MAD?2: A Scalable High-Throughput
Exact Deduplication Approach for

Network Backup Services
- ] - 1]

Jiansheng Wei', Hong Jiang*, Ke Zhou', Dan Feng"

1School of Computer, Huazhong University of Science and Technology, Wuhan, China
Wuhan National Laboratory for Optoelectronics, Wuhan, China
1Dept. of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA

2010-5-7 1



Target Application

0 backup storage systems

o network backup services

= decentralized peer-to-peer schemes based on
peer-cooperation over distributed network
trade local resources for remote storage capacity

= centralized storage provided by storage
service providers (SSPs)

trade money for reliable backup and provide better
quality-of-service (QoS)

2010-5-7




Build a Scalable and Cost-effective
Backup/Archiving Storage System

0 deduplication technology has been widely
applied in disk-based secondary storage
systems

o two technical challenges

= duplicate-lookup disk bottleneck

determine if an incoming data object is a duplicate,
the index can become too large for RAM to hold in its
entirety

m storage node island effect
eliminate duplicates among multiple servers

2010-5-7



Find the Key

0 Duplicate Detection Methods
= examine the file system metadata

= adopt content-based fingerprint

Granularity: whole files, fixed-size blocks, or variable-sized
chunks

0 Duplicate Lookup Acceleration Methods
= exploit data locality — DDFS, Sparse Indexing
= exploit file similarity — Extreme Binning
(fast membership determination of incoming data objects)
o Enable Scalability
= distributed hash table - Extreme Binning, HYDRAstor
(partition data into dissimilar or less similar groups)

2010-5-7 4




Outline

o Background and Motivation

o The MAD2 Architecture and Design

o Prototype Implementation and Evaluation
0 Conclusions, Questions

2010-5-7




The MAD2 Architecture

Incoming data from Backup Client File Level Deduplication Chunk Level Deduplication
<file fingerprints, file recipes>

+ metadata : .
[ Backup+ Server <chunk flngerpirmts, chunk contents>
[ ile fi ' RAM ! chunk fingerprints

) ( Chunk Store
Disk

File Recipe Store

file fingerprints

storage Proxy Metadata Server Group ) %“ S
c
<file fingerprints, | | <chunk fingerprints, BFA X\(SAC \DMC) & (BFA)( SAC (DMC)|=
file recipes> vy chunk contents> = 9
(D =]
( High-speed Network @ 5}
prefix; 7

)
: (BFA)( HBM )v}
)

prefixs preflxk
Y
SC3
SN

o Hash Bucket Matrix (HBM)
0 Bloom Filter Array (BFA)
o Dual Cache

o DHT-based Load-Balance

2010-5-7 6




Locality-Preserved Hash Bucket Matrix

0 Consecutive fingerprints belonging to the
same backup job have a high probability
of being stored in the same tanker.

super bucket 1 super bucket n

tanker 1 ((Bi) (B2 ... @>
N N ~

tanker 2 <\/ (] ... \/)
N AN N
N Y TN

tanker 3 < N \/)
/: N N /.

2010-5-7 tanker m C@ @ @)




Using Bloom Filter Array as Quick Index

o Single Bloom Filter - Drawbacks
= potential total number of fingerprints is difficult to estimate.
= a single BF is ineffective in locating possible duplicates.

= physical fingerprint deletion will result in rebuilding of the
whole BF.

o Employ a Bloom Filter Array (BFA)

= associate each tanker with a Bloom Filter, add a Bloom Filter
along with a new tanker.

= all the Bloom Filters are isomorphic and share the same hash
functions.

= add a Bloom Filter along with a new tanker.
super bucket 1 super bucket n BFA




Dual Cache Mechanism

0 Dual Cache is designhed -~

to improve disk access tanker (-
efficiency while locating ** | Bu
duplicate fingerprints.  tanker (-

set2 | By

,,,,,,,,,,,, Set-Associative Cache ™
e = R =
Blw B21 BZW Bnl an

m directly-mapped I
cache (DMC) : @- OO OO
capture the fingerprint @nker jit—-- e
|0Ca|ity in backup sets kBll ,,,,, Bw Ba  Baw | Bu B
streams (e Directly-Mapped Cache
periodically rebalance tanker1 /(8. (B, (JBs [(JB: - (B
the hash bucket S R \
matrix tanker K|ty ()B; (Bs (IBs = (B
m set-associative cache
(SAC)
exploit the fingerprint
locality in backup data
2010-5-7 9




DHT-pased Load Balancing

o Each SC is only responsible for file recipes and chunks with
the same specific fingerprint prefix.
= Because fingerprints with different prefixes are collision free,
and if each SC performs exact deduplication in its responsible
hash sub-space, the entire backend storage can achieve global
exact deduplication.

o Both file recipes and chunk contents will be distributed in
their backup sequences to preserve locality.
= Consider a sequence of fingerprints with two different prefixes
(a1, bo, c1, di, €0, f1, g0). MAD2 divides them into two sub-

sequences (al, cl1, di, f1) and (b0, €0, g0), and distributes
each sub-sequence to one responsible SC.

