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Target Application

 backup storage systems

 network backup services

 decentralized peer-to-peer schemes based on 
peer-cooperation over distributed network 

 trade local resources for remote storage capacity 

 centralized storage provided by storage 
service providers (SSPs)

 trade money for reliable backup and provide better 
quality-of-service (QoS) 
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Build a Scalable and Cost-effective 

Backup/Archiving Storage System

 deduplication technology has been widely 
applied in disk-based secondary storage 
systems

 two technical challenges
 duplicate-lookup disk bottleneck

 determine if an incoming data object is a duplicate, 
the index can become too large for RAM to hold in its 
entirety 

 storage node island effect
 eliminate duplicates among multiple servers 
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Find the Key

 Duplicate Detection Methods
 examine the file system metadata

 adopt content-based fingerprint
 Granularity: whole files, fixed-size blocks, or variable-sized 

chunks

 Duplicate Lookup Acceleration Methods
 exploit data locality – DDFS, Sparse Indexing

 exploit file similarity – Extreme Binning

(fast membership determination of incoming data objects)

 Enable Scalability
 distributed hash table – Extreme Binning, HYDRAstor

(partition data into dissimilar or less similar groups)
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Outline

 Background and Motivation

 The MAD2 Architecture and Design

 Prototype Implementation and Evaluation

 Conclusions, Questions
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The MAD2 Architecture
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 Hash Bucket Matrix (HBM)

 Bloom Filter Array (BFA)

 Dual Cache

 DHT-based Load-Balance



2010-5-7 7

Locality-Preserved Hash Bucket Matrix

 Consecutive fingerprints belonging to the 
same backup job have a high probability 
of being stored in the same tanker.
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Using Bloom Filter Array as Quick Index

 Single Bloom Filter - Drawbacks
 potential total number of fingerprints is difficult to estimate.

 a single BF is ineffective in locating possible duplicates.

 physical fingerprint deletion will result in rebuilding of the 
whole BF.

 Employ a Bloom Filter Array (BFA)
 associate each tanker with a Bloom Filter, add a Bloom Filter 

along with a new tanker.

 all the Bloom Filters are isomorphic and share the same hash 
functions.

 add a Bloom Filter along with a new tanker.
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Dual Cache Mechanism

 Dual Cache is designed 
to improve disk access 
efficiency while locating 
duplicate fingerprints.
 directly-mapped 

cache (DMC)
 capture the fingerprint 

locality in backup 
streams

 periodically rebalance 
the hash bucket 
matrix

 set-associative cache
(SAC)
 exploit the fingerprint 

locality in backup data
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DHT-based Load Balancing

 Each SC is only responsible for file recipes and chunks with 
the same specific fingerprint prefix.
 Because fingerprints with different prefixes are collision free, 

and if each SC performs exact deduplication in its responsible 
hash sub-space, the entire backend storage can achieve global 
exact deduplication.

 Both file recipes and chunk contents will be distributed in 
their backup sequences to preserve locality.
 Consider a sequence of fingerprints with two different prefixes 

(a1, b0, c1, d1, e0, f1, g0). MAD2 divides them into two sub-
sequences (a1, c1, d1, f1) and (b0, e0, g0), and distributes 
each sub-sequence to one responsible SC.
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Data Organization and Deletion Support 

 all the chunk contents are kept in chunk store, which 
consists of chunk tankers corresponding to tankers in HBM.

 inside each chunk tanker, chunks are grouped and 
packaged into chunk containers in a stream-locality-
preserved manner.

 counting fingerprint: structured as <fingerprint, data length, 
reference count>
 a file or a chunk will not be physically deleted until the 

associated reference count drops to zero.
 adjacent tankers can be merged if they are sparse enough.
 all the involved Bloom Filters will be reconstructed.
 a physical delete operation is executed in a batch mode. all 

involved tankers must be changed to the read-only mode to 
maintain data consistency.

 exposes only a file-level delete interface to SC clients.
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Workflow of the MAD2 Approach

 two phases:
 eliminate duplicate files.

 eliminate duplicate 
chunks. 

 two inline deduplication 
modes:
 exclusive mode: targets 

at high-speed backup 
streams that can finish data 
transmission in short time 
windows.

 round-robin mode: aims 
at low-speed backup 
streams that will be 
buffered by SP (storage 
proxy).
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Outline

 Background and Motivation

 The MAD2 Architecture and Design

 Prototype Implementation and Evaluation

 Conclusions, Questions
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Experiment Datasets

 Workgroup set

 collected from an engineering group consisting 
of 15 graduate students 

 12.1 million files, 6.0TB data 

 Campus set 

 collected from 26 users on a campus network, 
including personal website owners, small file 
transfer site managers and other individuals.

