
An Adaptive Partitioning Scheme for
DRAM-based Cache in Solid State Drives

Hyotaek Shim, Bon-Keun Seo, Jin-Soo Kim, and Seungryoul Maeng

Korea Advanced Institute of Science and Technology (KAIST)
Sungkyunkwan University (SKKU)

IEEE MSST 2010 Research Track

2/21

Architecture of a Typical SSD

File System

8-32MB DRAM-based Cache

Solid State Drive (SSD)

Read Miss Dirty Buffer Flush

Flash Translation Layer (FTL)

Data Buffer FTL Mapping Cache

Read Write

NAND Flash Memory

Read Write (Erase)

 The internal device
cache has two main
purposes

 To absorb frequent
read/write requests

 To store logical-to-
physical address
mapping information

 We focus on how to
efficiently utilize the
device cache between
the two purposes

3/21

Trade-Off between Buffering and Mapping

8-32MB DRAM-based Cache

Data Buffer FTL Mapping Cache

 A trade-off between how much space is
allocated to buffering versus mapping

 Frequent requests can be more cached with larger
buffering space

 The SSD performance can also benefit from larger
mapping space

 The device cache should be appropriately
partitioned

 Existing studies assumed that the BM ratio is fixed
(static partitioning policy)

BM ratio is the ratio of the buffering and the mapping space.

4/21

Effects of Adjusting the BM Ratio

PC
Trace

TPC-C
Trace

 The optimal BM ratio is usually affected by
workload characteristics

5/21

Adaptive Partitioning Scheme (1/3)

 This scheme adaptively adjusts the BM ratio
according to workload characteristics

 Comparing the cost-benefits of buffering and mapping

 Ghost cache

 Exclusive victim cache that stores only metadata

 The cost-benefits of actual caches are estimated by their
ghost caches

8-32MB DRAM-based Cache

Data Buffer
FTL Mapping

Cache
Ghost

Buffering
Ghost Mapping

DRAM SizeDRAM Size

Victims to be flushed Victims to be flushed

6/21

Adaptive Partitioning Scheme (2/3)

 Cost-benefit of ghost cache

 Whenever a read/write hit occurs in ghost cache,

its benefit is accumulated

 At the same time, a read/write miss occurs in its actual
cache

 The benefit is the cost (NAND flash operation time) caused
by the read/write miss in its actual cache

 We call this cost opportunity cost caused by not enlarging
the actual cache size

 The cost of cost-benefit is the expected memory
consumption of ghost cache

7/21

Adaptive Partitioning Scheme (3/3)

 At every pre-defined interval, the BM ratio is
tuned by comparing the cost-benefits of ghost
caches

8-32MB DRAM-based Cache

Data Buffer
FTL Mapping

Cache
Ghost

Buffering
Ghost Mapping

DRAM SizeDRAM Size

A: Cost-Benefit of
Ghost Buffering

B: Cost-Benefit of
Ghost Mapping

A>B

Data Buffer
FTL

Mapping
Cache

Ghost
Buffering

Ghost Mapping
Data

Buffer
FTL Mapping CacheGhost Buffering

Ghost
Mapping

A<B

8/21

Case Study I
Demand-based Flash Translation Layer (DFTL)

 DFTL applies a caching mechanism to existing
page-level mapping FTL

 DFTL keeps only frequently-accessed logical-to-
physical mapping entries in CMT

Data Blocks

FTL Mapping Cache

Cached Mapping Table
(CMT)

LPN PPN VPN PPN

Global Translation Directory
(GTD)

Mapping
Entries

Directory
Entries

LPN 0

LPN 1

LPN 2

LPN 3

Translation
Blocks

VPN 0

Translation Page for VPN 0

NAND Flash Memory

101

102

103

400

PPNs

9/21

Opportunity Cost of the Mapping Cache with DFTL

 Opportunity cost for a read miss in CMT

 Flash_Read

 Opportunity cost for a write miss in CMT

 {Flash_Read + Flash_Write (GC Overhead)} /
Batch_Factor

 Batch_Factor means the avg. # of CMT entries
flushed by a batch update

8-32MB DRAM-based Cache

Data Buffer
Cache

FTL Mapping Cache

LPN PPN VPN PPN

Mapping
Entries

Directory
Entries

CMT GTD

10/21

Opportunity Cost of the Buffer Cache with DFTL

 Opportunity cost for a read miss in buffer cache

 Flash_Read + Flash_Read * CMT_Read_Miss_Ratio

 Opportunity cost for a write miss in buffer cache

 Flash_Write (GC_Overhead)

+ CMT_Write * CMT_Write_Miss_Ratio

8-32MB DRAM-based Cache

Data Buffer
Cache

FTL Mapping Cache

LPN PPN VPN PPN

Mapping
Entries

Directory
Entries

CMT GTD

11/21

Case Study II
Fully Associative Sector Translation (FAST)