2010-5-7 10



Data Organization and Deletion Support

o all the chunk contents are kept in chunk store, which
consists of chunk tankers corresponding to tankers in HBM.

o inside each chunk tanker, chunks are grouped and
packaged into chunk containers in a stream-locality-
preserved manner.

O counting fingerprint: structured as <fingerprint, data length,
reference count>

= a file or a chunk will not be physically deleted until the
associated reference count drops to zero.

= adjacent tankers can be merged if they are sparse enough.
= all the involved Bloom Filters will be reconstructed.

= a physical delete operation is executed in a batch mode. all
involved tankers must be changed to the read-only mode to
maintain data consistency.

m exposes only a file-level delete interface to SC clients.

2010-5-7 11




Workflow of the MAD2 Approach

o two phases:
= eliminate duplicate files.

File Level Deduplication Chunk Level Deduplication

= eliminate duplicate <file fingerprints, file recipes>
chunks. <chunk fingerpirints, chunk contents>
o two inline deduplication file fingerprints RAM |chunkfinqerprints
modes: =

= exclusive mode: targets |(BFA)(SAC (DMC)
at high-speed backup
streams that can finish data

transmission in short time
windows. (BFA)(___HBM )Y (BFA)(_ HBM

= round-robin mode: aims |(__ FileRecipeStore ) ( Chunk Store
at low-speed backup Disk
streams that will be
buffered by SP (storage

proxy).

(BFA) ( SAC /DMC)

sadioal 9

\ v‘u SJUSIUOD YUNYd

2010-5-7 12




Outline

o Background and Motivation

o The MAD2 Architecture and Design

0 Prototype Implementation and Evaluation
0 Conclusions, Questions

2010-5-7

13



Experiment Datasets

o Workgroup set

= collected from an engineering group consisting
of 15 graduate students

= 12.1 million files, 6.0TB data

0 Campus set

= collected from 26 users on a campus network,
including personal website owners, small file
transfer site managers and other individuals.

= 15.4 million files, 4.7TB data

2010-5-7 14




Locality-Preserving Capability of HBM

o Let each super bucket consist of only one bucket, we examine five
different configurations of HBM (i.e., 128-, 256-, 512-, 1024-, and
2048-super-bucket HBM)

1536 3584 - _ _
HBM Configuration /"\A ss0s ]| HBM Configuration ./.\Ll
1 |—e=—128 ] —=— 128
128041 o 256 A 3072 1 o256
—e—512 W 2816 e 512
—0— 1024 2560 —O0— 1024
1024 D/Dﬂ/m ] A 2048 -

—A— 2048 2304
o ] /I\//./. o 2048 ] il
£ 768 £ 1702 ] %
s S 1536 ] / g T
E 512 E 1280 o e
F T et e e T

1024

1 768 // P/ /O‘O/O/ A}/A/Hj

256 - 61 W

256 st

ot+—"—"7T—T T T T T T T 0 - T T T T T T T T T T

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 0 8388608 16777216 25165824 33554432 41943040
Average Bucket Depth Total Fingerprint Count

o Tanker Structure: 1,024 buckets plus 1,024 fingerprint cells
o Rebalancing Threshold: 1,024

2010-5-7




Hot Fingerprint

O detected 84,876,504 duplicate chunks
with the same content of 1,024-byte zeros.

O zero-chunks may be widely shared even
among dissimilar files.

= can disrupt the chunk locality and affect the
efficiency of our cache mechanism.

= pre-calculate the SHA-1 hash of 1KB zero-
chunk, and define it as a built-in fingerprint.

2010-5-7 16



Deduplication Efficiency

o Workgroup Set

= implemented a simple version of Extreme Binning to
represent approximate deduplication.

