
2010-5-7 1

MAD2: A Scalable High-Throughput

Exact Deduplication Approach for

Network Backup Services

Jiansheng Wei†, Hong Jiang‡, Ke Zhou†, Dan Feng†

†School of Computer, Huazhong University of Science and Technology, Wuhan, China

Wuhan National Laboratory for Optoelectronics, Wuhan, China

‡Dept. of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA

2010-5-7 2

Target Application

 backup storage systems

 network backup services

 decentralized peer-to-peer schemes based on
peer-cooperation over distributed network

 trade local resources for remote storage capacity

 centralized storage provided by storage
service providers (SSPs)

 trade money for reliable backup and provide better
quality-of-service (QoS)

2010-5-7 3

Build a Scalable and Cost-effective

Backup/Archiving Storage System

 deduplication technology has been widely
applied in disk-based secondary storage
systems

 two technical challenges
 duplicate-lookup disk bottleneck

 determine if an incoming data object is a duplicate,
the index can become too large for RAM to hold in its
entirety

 storage node island effect
 eliminate duplicates among multiple servers

2010-5-7 4

Find the Key

 Duplicate Detection Methods
 examine the file system metadata

 adopt content-based fingerprint
 Granularity: whole files, fixed-size blocks, or variable-sized

chunks

 Duplicate Lookup Acceleration Methods
 exploit data locality – DDFS, Sparse Indexing

 exploit file similarity – Extreme Binning

(fast membership determination of incoming data objects)

 Enable Scalability
 distributed hash table – Extreme Binning, HYDRAstor

(partition data into dissimilar or less similar groups)

2010-5-7 5

Outline

 Background and Motivation

 The MAD2 Architecture and Design

 Prototype Implementation and Evaluation

 Conclusions, Questions

2010-5-7 6

RAM

Disk

BFA DMCSAC

File Level Deduplication Chunk Level Deduplication

file fingerprints

File Recipe Store

BFA HBM

file recip
es

BFA DMCSAC

chunk fingerprints

Chunk Store

BFA HBM

ch
u

n
k co

n
ten

ts

<file fingerprints, file recipes>
<chunk fingerprints, chunk contents>

The MAD2 Architecture

SNSNSN

Metadata Server Group

Backup Server

SC 1 SC 2 SC 3 SC k

Storage Proxy

 metadata

High-speed Network

…

incoming data from Backup Client

…

<file fingerprints,
 file recipes>

prefix1

MDS MDS

<chunk fingerprints,
 chunk contents>

prefix2 prefix3 prefixk

 Hash Bucket Matrix (HBM)

 Bloom Filter Array (BFA)

 Dual Cache

 DHT-based Load-Balance

2010-5-7 7

Locality-Preserved Hash Bucket Matrix

 Consecutive fingerprints belonging to the
same backup job have a high probability
of being stored in the same tanker.

…

B1 B2 … Bntanker 1

tanker 2

tanker m

tanker 3

…

super bucket nsuper bucket 1

…

…

…

2010-5-7 8

Using Bloom Filter Array as Quick Index

 Single Bloom Filter - Drawbacks
 potential total number of fingerprints is difficult to estimate.

 a single BF is ineffective in locating possible duplicates.

 physical fingerprint deletion will result in rebuilding of the
whole BF.

 Employ a Bloom Filter Array (BFA)
 associate each tanker with a Bloom Filter, add a Bloom Filter

along with a new tanker.

 all the Bloom Filters are isomorphic and share the same hash
functions.

 add a Bloom Filter along with a new tanker.

…

B1 B2 … Bntanker 1

tanker 2

tanker m

tanker 3

…

super bucket n

BF

BF

BF

BF

…

BFAsuper bucket 1

…

…

…

2010-5-7 9

Dual Cache Mechanism

 Dual Cache is designed
to improve disk access
efficiency while locating
duplicate fingerprints.
 directly-mapped

cache (DMC)
 capture the fingerprint

locality in backup
streams

 periodically rebalance
the hash bucket
matrix

 set-associative cache
(SAC)
 exploit the fingerprint

locality in backup data

Set-Associative Cache

Directly-Mapped Cache

tanker 1

…

tanker
set 2

tanker
set 1

tanker
set s

B11 B1w

…
B21 B2w

…
Bn1 Bnw

……

B11 B1w

…
B21 B2w

B1 B2 Bn

tanker k

…B3

…

Bn1 Bnw

B4

B1 B2 Bn…B3 B4

… …

B11 B1w

…
B21 B2w Bn1 Bnw

… …

… ……

…

…

…

2010-5-7 10

DHT-based Load Balancing

 Each SC is only responsible for file recipes and chunks with
the same specific fingerprint prefix.
 Because fingerprints with different prefixes are collision free,

and if each SC performs exact deduplication in its responsible
hash sub-space, the entire backend storage can achieve global
exact deduplication.