 Data blocks are managed by block-level mapping

 Where all pages must be fully and sequentially written

 A fixed number of log blocks handle updates

Data Blocks

FTL Mapping Cache

PBN
(Log Block)

LPNs

3505 16 100 101 …

… …

… …

LBN PBN

0 1207

1 305

2 306

… …

Block-Level Mapping

Page-Level Mapping

NAND Flash Memory

Victim
RW Log Block

New Data
BlocksNew Data

Blocks

RW Log
Blocks

Full Merges
Associated Data Blocks

12/21

Case Study II
Fully Associative Sector Translation (FAST)

 Write-dominant and high temporal-locality

 Many valid pages in log blocks can be invalidated by
following updates with enough log blocks

 Read-dominant or small working set

 Many log blocks remain unused, unnecessarily
wasting the device cache

 The unused mapping space can be

utilized for buffering by reducing

of available log blocks

Page-Level Mapping

PBN
(Log Block)

LPNs

3505 16 100 101 …

… Empty

… Empty

PBN (Log Block) LPNs

3505 7 100 101 102 15 5 3 14

… …

If all valid pages of the same associated data block (LBN:12) are invalidated, a full merge is avoided

Page-Level Mapping

13/21

Opportunity Cost of the Mapping Cache with FAST

 Opportunity cost for a read miss in mapping
cache

 There is no read miss in FAST

 Opportunity cost for a write miss in mapping
cache

 Full_Merge_Overhead /AS_Factor

 AS_Factor means the avg. # of written pages that
belong to the same associated data block

PBN (RW Log block) LPNs

3505 100 101 102 3 4 5 14 15

Page-Level Mapping

AS_Factor = (3 + 3 + 2) / 3

14/21

Opportunity Cost of the Buffer Cache with FAST

 Opportunity cost for a read miss in buffer cache

 Flash_Read

 Opportunity cost for a write miss in buffer cache

 Flash_Write + RW_Log_Merge_Cost /
#Pages_Per_Block

15/21

Configurations for Experiments

Flash Type Unit Size (KB) Access Time (µs)

Page Block Read Write Erase

SLC 2 128 72.8 252.8 1500

 8MB or 16MB of DRAM is assumed as the device
cache

 64GB SLC NAND flash memory

 The number of extra blocks is set as up to about 10%
of the total capacity

DFTL FAST

Tuning Interval 1,000 Requests 10,000 Requests

Tuning Unit Size A CMT Entry A Log Block

16/21

Summary of the Block-Level Traces

Name Description Avg. Req. Size
[Read/Write]
(KB)

Req. Ratio
[Read/Write]
(%)

Working Set
[Read/Write]
(GB)

SYSmark Running SYSmark 2007
Preview including e-
learning, office
works, video creation,
and 3D modeling

13.6 / 20 33 / 67 0.11 / 0.24

Financial I/O trace from an
OnLine Transaction
Processing (OLTP)
application
running at a financial
institution

2.3 / 3.6 47.4 / 52.6 0.45 / 0.5

PC Document-based
realistic workloads using
various office
applications

20 / 13.4 23.7 / 76.3 5.82 / 8.45

TPC-C Running a TPC-C
benchmark test with
Benchmark Factory

2.2 / 2.1 81.4 / 18.6 8.04 / 4.45

17/21

Operation Time with DFTL

SYSmark TPC-CFinancial PC

18/21

Operation Time with FAST

SYSmark TPC-CFinancial PC

More than 80%

19/21

Throughput with DFTL and FAST

TPC-CPC
DFTL

FAST

20/21

Erase Count with DFTL and FAST

SYSmark TPC-CFinancial PC

DFTL

FAST

 The proposed scheme can extend the lifetime of
SSDs

21/21

Conclusions

 We proposed an adaptive partitioning scheme for
better performance of SSDs

 The proposed scheme adaptively tunes the BM ratio
according to workload characteristics

 We built a cost-benefit model based on a ghost
caching mechanism

 The performance results come near the best
performance under the static partitioning policy with
varied workloads

 We expect that SSDs equipped with the proposed
scheme can be deployed in different environments
without workload-specific tuning

Extra Slides

23/21

Implementation of Ghost Mapping Cache

 Bloom Filter

 To insert an LPN, the corresponding hash bucket is
set

 If a hash collision occurs, the bit count of hash bitmap does
not increase

 To flush a victim, we reset of the bit in random order

 the bitmap hash is flushed only if (the current bit count of
the hash bitmap) *α is smaller than the bit count that

should be preserved without collisions

 α was set as 3 for all the simulation results