6,000

5,000

—a— Qriginal Data

—0— Approximate Deduplication

—e— Exact Deduplication - File Level
—Oo— Exact Deduplication - Chunk Level

>
o
S
S

3,000

Capacity in GB

g
[=)
S
S

Day

Compression Ratio

17

13

11

—a— Approximate Deduplication
—o— Exact Deduplication - File Level

—e— Exact Deduplication - Chunk Level

o

-

T T T T 7T T 7T T "~ T T "~ T "~ T "~ T "1
9 11 13 15 17 19 21 23 25 27 29 31

17
Day



Deduplication Efficiency

0 Campus Set

5000 19 -

—=— QOriginal Data | —a— Approximate Deduplication )'/'
4500 —0— Approximate Deduplication 17 —0o— Exact Deduplication - File Level
—e— Exact Deduplication - File Level | —e— Exact Deduplication - Chunk Level
4000 —o— Exact Deduplication - Chunk Level 15
3500
| o 13
@ 3000 g
o g1
= 2500 5
> ‘D |
3. 2000 S ’/./'\'—/
Q. o 1
S E 7 D
1500 O /
1000 5
500 34
0 ! 1+ 7T T T T T 7T T
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Day Day

2010-5-7 18




Load Balancing

o Workgroup Set

= 84,876,504 hot fingerprints were detected at the chunk level,

which means that there are about 80.9GB zero-chunks being
distributed among files.

Logical File Size [\ Exact Deduplication - File Level
P Logical Chunk Size 2259 Exact Deduplication - Chunk Level

1600

1400

1200

1000

800 —

600 —

Capacity in GB

400 H

200 +
0 . S . .

2010-5-7 0 1 SCID 2 3




Load Balancing

o Campus Set

= A total of 3,953,486 hot fingerprints are detected in the

Campus set, corresponding to approximately 3.8GB zero-
chunks.

Logical File Size [\ Exact Deduplication - File Level
XX Logical Chunk Size 223 Exact Deduplication - Chunk Level

1200 ——

1000 <

800 ——

600 —4—

400 |

Capacity in GB

200 4

2010-5-7 0 ' scp ° °

20



Throughput

O

O

We trace and report the fingerprint deduplication
efficiency.

Considering an average chunk size of 4KB, 25,600 chunk
fingerprints must be deduplicated per second to achieve a
100MB/s raw deduplication throughput.

= Note that one duplicate fingerprint found at the file level
means that all the chunk fingerprints belonging to that file can
be directly skipped.

Workgroup set: 12,154,807 file fingerprints and
207,856,782 chunk fingerprints are actually transferred and
deduplicated in a period of 982 seconds.

= Chunk level: 211,667 fingerprints/sec, 827MB/s
= Overall: 6,415MB/s
Campus set: 15,391,112 file fingerprints and 132,110,642

chunk fingerprints are actually transferred and deduplicated
in a period of 814 seconds.

= Chunk level: 162,298 fingerprints/sec, 634MB/s
= Overall: 6,011MB/s

2010-5-7 21



RAM Usage

0 10TB deduplicated data set - 10GB RAM

m 40X 220 files, assuming the average file size is 256KB

m 2.5X230 chunks, assuming the average chunk size is
4KB
= Assuming a capacity of 220 fingerprints
40 tankers to hold the file fingerprints
2,560 tankers to hold the chunk fingerprints.
= limiting the false positive rate of Bloom Filter Array (BFA)
to an extremely low level of 1/220
144MB to hold the file-level BFA
9.2GB to hold the chunk-level BFA
800MB to construct the in-memory cache

2010-5-7 22




Minimizing the RAM Consumption

o Increase the average chunk size.
= at the expense of less detectable duplicate data.
o Allow a much higher false positive rate.

= by increasing the false positive rate from 1/220 to 1/29, the
total RAM consumption by BFA will be reduced from 9.2GB to
4.2GB.

m cause more cache replacement operations and affect the
throughput.
o Configures the chunk-level deduplication to run on a round-
robin manner among multiple SCs on the same storage
node.

= with n SCs rotating to execute the chunk-level deduplication
one at a time on a round-robin basis, the memory requirement
will be reduced to approximate 1/n.

= at the cost of reduced chunk-level deduplication throughput.

2010-5-7 23



Outline

0 Background and Motivation

o The MAD2 Architecture and Design

O Prototype Implementation and Evaluation
0 Conclusions, Questions

2010-5-7

24



Conclusions, Questions

O

Organizes fingerprints into a Hash Bucket Matrix (HBM),
\t/)Vholfe rows can be used to preserve the data locality in
ackups.

Uses Bloom Filter Array (BFA) as a quick index to quickly
identify non-duplicate incoming data objects or indicate
where to find a possible duplicate.

IIntelgrates in-memory Dual Cache to capture and exploit
ocality.

Employs a DHT-based Load-Balance technique to evenly
distribute data objects among multiple storage nodes in
their backup sequences to further enhance performance
with a well-balanced load.

Experimental results show that the MAD2 approach is
effective and efficient.

Thank you! Questions?

2010-5-7 25