 Both file recipes and chunk contents will be distributed in
their backup sequences to preserve locality.
 Consider a sequence of fingerprints with two different prefixes

(a1, b0, c1, d1, e0, f1, g0). MAD2 divides them into two sub-
sequences (a1, c1, d1, f1) and (b0, e0, g0), and distributes
each sub-sequence to one responsible SC.

2010-5-7 11

Data Organization and Deletion Support

 all the chunk contents are kept in chunk store, which
consists of chunk tankers corresponding to tankers in HBM.

 inside each chunk tanker, chunks are grouped and
packaged into chunk containers in a stream-locality-
preserved manner.

 counting fingerprint: structured as <fingerprint, data length,
reference count>
 a file or a chunk will not be physically deleted until the

associated reference count drops to zero.
 adjacent tankers can be merged if they are sparse enough.
 all the involved Bloom Filters will be reconstructed.
 a physical delete operation is executed in a batch mode. all

involved tankers must be changed to the read-only mode to
maintain data consistency.

 exposes only a file-level delete interface to SC clients.

2010-5-7 12

Workflow of the MAD2 Approach

 two phases:
 eliminate duplicate files.

 eliminate duplicate
chunks.

 two inline deduplication
modes:
 exclusive mode: targets

at high-speed backup
streams that can finish data
transmission in short time
windows.

 round-robin mode: aims
at low-speed backup
streams that will be
buffered by SP (storage
proxy).

RAM

Disk

BFA DMCSAC

File Level Deduplication Chunk Level Deduplication

file fingerprints

File Recipe Store

BFA HBM

file recip
es

BFA DMCSAC

chunk fingerprints

Chunk Store

BFA HBM

ch
u

n
k co

n
ten

ts

<file fingerprints, file recipes>
<chunk fingerprints, chunk contents>

2010-5-7 13

Outline

 Background and Motivation

 The MAD2 Architecture and Design

 Prototype Implementation and Evaluation

 Conclusions, Questions

2010-5-7 14

Experiment Datasets

 Workgroup set

 collected from an engineering group consisting
of 15 graduate students

 12.1 million files, 6.0TB data

 Campus set

 collected from 26 users on a campus network,
including personal website owners, small file
transfer site managers and other individuals.

 15.4 million files, 4.7TB data

2010-5-7 15

Locality-Preserving Capability of HBM

 Tanker Structure: 1,024 buckets plus 1,024 fingerprint cells
 Rebalancing Threshold: 1,024

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960

0

256

512

768

1024

1280

1536

Im
b
a
la

n
c
e

Average Bucket Depth

HBM Configuration

 128

 256

 512

 1024

 2048

0 8388608 16777216 25165824 33554432 41943040

0

256

512

768

1024

1280

1536

1792

2048

2304

2560

2816

3072

3328

3584

Im
b
a
la

n
c
e

Total Fingerprint Count

HBM Configuration

 128

 256

 512

 1024

 2048

 Let each super bucket consist of only one bucket, we examine five
different configurations of HBM (i.e., 128-, 256-, 512-, 1024-, and
2048-super-bucket HBM)

2010-5-7 16

Hot Fingerprint

 detected 84,876,504 duplicate chunks
with the same content of 1,024-byte zeros.

 zero-chunks may be widely shared even
among dissimilar files.

 can disrupt the chunk locality and affect the
efficiency of our cache mechanism.

 pre-calculate the SHA-1 hash of 1KB zero-
chunk, and define it as a built-in fingerprint.

