
Enabling Active Storage on Parallel I/O Software
Stacks

Seung Woo Son

sson@mcs.anl.gov

Mathematics and Computer Science Division

MSST 2010, Incline Village, NV
May 7, 2010

mailto:sson@mcs.anl.gov

Performing analysis on large data sets is often frustrating

Original
Data

Knowledge

Interpretation
(interactive analysis

& visualization)

Acquire data
or simulate

2

Target
Data

Preprocessed
Data

Patterns

Data integration
& selection

Preprocessing
(pattern recognition
& feature extraction)

Model
construction

Scientists and engineers spent
too much time on data
manipulation, especially
moving and reorganizing data

S3D simulations for
combustion research are
producing 30–130 TB of
data per simulation

Talk outline

 Motivation

 Active storage in parallel file systems

 Our prototype
– Enhanced runtime interface that uses embedded analysis kernels

– Runtime stripe alignment

– Server-to-server communication for reduction and aggregation

 Experimental evaluation

 Conclusion

3

✔

Active storage in parallel file systems

4

S1

server
nodes

C1 C2 Cm

S2 Sn

client
nodes

Interconnect network

filter

……

……

filter filter

E. Riedel et al., Active disks for large-scale data processing, IEEE Computer, 2001.
J. Piernas et al., Evaluation of active storage strategies for the Lustre parallel file systems, in SC, 2007.

Library or user space
implementation; not
well integrated into I/O
software stacks

Targeting applications
that manipulates
fundamentally-
independent data sets

Lack of reduction and
aggregation on the
storage nodes

Active storage is a technique for performing
data transformations in the storage system

File
read

Reduced
data sent
to client

We enable active storage on parallel I/O software stack

5

1. Enhanced runtime interface (API)
to enable active storage operations

2. Runtime data stripe alignment

3. Server-to-server
communication primitives for
complex analysis

sum = 0.0;

MPI_File_open(&fh);

double *tmp = (double*)malloc(nitem*sizeof(doble));

offset = rank * nitem * type_size;

MPI_File_read_at(fh, offset, tmp, nitem, MPI_DOUBLE, &status)

for(i=0; i<nitem; i++)

sum += tmp[i]

Enhanced runtime I/O interface to trigger embedded
analysis kernels

6

Conventional MPI-based

...

MPI_File_open(&fh);

...

MPI_File_read_ex(…, SUM, …)

...

for(i=0; i<nitem; i++)

sum += tmp[i];

<client>

<server>

Active storage based

Why MPI?

 MPI is a widely used interface
– There are a large number of applications

– Therefore, it might be relatively easy to migrate

 MPI specification provides interfaces where user functions
can be embedded into it
– Enabling the incorporation of data mining and statistical functions

easily

 Hint mechanism
– Passing kernel specific argument to the server, e.g., data types

7

Mapping embedded analysis kernels into I/O pipeline

8

machine pvfs_pipeline_sm
{

state fetch
{

run fetch_data;
normal_op => dispatch;
active_op => do_comp;

}
state do_comp
{

run do_comp_op;
success => dispatch;

}
state dispatch
{

run dispatch_data;
success => check_done;

}
state check_done
{

run check_done_action;
not_done => fetch;
default => terminate;

}
}

static int fetch_data
{

…
disk I/O;
…

}

static int dispatch_data
{

…
send the data;
…

}

pvfs state machine

static int do_comp_op
{

…
for(i=0;i<nitem;i++)

sum += tmp[i] ;
…

}

Computational unit is often not perfectly aligned to file
stripe unit

9

65536 bytes

80 bytes

65600 bytes

65536 bytes

n-dimensional data set

……

day1

day2

day3

…

I/O pipeline with data alignment

10

Server-to-server communication for reduction and
aggregation

11

Reduction and aggregation can
be done on client side (e.g.,
simple statistical operations)

Complex analysis kernels (e.g.,
k-means clustering) requires
broadcast and reduction during
iterative execution

1. Randomly choose
initial centers

2. Assign each point
to the nearest center

3. Update centers
(mean of members)

4. Repeat until
convergence

K-means cluster algorithm

K-means clustering is performed purely on the server side!

12

Benchmarks and evaluation platform

Name description
Base
(sec)

Input data % of filtering

sum Global reduction 1.38 512 MB ~100%

grep String pattern matching
1.49

512 MB
(4M of 128 string)

~100%

kmeans K-means clustering
algorithm 0.44

40 MB
(1M*10 dim of

double)
90%

vren Parallel volume rendering
2.61

103MB
(300*300*300 of float)

97%

Test cluster

32 nodes Dual Intel Xeon Quad Core 2.66 MHz

Main memory 16GB

Storage capacity ~200GB per node

Interconnection
network

1 Gb Ethernet

GPU accelerator 2 NVIDIA C1060 GPU card
13

All benchmarks are I/O dominant

14

64.4% time is spent on I/O
Benchmarks are executed using 4 nodes

Moving computation to storage server (AS) improves
performance significantly

15

TS: Traditional Storage, 4 client nodes and 4 server nodes
AS: Active Storage, 4 server nodes

Our approach is scalable w.r.t the different number of
nodes

16

Fixed data size: 512MB

SUM benchmark

Putting client and server together

17

No Inter-node communication,
but Inter-process communication still exists

To achieve this in reality, client should be aware of storage layout!

SUM benchmark using 1 node

Conclusion

Original
Data

Target
Data

Preprocessed
Data

Patterns

Knowledge

Data integration
& selection

Preprocessing

Model
construction

Interpretation

18

Enabling active storage through:
1. Enhanced runtime interfaces (APIs)
2. Runtime stripe alignment
3. Server-to-server aggregation

Acquire data
or simulate

Enabling Active storage within parallel I/O software stack removes not only inter-
node data transfer, but also inter-process data communication, resulting in a huge
performance improvement for data-intensive analysis applications

Acknowledgments

 Department of Energy for funding this work

 Phil Carns, Sam Lang, Rob Ross, Rajeev Thakur (ANL)

 Alok Choudhary, Prabhat Kumar, Wei-Keng Liao, Berkin
Ozisikyilmaz (NWU)

19

Thanks!

20

Future work

 Function shipping
– More flexible hint mechanism

 Hadoop style execution
– Write output result to the local storage

 Scalability analysis
– NCSA Lincoln cluster: 192 compute nodes and 96 NVIDIA Tesla S1070

accelerator units.

 More benchmarks/applications
– Visualization and Bioinformatics

21

Give hints to file servers for more information

 Data type and operators are
sufficient for simple
operations, e.g., sum

 Some kernels might need
more information to
perform correct
computation
– Grep: string length per line

(128), search pattern
(“aaaaa”)

– K-means: number of
dimension (10), number of
clusters (20), threshold value
(0.001), etc.

22

MPI_Info info;

MPI_Init();

MPI_Comm_rank();

MPI_Info_create (&info);

MPI_Info_set (info, “key”, “val”);

MPI_File_open (…, info, …);

…

MPI_Info_free (&info);

MPI_Finalize();

<general MPI hint mechanism>

Our approach is scalable w.r.t the different data set sizes

23

Fixed number of nodes: 4

SUM benchmark

Data mining kernels can be compute intensive

24

K-means clustering algorithm

1. Randomly choose
initial centers

2. Assign each point
to the nearest center

3. Update centers
(mean of members)

4. Repeat until
convergence

Our approach is scalable w.r.t number of nodes to execute
and data set size

Fixed data set size = 1M data points
Delta = 0.001

25

Fixed # of nodes = 4
Delta = 0.001

AS+GPU: active storage with GPU

