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Performing analysis on large data sets is often frustrating

Knowledge

Q\S o

Patterns

pae?™
19 1- Preprocessed

Data

Target Interpretation
. Data (interactive analysis
Original & visualization)
Data Model
construction
—7 Preprocessing
(pattern recognition
& feature extraction)
_ Data integration
Acquire data & selection Scientists and engineers spent
or simulate .
too much time on data
53D simulations for manipulation, especially

combustion research are
producing 30-130 TB of
data per simulation

moving and reorganizing data




Talk outline

4 Motivation

Active storage in parallel file systems
Our prototype

— Enhanced runtime interface that uses embedded analysis kernels
— Runtime stripe alignment

— Server-to-server communication for reduction and aggregation
Experimental evaluation
Conclusion




Active storage in parallel file systems
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Active storage is a technique for performing
data transformations in the storage system

E. Riedel et al., Active disks for large-scale data processing, IEEE Computer, 2001.
J. Piernas et al., Evaluation of active storage strategies for the Lustre parallel file systems, in SC, 2007.



We enable active storage on parallel 1/0 software stack
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Enhanced runtime 1/0 interface to trigger embedded
analysis kernels

Conventional MPI-based

sum 0.0;

MPI File open (&fh);
double *tmp
offset rank * nitem * type size;

(double*)malloc (nitem*sizeof (doble)) ;

MPI File read at(fh, offset, tmp, nitem, MPI DOUBLE, é&status)
for (1=0; i<nitem; 1i++)
sum += tmp[i]
S = I IS IS IS IS IS IS S e I IS S S S -y, S S S S S S S S S - - I
MPI File open(&fh); for (i=0; i<nitem; 1i++)

sum += tmpl[i];

MPI File read ex(.., SUM, ..)

<client>

Active storage based

<server>



Why MPI?

= MPIis a widely used interface
— There are a large number of applications
— Therefore, it might be relatively easy to migrate

= MPI specification provides interfaces where user functions
can be embedded into it

— Enabling the incorporation of data mining and statistical functions
easily

= Hint mechanism

— Passing kernel specific argument to the server, e.g., data types




Mapping embedded analysis kernels into 1/0 pipeline

>

pvfs state machine

?tatic int fetch data

/

disk I/0;

?tatic int dispatch data

send the data;

machine pvfs pipeline sm
?tate fetch
/ run fetch data;

normal op~—=> dispatch;
active op => do comp;

}
state do_comp

Active Storage [/0

SUCCESS Mot done

SUCCEss

run dispatch data;
success => chieck done;

run do comp op;
} success => dispatc {
?tate dispatch

-

static int do comp op

for(izO;i<nitem;i++)
sum += tmp[i] ;

state check done

run check done action;
not done => fetch;
default => terminate;




Computational unit is often not perfectly aligned to file
stripe unit

n-dimensional data set 80 bytes stripe boundary

compute unit
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1/0 pipeline with data alignment

Active Storage 10

Active Storage /O
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Server-to-server communication for reduction and
aggregation

1. Randomly choose 2. Assign each point
initial centers to the nearest center
Ao O O O @) Reduction and aggregation can
O OAO OAO be done on client side (e.g.,
O simple statistical operations)
_ Complex analysis kernels (e.g.,
3. Update centers 4. Repeat until K | . .
(mean of members) convergence -means clustering) requires
O O broadcast and reduction during

O “‘“ 8§) iterative execution
P00 S0%

K-means cluster algorithm
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K-means clustering is performed purely on the server side!

Normal I/0

Active Storage I/0

MISALIGNED

ALIGNED

SUCCESS

start KMEANS

Prepare beast for
initial cluster centers

Prepare allreduce for
new cluster centers,
cluster size, or &

SUCCEsRSs SUCCERS
Update new cluster centers
{using distance calculation)

Cleanup allreduce

done reducti on

Check & < threshold

done KMEANS

SUCCESS

next reducti on

not done
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Benchmarks and evaluation platform

Global reduction 1.38 512 MB ~100%
grep String pattern matching 512 MB A Ao
1.49 (4M of 128 string) 100%
kmeans K-means clustering 40 MB
algorithm 0.44 (1M*10 dim of 90%
double)
vren Parallel volume rendering 103MB 0
251 (300%300%300 of float) -’
32 nodes Dual Intel Xeon Quad Core 2.66 MHz
Main memory 16GB
Storage capacity ~200GB per node
Interconnection 1 Gb Ethernet
network

GPU accelerator 2 NVIDIA C1060 GPU card
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All benchmarks are 1/O dominant

100 |

&

% of distribution
3

aUM GHREF KMEANS VREN AVERAGE

64.4% time is spent on 1/0
Benchmarks are executed using 4 nodes
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Moving computation to storage server (AS) improves
performance significantly

TS
A5 .

GREF KEMEANS VEEN AVERAGE

Mormalzed execuion ime
£l

TS: Traditional Storage, 4 client nodes and 4 server nodes
AS: Active Storage, 4 server nodes
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Our approach is scalable w.r.t the different number of
nodes

SUM benchmark

TS
AS
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Mumbear of nodas
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Fixed data size: 512MB
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Putting client and server together

Traditional storage model

on collocated nodes SUM benchmark using 1 node
“t TS (separate Node)
Analysis Application T5 (same node)
45—

Analysis Library

PFS Client
file System A
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PFS Server
File System A
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No Inter-node communication,
but Inter-process communication still exists
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To achieve this in reality, client should be aware of storage layout!



Conclusion

‘ Analysis Application ‘

Knowledge

‘ Analysis Ljbra ‘

PFS Clignt
| FSAPI | RActstgAPI | Patterns
Preprocessed
PFS Sepver Data
FSAPI || [ActSto API | Interpretation
Target
Data

Model
construction

P 4 Preprocessing
Original
Data . . . .
Data integration Enabling active storage through:
& selection 1. Enhanced runtime interfaces (APIs)
2. Runtime stripe alignment

Acquire data .
or simulate 3. Server-to-server aggregation

Enabling Active storage within parallel I/O software stack removes not only inter-
node data transfer, but also inter-process data communication, resulting in a huge
performance improvement for data-intensive analysis applications
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Future work

= Function shipping

— More flexible hint mechanism

= Hadoop style execution
— Write output result to the local storage
= Scalability analysis

— NCSA Lincoln cluster: 192 compute nodes and 96 NVIDIA Tesla S1070
accelerator units.

= More benchmarks/applications

— Visualization and Bioinformatics
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Give hints to file servers for more information

MPI_Info info; = Data type and operators are
sufficient for simple
operations, e.g., sum

= Some kernels might need
more information to
perform correct

MPI File open ( .., info, .. ); computation

— Grep: string length per line

(128), search pattern
MPI Info free (&info); (“aaaaa”

MPI Init();
MPI Comm rank() ;

MPI Info create (&info);
MPI Info_set (info, “key”, “val”);

— K-means: number of
dimension (10), number of

MPI Finalize();

<general MPI hint mechanism> clusters (20), threshold value
(0.001), etc.
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Our approach is scalable w.r.t the different data set sizes

SUM benchmark
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Data mining kernels can be compute intensive
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Execution time (sac)

To

Our approach is scalable w.r.t number of nodes to execute

and data set size

TS
AL I
AS + GPL —

4 & 16
Mumier of nodes

Fixed data set size = 1M data points
Delta = 0.001

AS+GPU: active storage with GPU

Execution time (sac)
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