insufficient in large archive with lot of inactive data

Exa-Scale Challenge?

(My) Open Questions

- 1/2
- Efficient data loss handling quick action can save data
 - Copy still on disk even if tape copy is unreadable
 - Copy on the grid, but it remains difficult to find out who owns the file in several large collaborations
 - Users who do the bookkeeping not us
- Capacity increases faster than filesizes
 - Tape sizes increase and so does the risk of a data loss
 - Data of earlier smaller experiments now fit on fewer tapes; loosing 1 tape can have serious consequences
 - 2nd copies cheaper as small amounts of data
 - ... and I didn't even mention the data preservation ...
 - To store lot of data is technically not so complicated
 - The issue is to understand it decades later ...

(My) Open Questions

- It is sustainable to write and manage the full archive storage software stack in house?
 - The system is already fairly complex and non-trivial to understand
 - Difficult to compete with companies with large client base
 - Need to reuse some well known standard products as building blocks
 - Concentrate only on adding missing features
- Is the current HSM model sustainable?
- Can we afford transparent file level?
 - File granularity overhead is a killer
 - Clear need for bulk only transfers, not individual user files
- Which one of the disk vs. tape in the near line storage scenario are part of a solution and which one is the problem?
 - Both growing in capacities; Not so much transfer rates, seek times
- Need for a solution independent from underlying technologies ...

- Current CERN Data Archive solution
 - Is scalable and redundant
 - Satisfies the need of the data recording and data distribution
- Technology evolved, requirements changed
 - Has limitations for analysis
 - Difficulties to support tens or hundreds of thousands remote file I/O operations accessing concurrently small data subset
 - Uses tape technology inefficiently
- CERN
 - Is well aware of the limitations of the current solution
 - Is looking at alternatives to modify the system using industry standard components
 - 2012 good year to test prototypes when LHC is stopped

<u>Vladimir.Bahyl@cern.ch</u>