Argon ne°

NATIONAL LABORATORY

Enabling Active Storage on Parallel 1/O Software
Stacks

Seung Woo Son
sson@mcs.anl.gov

Mathematics and Computer Science Division

MSST 2010, Incline Village, NV
May 7, 2010

& "‘"".»‘ U.S. DEPARTMENT OF
{ el Y
S

mailto:sson@mcs.anl.gov

Performing analysis on large data sets is often frustrating

Knowledge

Q\S o

Patterns

pae?™
19 1- Preprocessed

Data

Target Interpretation
. Data (interactive analysis
Original & visualization)
Data Model
construction
—7 Preprocessing
(pattern recognition
& feature extraction)
_ Data integration
Acquire data & selection Scientists and engineers spent
or simulate .
too much time on data
53D simulations for manipulation, especially

combustion research are
producing 30-130 TB of
data per simulation

moving and reorganizing data

Talk outline

4 Motivation

Active storage in parallel file systems
Our prototype

— Enhanced runtime interface that uses embedded analysis kernels
— Runtime stripe alignment

— Server-to-server communication for reduction and aggregation
Experimental evaluation
Conclusion

Active storage in parallel file systems

client
e C, C, | e

Interconnect network

Library or user space
Reduced implementation; not
datasent well integrated into I/O
toclient goftware stacks

Targeting applications
that manipulates
fundamentally-
independent data sets

File
read

server

nodes Lack of reduction and

aggregation on the
storage nodes

Active storage is a technique for performing
data transformations in the storage system

E. Riedel et al., Active disks for large-scale data processing, IEEE Computer, 2001.
J. Piernas et al., Evaluation of active storage strategies for the Lustre parallel file systems, in SC, 2007.

We enable active storage on parallel 1/0 software stack

Analysis Application
ys's 7PP Final
Analysis Libl‘ﬂl"j prgcessing
PFS Cliert -1 — —]| onclient 1. Enhanced runtime interface (API)
FSAPI || ActStd API |, to enable active storage operations
Active | : Reduced
storage I data . . .
request | | transferred 2. Runtime data stripe alignment
| |
PFS ferver |
FSAPI || ActSto API | Data 3. Server-to-server
— I accessed communication primitives for
E— =|! and complex analysis
processed
— T
"“‘*-_.__,_‘_____ _._._.____.___f‘

Enhanced runtime 1/0 interface to trigger embedded
analysis kernels

Conventional MPI-based

sum 0.0;

MPI File open (&fh);
double *tmp
offset rank * nitem * type size;

(double*)malloc (nitem*sizeof (doble)) ;

MPI File read at(fh, offset, tmp, nitem, MPI DOUBLE, é&status)
for (1=0; i<nitem; 1i++)
sum += tmp[i]
S = I IS IS IS IS IS IS S e I IS S S S -y, S S S S S S S S S - - I
MPI File open(&fh); for (i=0; i<nitem; 1i++)

sum += tmpl[i];

MPI File read ex(.., SUM, ..)

<client>

Active storage based

<server>

Why MPI?

= MPIis a widely used interface
— There are a large number of applications
— Therefore, it might be relatively easy to migrate

= MPI specification provides interfaces where user functions
can be embedded into it

— Enabling the incorporation of data mining and statistical functions
easily

= Hint mechanism

— Passing kernel specific argument to the server, e.g., data types

Mapping embedded analysis kernels into 1/0 pipeline

>

pvfs state machine

?tatic int fetch data

/

disk I/0;

?tatic int dispatch data

send the data;

machine pvfs pipeline sm
?tate fetch
/ run fetch data;

normal op~—=> dispatch;
active op => do comp;

}
state do_comp

Active Storage [/0

SUCCESS Mot done

SUCCEss

run dispatch data;
success => chieck done;

run do comp op;
} success => dispatc {
?tate dispatch

-

static int do comp op

for(izO;i<nitem;i++)
sum += tmp[i] ;

state check done

run check done action;
not done => fetch;
default => terminate;

Computational unit is often not perfectly aligned to file
stripe unit

n-dimensional data set 80 bytes stripe boundary

compute unit

e 55 -

Q X

4§°\¢$i¢§p - e
Ay %. & %
& Q&7 QT O

day1 stripe unit | 65536 bytes

day2
day3

= = =

65600 bytes
|- aligned buffer

I 4 i
original buffer
65536 bytes stripe boundary

1/0 pipeline with data alignment

Active Storage 10

Active Storage /O

—

Not done

MISALIGNED

SUCCERs

Normal I/O ALIGNED

Not done

SUCCESS

° 10

Server-to-server communication for reduction and
aggregation

1. Randomly choose 2. Assign each point
initial centers to the nearest center
Ao O O O @) Reduction and aggregation can
O OAO OAO be done on client side (e.g.,
O simple statistical operations)
_ Complex analysis kernels (e.g.,
3. Update centers 4. Repeat until K | . .
(mean of members) convergence -means clustering) requires
O O broadcast and reduction during

O “‘“ 8§) iterative execution
P00 S0%

K-means cluster algorithm

@
@
¢

O

11

K-means clustering is performed purely on the server side!