2010-5-7 17

Deduplication Efficiency

 Workgroup Set

 implemented a simple version of Extreme Binning to
represent approximate deduplication.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

0

1,000

2,000

3,000

4,000

5,000

6,000

C
a
p
a
c
it
y
 i
n
 G

B

Day

 Original Data

 Approximate Deduplication

 Exact Deduplication - File Level

 Exact Deduplication - Chunk Level

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

1

3

5

7

9

11

13

15

17

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Day

 Approximate Deduplication

 Exact Deduplication - File Level

 Exact Deduplication - Chunk Level

2010-5-7 18

Deduplication Efficiency

 Campus Set

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
a
p
a
c
it
y
 i
n
 G

B

Day

 Original Data

 Approximate Deduplication

 Exact Deduplication - File Level

 Exact Deduplication - Chunk Level

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

1

3

5

7

9

11

13

15

17

19

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Day

 Approximate Deduplication

 Exact Deduplication - File Level

 Exact Deduplication - Chunk Level

2010-5-7 19

Load Balancing

 Workgroup Set
 84,876,504 hot fingerprints were detected at the chunk level,

which means that there are about 80.9GB zero-chunks being
distributed among files.

0 1 2 3

0

200

400

600

800

1000

1200

1400

1600

C
a

p
a

c
it
y
 i
n

 G
B

SC ID

 Logical File Size Exact Deduplication - File Level

 Logical Chunk Size Exact Deduplication - Chunk Level

2010-5-7 20

Load Balancing

 Campus Set
 A total of 3,953,486 hot fingerprints are detected in the

Campus set, corresponding to approximately 3.8GB zero-
chunks.

0 1 2 3

0

200

400

600

800

1000

1200

C
a
p

a
c
it
y
 i
n
 G

B

SC ID

 Logical File Size Exact Deduplication - File Level

 Logical Chunk Size Exact Deduplication - Chunk Level

2010-5-7 21

Throughput

 We trace and report the fingerprint deduplication
efficiency.

 Considering an average chunk size of 4KB, 25,600 chunk
fingerprints must be deduplicated per second to achieve a
100MB/s raw deduplication throughput.
 Note that one duplicate fingerprint found at the file level

means that all the chunk fingerprints belonging to that file can
be directly skipped.

 Workgroup set: 12,154,807 file fingerprints and
207,856,782 chunk fingerprints are actually transferred and
deduplicated in a period of 982 seconds.
 Chunk level: 211,667 fingerprints/sec, 827MB/s
 Overall: 6,415MB/s

 Campus set: 15,391,112 file fingerprints and 132,110,642
chunk fingerprints are actually transferred and deduplicated
in a period of 814 seconds.
 Chunk level: 162,298 fingerprints/sec, 634MB/s
 Overall: 6,011MB/s

2010-5-7 22

RAM Usage

 10TB deduplicated data set – 10GB RAM

 40×220 files, assuming the average file size is 256KB

 2.5×230 chunks, assuming the average chunk size is
4KB

 Assuming a capacity of 220 fingerprints

 40 tankers to hold the file fingerprints

 2,560 tankers to hold the chunk fingerprints.

 limiting the false positive rate of Bloom Filter Array (BFA)
to an extremely low level of 1/220

 144MB to hold the file-level BFA

 9.2GB to hold the chunk-level BFA

 800MB to construct the in-memory cache

2010-5-7 23

Minimizing the RAM Consumption

 Increase the average chunk size.
 at the expense of less detectable duplicate data.

 Allow a much higher false positive rate.
 by increasing the false positive rate from 1/220 to 1/29, the

total RAM consumption by BFA will be reduced from 9.2GB to
4.2GB.

 cause more cache replacement operations and affect the
throughput.

 Configures the chunk-level deduplication to run on a round-
robin manner among multiple SCs on the same storage
node.
 with n SCs rotating to execute the chunk-level deduplication

one at a time on a round-robin basis, the memory requirement
will be reduced to approximate 1/n.

 at the cost of reduced chunk-level deduplication throughput.

2010-5-7 24

Outline

 Background and Motivation

 The MAD2 Architecture and Design

 Prototype Implementation and Evaluation

 Conclusions, Questions

2010-5-7 25

Conclusions, Questions

 Organizes fingerprints into a Hash Bucket Matrix (HBM),
whose rows can be used to preserve the data locality in
backups.

 Uses Bloom Filter Array (BFA) as a quick index to quickly
identify non-duplicate incoming data objects or indicate
where to find a possible duplicate.

 Integrates in-memory Dual Cache to capture and exploit
locality.

 Employs a DHT-based Load-Balance technique to evenly
distribute data objects among multiple storage nodes in
their backup sequences to further enhance performance
with a well-balanced load.

 Experimental results show that the MAD2 approach is
effective and efficient.

Thank you! Questions?

