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Target Application

0 backup storage systems

o network backup services

= decentralized peer-to-peer schemes based on
peer-cooperation over distributed network
trade local resources for remote storage capacity

= centralized storage provided by storage
service providers (SSPs)

trade money for reliable backup and provide better
quality-of-service (QoS)
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Build a Scalable and Cost-effective
Backup/Archiving Storage System

0 deduplication technology has been widely
applied in disk-based secondary storage
systems

o two technical challenges

= duplicate-lookup disk bottleneck

determine if an incoming data object is a duplicate,
the index can become too large for RAM to hold in its
entirety

m storage node island effect
eliminate duplicates among multiple servers
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Find the Key

0 Duplicate Detection Methods
= examine the file system metadata

= adopt content-based fingerprint

Granularity: whole files, fixed-size blocks, or variable-sized
chunks

0 Duplicate Lookup Acceleration Methods
= exploit data locality — DDFS, Sparse Indexing
= exploit file similarity — Extreme Binning
(fast membership determination of incoming data objects)
o Enable Scalability
= distributed hash table - Extreme Binning, HYDRAstor
(partition data into dissimilar or less similar groups)
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The MAD2 Architecture
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o Hash Bucket Matrix (HBM)
0 Bloom Filter Array (BFA)
o Dual Cache

o DHT-based Load-Balance
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Locality-Preserved Hash Bucket Matrix

0 Consecutive fingerprints belonging to the
same backup job have a high probability
of being stored in the same tanker.
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Using Bloom Filter Array as Quick Index

o Single Bloom Filter - Drawbacks
= potential total number of fingerprints is difficult to estimate.
= a single BF is ineffective in locating possible duplicates.

= physical fingerprint deletion will result in rebuilding of the
whole BF.

o Employ a Bloom Filter Array (BFA)

= associate each tanker with a Bloom Filter, add a Bloom Filter
along with a new tanker.

= all the Bloom Filters are isomorphic and share the same hash
functions.

= add a Bloom Filter along with a new tanker.
super bucket 1 super bucket n BFA




Dual Cache Mechanism
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DHT-pased Load Balancing

o Each SC is only responsible for file recipes and chunks with
the same specific fingerprint prefix.
= Because fingerprints with different prefixes are collision free,
and if each SC performs exact deduplication in its responsible
hash sub-space, the entire backend storage can achieve global
exact deduplication.

o Both file recipes and chunk contents will be distributed in
their backup sequences to preserve locality.
= Consider a sequence of fingerprints with two different prefixes
(a1, bo, c1, di, €0, f1, g0). MAD2 divides them into two sub-

sequences (al, cl1, di, f1) and (b0, €0, g0), and distributes
each sub-sequence to one responsible SC.
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Data Organization and Deletion Support

o all the chunk contents are kept in chunk store, which
consists of chunk tankers corresponding to tankers in HBM.

o inside each chunk tanker, chunks are grouped and
packaged into chunk containers in a stream-locality-
preserved manner.

O counting fingerprint: structured as <fingerprint, data length,
reference count>

= a file or a chunk will not be physically deleted until the
associated reference count drops to zero.

= adjacent tankers can be merged if they are sparse enough.
= all the involved Bloom Filters will be reconstructed.

= a physical delete operation is executed in a batch mode. all
involved tankers must be changed to the read-only mode to
maintain data consistency.

m exposes only a file-level delete interface to SC clients.
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Workflow of the MAD2 Approach

o two phases:
= eliminate duplicate files.

File Level Deduplication Chunk Level Deduplication

= eliminate duplicate <file fingerprints, file recipes>
chunks. <chunk fingerpirints, chunk contents>
o two inline deduplication file fingerprints RAM |chunkfinqerprints
modes: =

= exclusive mode: targets |(BFA)(SAC (DMC)
at high-speed backup
streams that can finish data

transmission in short time
windows. (BFA)(___HBM )Y (BFA)(_ HBM

= round-robin mode: aims |(__ FileRecipeStore ) ( Chunk Store
at low-speed backup Disk
streams that will be
buffered by SP (storage

proxy).
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Experiment Datasets

o Workgroup set

= collected from an engineering group consisting
of 15 graduate students

= 12.1 million files, 6.0TB data

0 Campus set

= collected from 26 users on a campus network,
including personal website owners, small file
transfer site managers and other individuals.

