
An Adaptive Partitioning Scheme for
DRAM-based Cache in Solid State Drives

Hyotaek Shim, Bon-Keun Seo, Jin-Soo Kim, and Seungryoul Maeng

Korea Advanced Institute of Science and Technology (KAIST)
Sungkyunkwan University (SKKU)

IEEE MSST 2010 Research Track

2/21

Architecture of a Typical SSD

File System

8-32MB DRAM-based Cache

Solid State Drive (SSD)

Read Miss Dirty Buffer Flush

Flash Translation Layer (FTL)

Data Buffer FTL Mapping Cache

Read Write

NAND Flash Memory

Read Write (Erase)

 The internal device
cache has two main
purposes

 To absorb frequent
read/write requests

 To store logical-to-
physical address
mapping information

 We focus on how to
efficiently utilize the
device cache between
the two purposes

3/21

Trade-Off between Buffering and Mapping

8-32MB DRAM-based Cache

Data Buffer FTL Mapping Cache

 A trade-off between how much space is
allocated to buffering versus mapping

 Frequent requests can be more cached with larger
buffering space

 The SSD performance can also benefit from larger
mapping space

 The device cache should be appropriately
partitioned

 Existing studies assumed that the BM ratio is fixed
(static partitioning policy)

BM ratio is the ratio of the buffering and the mapping space.

4/21

Effects of Adjusting the BM Ratio

PC
Trace

TPC-C
Trace

 The optimal BM ratio is usually affected by
workload characteristics

5/21

Adaptive Partitioning Scheme (1/3)

 This scheme adaptively adjusts the BM ratio
according to workload characteristics

 Comparing the cost-benefits of buffering and mapping

 Ghost cache

 Exclusive victim cache that stores only metadata

 The cost-benefits of actual caches are estimated by their
ghost caches

8-32MB DRAM-based Cache

Data Buffer
FTL Mapping

Cache
Ghost

Buffering
Ghost Mapping

DRAM SizeDRAM Size

Victims to be flushed Victims to be flushed

6/21

Adaptive Partitioning Scheme (2/3)

 Cost-benefit of ghost cache

 Whenever a read/write hit occurs in ghost cache,

its benefit is accumulated

 At the same time, a read/write miss occurs in its actual
cache

 The benefit is the cost (NAND flash operation time) caused
by the read/write miss in its actual cache

 We call this cost opportunity cost caused by not enlarging
the actual cache size

 The cost of cost-benefit is the expected memory
consumption of ghost cache

7/21

Adaptive Partitioning Scheme (3/3)

 At every pre-defined interval, the BM ratio is
tuned by comparing the cost-benefits of ghost
caches

8-32MB DRAM-based Cache

Data Buffer
FTL Mapping

Cache
Ghost

Buffering
Ghost Mapping

DRAM SizeDRAM Size

A: Cost-Benefit of
Ghost Buffering

B: Cost-Benefit of
Ghost Mapping

A>B

Data Buffer
FTL

Mapping
Cache

Ghost
Buffering

Ghost Mapping
Data

Buffer
FTL Mapping CacheGhost Buffering

Ghost
Mapping

A<B

8/21

Case Study I
Demand-based Flash Translation Layer (DFTL)

 DFTL applies a caching mechanism to existing
page-level mapping FTL

 DFTL keeps only frequently-accessed logical-to-
physical mapping entries in CMT

Data Blocks

FTL Mapping Cache

Cached Mapping Table
(CMT)

LPN PPN VPN PPN

Global Translation Directory
(GTD)

Mapping
Entries

Directory
Entries

LPN 0

LPN 1

LPN 2

LPN 3

Translation
Blocks

VPN 0

Translation Page for VPN 0

NAND Flash Memory

101

102

103

400

PPNs

9/21

Opportunity Cost of the Mapping Cache with DFTL

 Opportunity cost for a read miss in CMT

 Flash_Read

 Opportunity cost for a write miss in CMT

 {Flash_Read + Flash_Write (GC Overhead)} /
Batch_Factor

 Batch_Factor means the avg. # of CMT entries
flushed by a batch update

8-32MB DRAM-based Cache

Data Buffer
Cache

FTL Mapping Cache

LPN PPN VPN PPN

Mapping
Entries

Directory
Entries

CMT GTD

10/21

Opportunity Cost of the Buffer Cache with DFTL

 Opportunity cost for a read miss in buffer cache

 Flash_Read + Flash_Read * CMT_Read_Miss_Ratio

 Opportunity cost for a write miss in buffer cache

 Flash_Write (GC_Overhead)

+ CMT_Write * CMT_Write_Miss_Ratio

8-32MB DRAM-based Cache

Data Buffer
Cache

FTL Mapping Cache

LPN PPN VPN PPN

Mapping
Entries

Directory
Entries

CMT GTD

11/21

Case Study II
Fully Associative Sector Translation (FAST)

