BLUE WATERS sustained petascale computing

The Blue Water's File/Archive System

Data Management Challenges Michelle Butler (mbutler@ncsa.illinois.edu)

NCSA / IBM

CONFIDENTIAL

NCSA is a...

- World leader in deploying supercomputers and providing scientists with the software and expertise needed to fuel discoveries in science and engineering
- Unique partnership among the University of Illinois, state of Illinois, and federal government
- Home to more than 250 computing experts and students
- Key partner in the National Science Foundation's TeraGrid project
- Home to Blue Waters, expected to be the most powerful computer for open scientific research when it comes online in 2011

NCSA's current computing power

- 4 production systems
- More than 155 teraflops (155 TRILLION calculations every second)
- About 1,500 users nationwide
- Researchers receive time at no cost through peer review
- Archive environment at 6PB and growing at 75%/year

NCSA / IBM CONFIDENTIAL

Let's get Blue Waters specific!

NCSA / IBM CONFIDENTIAL

Diverse Large Scale Computational Science

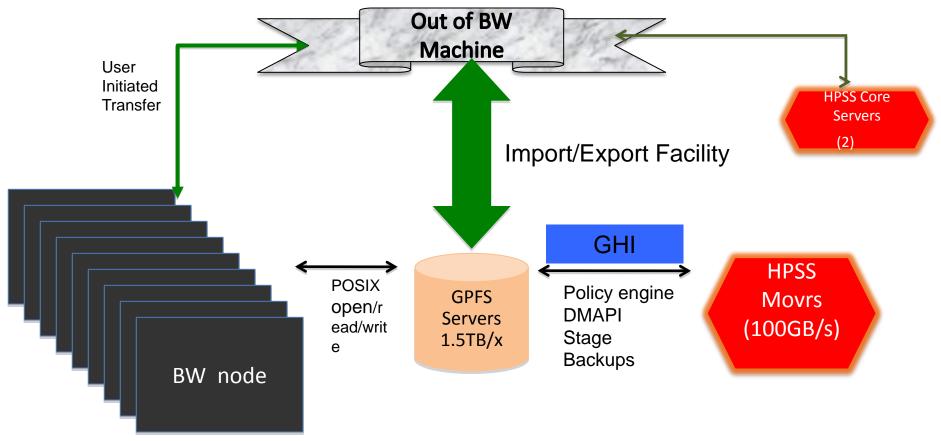
Najanaa	Multi-	Danaa	Sparaa	Spectral	N Rody	Structured	Unstructured	Dete
Science			•	•	,			
areas		linear				Grids		Intensive
		U U	U	· /	(N-Body)	(S-Grids)	(U-Grids)	
	scale	(DLA)	(SLA)	(SM-FFT)				
Nanoscience	Х	X	X	X	Х	X		
Chemistry	X	Х	Х	Х	Х			
Chemistry	Λ	~	~	Λ				
Fusion	Х	Х	Х			Х	Х	Х
Climate	Х		Х	Х		Х	Х	Х
Combustion	Х		Х			Х	Х	Х
Astrophysics	Х	Х	Х	Х	Х	Х	Х	Х
Biology	Х	Х					Х	Х
Nuclear		Х	X		X			Х
System	General	High	High	High	High	High	Irregular	High
Balance	Purpose	-	•	•	Performance	•	Data and	-
								Storage
Implications		-	Memory	Bisection	Memory	CPU,	Control Flow	
	System	High		bandwidth		High		Network
		Flop/s				Flop/s		bandwidth
		rate				rate		

NCSA / IBM CONFIDENTIAL

NCSA/IBM

CONFIDENTIAL

Blue Waters Petascale Computing System Blue Waters Computing System


	Typical Cluster	Track 2	Blue Waters*
System Attribute	(NCSA Abe)	(TACC)	
Vendor	Dell	Sun	IBM
Processor	Intel Xeon 5300	AMD	Power 7
Peak Perf. (PF)	0.090	0.58	~10
Sustained Perf. (PF)	~0.005	~0.06	~1.0
Number of cores	9,600	62,976	>300,000
Amount of Memory (PB)	0.0144	0.12	>1.0
Amount of Disk Storage (PB)	0.1	1.73	>18
File system Performance (GB/s)	11	30	>1500
Amount of Archival Storage (PB)	6	2.5	~500
External Bandwidth (Gbps)	40	10	100-400

* Reference petascale computing system (no accelerators).

