

Indirection Systems for Shingled-Recording Disk Drives

Yuval Cassuto

with co-authors: M. Sanvido, C. Guyot, D. Hall and Z. Bandic

Hitachi Global Storage Technologies

MSST 2010, May 7

Copyright © 2010, Hitachi Global Storage Technologies, All rights reserved.

HITACHI

HITACHI

track layout for shingled-recording

- More: Capacity
- Less: Functionality \rightarrow Performance

The Optimization Envelope

HITACHI

From Magnetics to Systems

Why on the drive?

- Transparent to Host
- Complete knowledge of physical layout

Why on the host?

- "Shingle aware" access and allocation
- System specific performance optimization

Append/Read-Modify-Write with Shingled Regions

General Method for LBA↔PBA Mapping

• Disk is partitioned to LBA shingled regions and cache shingled regions

- Each LBA region (shingle) is associated with one cache region (shinglet)
- Multiple LBA regions are associated with each cache region (setassociative cache)

Set-Associative Disk Cache: Write Path

Cache Region

HITACHI

Write to Disk Cache

Cache Region

Garbage Collection

- Read cache
- For each LBA region present in cache: RMW* <u>full</u> <u>region</u>

(Read+Write) x #Present

Full cache available
again

Cache Region

* RMW = Read-Modify-Write

Results from PC Traces

HITACHI

4K Random IOPS

HITACHI

Size 50000

• Simple to implement

- Large dips in performance due to long garbage collections
- Region updated in place \rightarrow consistency issues

Inspire t

The S-Blocks Architecture

- Temporary (red) and permanent (blue) storage managed as ring buffers
- S-Block: intermediate unit between sector and region

HITA

HITACHI Inspire the Next

Initial Conditions

Write Operation

- If full S-Block: write directly in S-Block buffer
- If smaller than full S-Block: write in Ecache

 If no room for incoming write: reclaim invalid exceptions in E-cache (defrag)

- If not enough invalid exceptions:
 - Choose S-Block
 - Destage(S-Block)

Destage(S-Block)

HITACHI Inspire the Next

S-Block 1 \rightarrow sectors 1-10

Destage(S-Block)

S-block writes in E-cachce are not needed after destage

HITACHI

Optimal Destage

- Choose S-Block with highest exception count
- Best amortization of S-Block rewrite
- Good for biased workloads (e.g. hotspots)

Optimal Defrag

- Choose S-Block closest to the tail
- Least amount of copying in S-Block defrag
- Good for random workloads

Optimal Destage

- S-Block destage average # invalidated exceptions 55.26
- S-Block defrag average copy count 1744.64
- average IOPS = 73.44

Optimal Defrag

- S-Block destage average # invalidated exceptions 12.52
- S-Block defrag average copy count 0.00
- average IOPS = 121.54

Effect of S-Block Choice on Performance

Lazy Garbage Collection

HITACHI

Constant Garbage Collection

HITACHI Inspire the Next

- Good sustained random write performance
- Append update \rightarrow no consistency issues
- Flexible to handle different workload types
- Good sequential performance with direct S-block writes

Non-trivial implementation

- Shingled magnetic recording opens a rich area of systems research
- Good understanding of main issues and tradeoffs
- Proposed architectures likely basis for real implementations
- Significant research needed in performance optimization

HITACHI Inspire the Next

Backup Slides

HITACHI Inspire the Next

Invalidate in Ring Buffer

Defrag Ring Buffer

Defrag Ring Buffer

Defrag Ring Buffer