 15.4 million files, 4.7TB data
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Locality-Preserving Capability of HBM

 Tanker Structure: 1,024 buckets plus 1,024 fingerprint cells 
 Rebalancing Threshold: 1,024
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 Let each super bucket consist of only one bucket, we examine five 
different configurations of HBM (i.e., 128-, 256-, 512-, 1024-, and 
2048-super-bucket HBM) 
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Hot Fingerprint

 detected 84,876,504 duplicate chunks 
with the same content of 1,024-byte zeros.

 zero-chunks may be widely shared even 
among dissimilar files.

 can disrupt the chunk locality and affect the 
efficiency of our cache mechanism.

 pre-calculate the SHA-1 hash of 1KB zero-
chunk, and define it as a built-in fingerprint.
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Deduplication Efficiency

 Workgroup Set

 implemented a simple version of Extreme Binning to 
represent approximate deduplication. 
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Deduplication Efficiency

 Campus Set
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Load Balancing

 Workgroup Set
 84,876,504 hot fingerprints were detected at the chunk level, 

which means that there are about 80.9GB zero-chunks being 
distributed among files. 
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Load Balancing

 Campus Set
 A total of 3,953,486 hot fingerprints are detected in the

Campus set, corresponding to approximately 3.8GB zero-
chunks. 
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Throughput

 We trace and report the fingerprint deduplication 
efficiency.

 Considering an average chunk size of 4KB, 25,600 chunk 
fingerprints must be deduplicated per second to achieve a 
100MB/s raw deduplication throughput.
 Note that one duplicate fingerprint found at the file level 

means that all the chunk fingerprints belonging to that file can 
be directly skipped.

 Workgroup set: 12,154,807 file fingerprints and 
207,856,782 chunk fingerprints are actually transferred and 
deduplicated in a period of 982 seconds.
 Chunk level: 211,667 fingerprints/sec, 827MB/s 
 Overall: 6,415MB/s

 Campus set: 15,391,112 file fingerprints and 132,110,642 
chunk fingerprints are actually transferred and deduplicated 
in a period of 814 seconds. 
 Chunk level: 162,298 fingerprints/sec, 634MB/s 
 Overall: 6,011MB/s
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RAM Usage

 10TB deduplicated data set – 10GB RAM

 40×220 files, assuming the average file size is 256KB  

 2.5×230 chunks, assuming the average chunk size is 
4KB 

 Assuming a capacity of 220 fingerprints

 40 tankers to hold the file fingerprints

 2,560 tankers to hold the chunk fingerprints.

 limiting the false positive rate of Bloom Filter Array (BFA) 
to an extremely low level of 1/220

 144MB to hold the file-level BFA

 9.2GB to hold the chunk-level BFA

 800MB to construct the in-memory cache
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Minimizing the RAM Consumption

 Increase the average chunk size.
 at the expense of less detectable duplicate data.

 Allow a much higher false positive rate.
 by increasing the false positive rate from 1/220 to 1/29, the 

total RAM consumption by BFA will be reduced from 9.2GB to 
4.2GB.

 cause more cache replacement operations and affect the 
throughput.

 Configures the chunk-level deduplication to run on a round-
robin manner among multiple SCs on the same storage 
node.
 with n SCs rotating to execute the chunk-level deduplication 

one at a time on a round-robin basis, the memory requirement 
will be reduced to approximate 1/n.

 at the cost of reduced chunk-level deduplication throughput. 
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Outline

 Background and Motivation
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 Prototype Implementation and Evaluation
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Conclusions, Questions

 Organizes fingerprints into a Hash Bucket Matrix (HBM), 
whose rows can be used to preserve the data locality in 
backups.

 Uses Bloom Filter Array (BFA) as a quick index to quickly 
identify non-duplicate incoming data objects or indicate 
where to find a possible duplicate. 

 Integrates in-memory Dual Cache to capture and exploit
locality. 

 Employs a DHT-based Load-Balance technique to evenly 
distribute data objects among multiple storage nodes in 
their backup sequences to further enhance performance 
with a well-balanced load. 

 Experimental results show that the MAD2 approach is 
effective and efficient.

Thank you! Questions?