I/O Software environment

NCSA / IBM CONFIDENTIAL

NCSA / IBM

CONFIDENTIAL

Storage Management – BW Approach Have the right data at the right place at the right time

- Blue Waters will proactively use the new storage functions to implement a new state of the practice in HPC storage management (hours to fill diskcache, day to write to tape)
- Goal no pain (for users anyway ☺) !
 - To have one extremely large storage space with on-line and near-line limits
 - Approach storage as with virtual memory
 - Large virtual storage
 - Limited work sets of data
 - Try to keep the data with the most temporal locality in the highest (fasted) levels of storage when it is needed
 - Goal vs reality needs to be explored
 - Fall back is to implement a more standard

Possible Layout

Usage	File System	On-line Usable Capacity	Near-Line Capacity	Managed	Quota	Backup
User Home Directories	Midperf	4PB	20 PB?	Yes		Yes - via GHI – relatively rapid backup (> 24 hours? residency) All files > 1MB Metadata backedup weekly
High Performance Large Files	Highperf	14 PB	480PB?	Yes	Yes on-line & near-line	Yes – via GHI Longer (> 7 day residency?) Metadata backuped up before upgrades. Alternative is to subdivide with and without GHI
Large Scale Test	Test	.2PB	4	No	No	For new system testing

Use, reproduction, or disclosure is subject to the restrictions as stated in the "IBM Agreement for Exchange of Confidential Information – Blue Waters" as documented in the "IBM Statement of Work for Blue Waters System Prepared for the National Center for Supercomputing Applications (NCSA)" GREAT LAKES CONSORTIUM

On going research

- Batch jobs
 - users tell us ahead of time
 - what objects need to be online before job can be started
 - how much storage space is needed for the job
 - NCSA behind the scenes will move up the data from near-line(on-demand stage) or from across country (gridftp)
 - Using attributes in GPFS to "lock" files on disk so that they don't get "punched or purged" before all the data is on-line.

NCSA / IBM CONFIDENTIAL

On going research -

- What files need to stay on disk for further anaylsis? (post analysis)
 - what can go to archive immediately (safe keeping),
 - what can be deleted? Checkpoints?
 - Post job data management step

NCSA / IBM CONFIDENTIAL

On going research -

- For retrieval: how will the files need to be associated together
 - Using GPFS filesets for the PRAC projects
 - Researching the filesets environments
 - so policy scans can be run in parallel over filesets
 - quotas implemented at fileset level
 - use HPSS family of files for project from GPFS filesets

NCSA / IBM CONFIDENTIAL

EYP MCF/ Gensler IBM Yahoo! www.ncsa.illinois.edu/BlueWaters

- 88,000 GSF over two stories—45' tall
 - 30,000+ GSF of raised floor
 - 20,000+ unobstructed net for computers
 - 6' clearance of raised floor
- 24 MW initial power feeds + backup
 - Three 8 MW feeds + One 8 MW for backup
 - 13,800 volt power to the each
- 5,400 Tons of cooling
 - Full water side economization for 50%+ of the year
 - Automatic Mixing of mechanical and ambient chilled water for optimal efficiency
 - Adjacent to (new) 6.5M gallon thermal storage tank
- 480 Volt distribution to computers
- Energy Efficiency
 - PUE ~1.02 to <1.2 (projected)
 - USGBC LEED Silver Gold (Platinum?)
 classification targe

NCSA / IBM CONFIDENTIAL

Questions? See me

Michelle Butler NCSA/University of Illinois Technical Program Manager mbutler@ncsa.illinois.edu- http://www.ncsa.uiuc.edu/BlueWaters

NCSA / IBM CONFIDENTIAL