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Performing analysis on large data sets is often frustrating
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Scientists and engineers spent 
too much time on data 
manipulation, especially 
moving and reorganizing data

S3D simulations for 
combustion research are 
producing 30–130 TB of 
data per simulation



Talk outline

 Motivation

 Active storage in parallel file systems

 Our prototype
– Enhanced runtime interface that uses embedded analysis kernels

– Runtime stripe alignment

– Server-to-server communication for reduction and aggregation

 Experimental evaluation

 Conclusion
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Active storage in parallel file systems
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E. Riedel et al., Active disks for large-scale data processing, IEEE Computer, 2001.
J. Piernas et al., Evaluation of active storage strategies for the Lustre parallel file systems, in SC, 2007.

Library or user space 
implementation; not 
well integrated into I/O 
software stacks

Targeting applications 
that manipulates 
fundamentally-
independent data sets

Lack of reduction and 
aggregation on the 
storage nodes

Active storage is a technique for performing 
data transformations in the storage system
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We enable active storage on parallel I/O software stack
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1. Enhanced runtime interface (API) 
to enable active storage operations

2. Runtime data stripe alignment

3. Server-to-server 
communication primitives for 
complex analysis



sum = 0.0;

MPI_File_open(&fh);

double *tmp = (double*)malloc(nitem*sizeof(doble));

offset = rank * nitem * type_size;

MPI_File_read_at(fh, offset, tmp, nitem, MPI_DOUBLE, &status)

for(i=0; i<nitem; i++)

sum += tmp[i]

Enhanced runtime I/O interface to trigger embedded 
analysis kernels
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Conventional MPI-based

...

MPI_File_open(&fh);

...

MPI_File_read_ex(…, SUM, …)

...

for(i=0; i<nitem; i++)

sum += tmp[i];

<client>

<server>

Active storage based



Why MPI?

 MPI is a widely used interface
– There are a large number of applications

– Therefore, it might be relatively easy to migrate

 MPI specification provides interfaces where user functions 
can be embedded into it
– Enabling the incorporation of data mining and statistical functions 

easily

 Hint mechanism
– Passing kernel specific argument to the server, e.g., data types
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Mapping embedded analysis kernels into I/O pipeline
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machine pvfs_pipeline_sm
{

state fetch
{

run fetch_data;
normal_op => dispatch;
active_op => do_comp;

}
state do_comp
{

run do_comp_op;
success => dispatch;

}
state dispatch
{

run dispatch_data;
success => check_done;

}
state check_done
{

run check_done_action;
not_done => fetch;
default => terminate;

}
}

static int fetch_data
{

…
disk I/O;
…

}

static int dispatch_data
{

…
send the data;
…

}

pvfs state machine

static int do_comp_op
{

…
for(i=0;i<nitem;i++)

sum += tmp[i] ;
…

}



Computational unit is often not perfectly aligned to file 
stripe unit
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I/O pipeline with data alignment
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Server-to-server communication for reduction and 
aggregation
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Reduction and aggregation can 
be done on client side (e.g., 
simple statistical operations)

Complex analysis kernels (e.g., 
k-means clustering) requires 
broadcast and reduction during 
iterative execution

1. Randomly choose 
initial centers

2. Assign each point 
to the nearest center

3. Update centers
(mean of members)

4. Repeat until 
convergence

K-means cluster algorithm



K-means clustering is performed purely on the server side!

12



Benchmarks and evaluation platform

Name description
Base
(sec)

Input data % of filtering

sum Global reduction 1.38 512 MB ~100%

grep String pattern matching
1.49

512 MB
(4M of 128 string)

~100%

kmeans K-means clustering 
algorithm 0.44

40 MB
(1M*10 dim of 

double)
90%

vren Parallel volume rendering
2.61

103MB
(300*300*300 of float)

97%

Test cluster

32 nodes Dual Intel Xeon Quad Core 2.66 MHz

Main memory 16GB

Storage capacity ~200GB per node

Interconnection 
network

1 Gb Ethernet

GPU accelerator 2 NVIDIA C1060 GPU card
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All benchmarks are I/O dominant
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64.4% time is spent on I/O
Benchmarks are executed using 4 nodes



Moving computation to storage server (AS) improves 
performance significantly
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TS: Traditional Storage, 4 client nodes and 4 server nodes
AS: Active Storage, 4 server nodes



Our approach is scalable w.r.t the different number of 
nodes
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Fixed data size: 512MB

SUM benchmark



Putting client and server together
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No Inter-node communication,
but Inter-process communication still exists

To achieve this in reality, client should be aware of storage layout!

SUM benchmark using 1 node



Conclusion
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Enabling active storage through:
1. Enhanced runtime interfaces (APIs)
2. Runtime stripe alignment
3. Server-to-server aggregation

Acquire data
or simulate

Enabling Active storage within parallel I/O software stack removes not only inter-
node data transfer, but also inter-process data communication, resulting in a huge 
performance improvement for data-intensive analysis applications
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Thanks!
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Future work

 Function shipping
– More flexible hint mechanism

 Hadoop style execution
– Write output result to the local storage

 Scalability analysis
– NCSA Lincoln cluster: 192 compute nodes and 96 NVIDIA Tesla S1070 

accelerator units. 

 More benchmarks/applications
– Visualization and Bioinformatics
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Give hints to file servers for more information

 Data type and operators are 
sufficient for simple 
operations, e.g., sum

 Some kernels might need 
more information to 
perform correct 
computation
– Grep: string length per line 

(128), search pattern 
(“aaaaa”)

– K-means: number of 
dimension (10), number of 
clusters (20), threshold value 
(0.001), etc.
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MPI_Info info;

MPI_Init();

MPI_Comm_rank();

MPI_Info_create (&info);

MPI_Info_set (info, “key”, “val”);

MPI_File_open ( …, info, … );

…

MPI_Info_free (&info);

MPI_Finalize();

<general MPI hint mechanism>



Our approach is scalable w.r.t the different data set sizes
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Fixed number of nodes: 4

SUM benchmark



Data mining kernels can be compute intensive
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K-means clustering algorithm

1. Randomly choose 
initial centers

2. Assign each point 
to the nearest center

3. Update centers
(mean of members)

4. Repeat until 
convergence



Our approach is scalable w.r.t number of nodes to execute 
and data set size

Fixed data set size = 1M data points
Delta = 0.001
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Fixed # of nodes = 4
Delta = 0.001

AS+GPU: active storage with GPU