Normal I/0

Active Storage I/0

MISALIGNED

ALIGNED

SUCCESS

start KMEANS

Prepare beast for
initial cluster centers

Prepare allreduce for
new cluster centers,
cluster size, or &

SUCCEsRSs SUCCERS
Update new cluster centers
{using distance calculation)

Cleanup allreduce

done reducti on

Check & < threshold

done KMEANS

SUCCESS

next reducti on

not done

12

Benchmarks and evaluation platform

Global reduction 1.38 512 MB ~100%
grep String pattern matching 512 MB A Ao
1.49 (4M of 128 string) 100%
kmeans K-means clustering 40 MB
algorithm 0.44 (1M*10 dim of 90%
double)
vren Parallel volume rendering 103MB 0
251 (300%300%300 of float) -’
32 nodes Dual Intel Xeon Quad Core 2.66 MHz
Main memory 16GB
Storage capacity ~200GB per node
Interconnection 1 Gb Ethernet
network

GPU accelerator 2 NVIDIA C1060 GPU card

13

All benchmarks are 1/O dominant

100 |

&

% of distribution
3

aUM GHREF KMEANS VREN AVERAGE

64.4% time is spent on 1/0
Benchmarks are executed using 4 nodes

14

Moving computation to storage server (AS) improves
performance significantly

TS
A5 .

GREF KEMEANS VEEN AVERAGE

Mormalzed execuion ime
£l

TS: Traditional Storage, 4 client nodes and 4 server nodes
AS: Active Storage, 4 server nodes

15

Our approach is scalable w.r.t the different number of
nodes

SUM benchmark

TS
AS
5
¥ o4
£y
2
: s
Ll
i
]

4
Mumbear of nodas

16

Fixed data size: 512MB

16

Putting client and server together

Traditional storage model

on collocated nodes SUM benchmark using 1 node
“t TS (separate Node)
Analysis Application T5 (same node)
45—

Analysis Library

PFS Client
file System A

—
n
T

=

Exacution time [sec)

PFS Server
File System A

0 = | . I.- |Il
100 250 500 1024

10 a0

No Inter-node communication,
but Inter-process communication still exists

2048

To achieve this in reality, client should be aware of storage layout!

Conclusion

‘ Analysis Application ‘

Knowledge

‘ Analysis Ljbra ‘

PFS Clignt
| FSAPI | RActstgAPI | Patterns
Preprocessed
PFS Sepver Data
FSAPI || [ActSto API | Interpretation
Target
Data

Model
construction

P 4 Preprocessing
Original
Data
Data integration Enabling active storage through:
& selection 1. Enhanced runtime interfaces (APIs)
2. Runtime stripe alignment

Acquire data .
or simulate 3. Server-to-server aggregation

Enabling Active storage within parallel I/O software stack removes not only inter-
node data transfer, but also inter-process data communication, resulting in a huge
performance improvement for data-intensive analysis applications

18

Acknowledgments

= Department of Energy for funding this work
= Phil Carns, Sam Lang, Rob Ross, Rajeev Thakur (ANL)

= Alok Choudhary, Prabhat Kumar, Wei-Keng Liao, Berkin
Ozisikyilmaz (NWU)

19

Thanks!

Future work

= Function shipping

— More flexible hint mechanism

= Hadoop style execution
— Write output result to the local storage
= Scalability analysis

— NCSA Lincoln cluster: 192 compute nodes and 96 NVIDIA Tesla S1070
accelerator units.

= More benchmarks/applications

— Visualization and Bioinformatics

21

Give hints to file servers for more information

MPI_Info info; = Data type and operators are
sufficient for simple
operations, e.g., sum

= Some kernels might need
more information to
perform correct

MPI File open (.., info, ..); computation

— Grep: string length per line

(128), search pattern
MPI Info free (&info); (“aaaaa”

MPI Init();
MPI Comm rank() ;

MPI Info create (&info);
MPI Info_set (info, “key”, “val”);

— K-means: number of
dimension (10), number of

MPI Finalize();

<general MPI hint mechanism> clusters (20), threshold value
(0.001), etc.

22

Our approach is scalable w.r.t the different data set sizes

SUM benchmark

TS
A5 EEEm
B
8 4
£
)
i,
| Il
0 I.- L I-
128 1024
Data slzes (MB)

Fixed number of nodes: 4

23

Data mining kernels can be compute intensive

1. Randomly choose 2. Assign each point Comptas m—
initial centers to the nearest center Execution ime —&—
% 83 & 97 g
5 8
O o,0 O O,.0| : :
O A O AN £
o0 Y :
4009 2009,
3. Update centers 4. Repeat until 7, @ @, @, 8, 0, 9, @
(mean of members) convergence T %Y a"%
O & thrashold
o O O

° G
‘Q‘ O ’oée

@
O
P9

E N

K-means clustering algorithm

24

Execution time (sac)

To

Our approach is scalable w.r.t number of nodes to execute

and data set size

TS
AL I
AS + GPL —

4 & 16
Mumier of nodes

Fixed data set size = 1M data points
Delta = 0.001

AS+GPU: active storage with GPU

Execution time (sac)

16

14

12 |

10 f

TS
A5 I
T AS 4GP —

10K 50K 100K 250K, 500K, 1000k,
Mumbar of data points

Fixed # of nodes =4
Delta = 0.001

25