= 15.4 million files, 4.7TB data
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Locality-Preserving Capability of HBM

o Let each super bucket consist of only one bucket, we examine five
different configurations of HBM (i.e., 128-, 256-, 512-, 1024-, and
2048-super-bucket HBM)
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o Tanker Structure: 1,024 buckets plus 1,024 fingerprint cells
o Rebalancing Threshold: 1,024
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Hot Fingerprint

O detected 84,876,504 duplicate chunks
with the same content of 1,024-byte zeros.

O zero-chunks may be widely shared even
among dissimilar files.

= can disrupt the chunk locality and affect the
efficiency of our cache mechanism.

= pre-calculate the SHA-1 hash of 1KB zero-
chunk, and define it as a built-in fingerprint.
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Deduplication Efficiency

o Workgroup Set

= implemented a simple version of Extreme Binning to
represent approximate deduplication.
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Deduplication Efficiency

0 Campus Set
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Load Balancing

o Workgroup Set

= 84,876,504 hot fingerprints were detected at the chunk level,

which means that there are about 80.9GB zero-chunks being
distributed among files.
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Load Balancing

o Campus Set

= A total of 3,953,486 hot fingerprints are detected in the

Campus set, corresponding to approximately 3.8GB zero-
chunks.
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Throughput

O

O

We trace and report the fingerprint deduplication
efficiency.

Considering an average chunk size of 4KB, 25,600 chunk
fingerprints must be deduplicated per second to achieve a
100MB/s raw deduplication throughput.

= Note that one duplicate fingerprint found at the file level
means that all the chunk fingerprints belonging to that file can
be directly skipped.

Workgroup set: 12,154,807 file fingerprints and
207,856,782 chunk fingerprints are actually transferred and
deduplicated in a period of 982 seconds.

= Chunk level: 211,667 fingerprints/sec, 827MB/s
= Overall: 6,415MB/s
Campus set: 15,391,112 file fingerprints and 132,110,642

chunk fingerprints are actually transferred and deduplicated
in a period of 814 seconds.

= Chunk level: 162,298 fingerprints/sec, 634MB/s
= Overall: 6,011MB/s
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RAM Usage

0 10TB deduplicated data set - 10GB RAM

m 40X 220 files, assuming the average file size is 256KB

m 2.5X230 chunks, assuming the average chunk size is
4KB
= Assuming a capacity of 220 fingerprints
40 tankers to hold the file fingerprints
2,560 tankers to hold the chunk fingerprints.
= limiting the false positive rate of Bloom Filter Array (BFA)
to an extremely low level of 1/220
144MB to hold the file-level BFA
9.2GB to hold the chunk-level BFA
800MB to construct the in-memory cache
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Minimizing the RAM Consumption

o Increase the average chunk size.
= at the expense of less detectable duplicate data.
o Allow a much higher false positive rate.

= by increasing the false positive rate from 1/220 to 1/29, the
total RAM consumption by BFA will be reduced from 9.2GB to
4.2GB.

m cause more cache replacement operations and affect the
throughput.
o Configures the chunk-level deduplication to run on a round-
robin manner among multiple SCs on the same storage
node.

= with n SCs rotating to execute the chunk-level deduplication
one at a time on a round-robin basis, the memory requirement
will be reduced to approximate 1/n.

= at the cost of reduced chunk-level deduplication throughput.
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Conclusions, Questions

O

Organizes fingerprints into a Hash Bucket Matrix (HBM),
\t/)Vholfe rows can be used to preserve the data locality in
ackups.

Uses Bloom Filter Array (BFA) as a quick index to quickly
identify non-duplicate incoming data objects or indicate
where to find a possible duplicate.

IIntelgrates in-memory Dual Cache to capture and exploit
ocality.

Employs a DHT-based Load-Balance technique to evenly
distribute data objects among multiple storage nodes in
their backup sequences to further enhance performance
with a well-balanced load.

Experimental results show that the MAD2 approach is
effective and efficient.

Thank you! Questions?
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