 Data blocks are managed by block-level mapping

 Where all pages must be fully and sequentially written

 A fixed number of log blocks handle updates

Data Blocks

FTL Mapping Cache

PBN
(Log Block)

LPNs

3505 16 100 101 …

… …

… …

LBN PBN

0 1207

1 305

2 306

… …

Block-Level Mapping

Page-Level Mapping

NAND Flash Memory

Victim
RW Log Block

New Data
BlocksNew Data

Blocks

RW Log
Blocks

Full Merges
Associated Data Blocks

12/21

Case Study II
Fully Associative Sector Translation (FAST)

 Write-dominant and high temporal-locality

 Many valid pages in log blocks can be invalidated by
following updates with enough log blocks

 Read-dominant or small working set

 Many log blocks remain unused, unnecessarily
wasting the device cache

 The unused mapping space can be

utilized for buffering by reducing

of available log blocks

Page-Level Mapping

PBN
(Log Block)

LPNs

3505 16 100 101 …

… Empty

… Empty

PBN (Log Block) LPNs

3505 7 100 101 102 15 5 3 14

… …

If all valid pages of the same associated data block (LBN:12) are invalidated, a full merge is avoided

Page-Level Mapping

13/21

Opportunity Cost of the Mapping Cache with FAST

 Opportunity cost for a read miss in mapping
cache

 There is no read miss in FAST

 Opportunity cost for a write miss in mapping
cache

 Full_Merge_Overhead /AS_Factor

 AS_Factor means the avg. # of written pages that
belong to the same associated data block

PBN (RW Log block) LPNs

3505 100 101 102 3 4 5 14 15

Page-Level Mapping

AS_Factor = (3 + 3 + 2) / 3

14/21

Opportunity Cost of the Buffer Cache with FAST

 Opportunity cost for a read miss in buffer cache

 Flash_Read

 Opportunity cost for a write miss in buffer cache

 Flash_Write + RW_Log_Merge_Cost /
#Pages_Per_Block

15/21

Configurations for Experiments

Flash Type Unit Size (KB) Access Time (µs)

Page Block Read Write Erase

SLC 2 128 72.8 252.8 1500

 8MB or 16MB of DRAM is assumed as the device
cache

 64GB SLC NAND flash memory

 The number of extra blocks is set as up to about 10%
of the total capacity

DFTL FAST

Tuning Interval 1,000 Requests 10,000 Requests

Tuning Unit Size A CMT Entry A Log Block

16/21

Summary of the Block-Level Traces

Name Description Avg. Req. Size
[Read/Write]
(KB)

Req. Ratio
[Read/Write]
(%)

Working Set
[Read/Write]
(GB)

SYSmark Running SYSmark 2007
Preview including e-
learning, office
works, video creation,
and 3D modeling

13.6 / 20 33 / 67 0.11 / 0.24

Financial I/O trace from an
OnLine Transaction
Processing (OLTP)
application
running at a financial
institution

2.3 / 3.6 47.4 / 52.6 0.45 / 0.5

PC Document-based
realistic workloads using
various office
applications

20 / 13.4 23.7 / 76.3 5.82 / 8.45

TPC-C Running a TPC-C
benchmark test with
Benchmark Factory

2.2 / 2.1 81.4 / 18.6 8.04 / 4.45

17/21

Operation Time with DFTL

SYSmark TPC-CFinancial PC

18/21

Operation Time with FAST

SYSmark TPC-CFinancial PC

More than 80%

19/21

Throughput with DFTL and FAST

TPC-CPC
DFTL

FAST

20/21

Erase Count with DFTL and FAST

SYSmark TPC-CFinancial PC

DFTL

FAST

 The proposed scheme can extend the lifetime of
SSDs

21/21

Conclusions

 We proposed an adaptive partitioning scheme for
better performance of SSDs

 The proposed scheme adaptively tunes the BM ratio
according to workload characteristics

 We built a cost-benefit model based on a ghost
caching mechanism

 The performance results come near the best
performance under the static partitioning policy with
varied workloads

 We expect that SSDs equipped with the proposed
scheme can be deployed in different environments
without workload-specific tuning

Extra Slides

23/21

Implementation of Ghost Mapping Cache

 Bloom Filter

 To insert an LPN, the corresponding hash bucket is
set

 If a hash collision occurs, the bit count of hash bitmap does
not increase

 To flush a victim, we reset of the bit in random order

 the bitmap hash is flushed only if (the current bit count of
the hash bitmap) *α is smaller than the bit count that

should be preserved without collisions

 α was set as 3 for all the simulation results

